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Motion in the Tevatron

e Speed of Light: 3x108 m/sec
e Circumference: 6.28x103m
== 4x10%revs/sec.

 Need to store about 10 hours, or 4x10° sec
=== 2x1019 revolutions total.

e 10,000 magnetsin ring
=== 2x10™ contacts with fields!

« Extremely challenging computationally
*Need for several State-Of-The-Art Methods:
*Phase Space Maps
*Perturbation Theory
L yapunov- and other Stability Theories
*High-Performance Verified Methods



Example of
Phase Space |
Motion

Tracking Phase Space Motion of 5 Particles in Normal Form Coord
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Motion in Regular Coordinates
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Tracking Phase Space Motion of 5 Particles in Normal Form Coordinates
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Find guaranteed bound of such functions
===> The oriainal maotivation of Tavlor models
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Text Box
Find guaranteed bound of such functions
===> The original motivation of Taylor models


Impacts by Near Earth Asteroids




Astro-dynamical Transfer Problems
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A Simple and Yet Challenging Example

Bound the function
f(x)=1+2>—2* in [0,1].

— The problem was proposed by Ramon Moore.



A Simple and Yet Challenging Example

Bound the function

f(x)=1+2°>—2* in [0,1].



A Simple and Yet Challenging Example — Exact Bound
Bound the function
f(x)=1+2>—2* in [0,1].

The derivative is
f'(x) = ba* — 4x® = 23 (5x — 4),

so the extrema can happen at + = 0 and z = 4/5 = 0.8. In [0, 1], the function
takes the maxima at the end points £ = 0 and x = 1, and the minimum at

r = 4/5. Thus, the exact bound is
(4 4\°  /4\*
Bexact — _f (g) 7f(0) — f(1>] = |1+ (5) - (g) 71]

= |1-= 1] = [0.91808, 1],

wW(Bexact) = 5 = 0.08192



A Simple and Yet Challenging Example — Exact Bound

Bound the function
f(x)=1+2>—2* in [0,1].

The derivative is
f'(z) = 52* — 42° = 2° (52 — 4),

so the extrema can happen at = 0 and z = 4/5 = 0.8. In [0, 1], the function
takes the maxima at the end points x+ = 0 and x = 1, and the minimum at

x = 4/5. Thus, the exact bound is
- 5 4
Bexact — f (é> af(()) — f(1>] = |1+ (%) — (%) ,1]

5
e
= |1- 5, 1] = 0.91808, 1],
44
W(Bexact) = =5 = 0.08192.

But, normally one cannot evaluate exact bounds except for trivial problems.



Interval Arithmetic

Basic operations for intervals Iy = [Ly, U], Is = [Lo, Us].

L+1, = [Li+ Ly, Uy + Uy,

L -1, = |[Li—UU; — Ly,

I I, = [min{LiLs, L1Us, ULy, U U3}, max{LiLo, L1Us, Uy Lo, U1Us}],
1/I, = [1/Uy,1/Ly], if 0¢ I4.

Rigorous range bounding by evaluating a function in interval arithmetic.

Refer to the references in the proceedings paper.



Interval Arithmetic

Basic operations for intervals Iy = [L1, U], Is = [Lo, Us].

L+1, = |[Li+ Ly, Uy + Uy,

L -1, = |[Li—UU; — Ly,

I I, = [min{LiLs, L1Us, ULy, U U3}, max{LiLo, L1Us, Uy Lo, U1Us}],
1/I, = [1/Uy,1/Ly], if 0¢ I4.

Rigorous range bounding by evaluating a function in interval arithmetic.

A trivial example of the blow-up phenomenon due to lack of the depen-
dency information. Compute the subtraction from itself; w(l) = U — L.

I-1 = [LU-[LU=[L-UU-1L|,
w(I—-1) = (U—L)—(L-U)=2U-L).

w(l —1)=2-w(l), even though x — z = 0.



Interval Range Bounding of the Function f(z) =1+ 2° — 2% in [0, 1]
Evaluate the function on the entire domain [0, 1] via interval arithmetic:

f10,1) = 1+10,1° = [0,1]* =1+1[0,1] - [0,1] = [0, 2],
w(fl0,1]) = 2.
The interval range bound f([0,1]) = [0, 2] certainly encloses the exact bound
Bexact = [0.91808, 1], but it is uselessly overestimated.

Some issues in interval arithmetic:
Overestimaton, the dependency problem, the dimensionality curse, etc.

L —1, = [L1—Us U — Lo,
I I, = [min{L1Ly, LiUs,U;Ly,UUs}, max{Ly Lo, L1Us,U; Lo, UUs}|,



Taylor models

For f: D C R” — R that is (n+ 1) times continuously partially differentiable,
P(x — x¢): the n-th order Taylor polynomial of f around xy € D
e: a small remainder bounding set of the deviation of P from f

f(x) — P(x —xg9) € e, Yr € D where zg € D.
We call the combination of P and e as a Taylor model.
T = (P,e)=P+e.

1" depends on the order n, the domain D, and the expansion point x.



Taylor Model Arithmetic

Define Taylor model addition, multiplication for T} = (Py,e1), To = (Ps,e2)
with the same conditions {n, D, z¢}.

Th+Ty, = (P1+ Pa,e1+e3),
T1 -Tg = (P1.2,61.2).

P;.5: the part of the polynomial P; - P> up to the order n.
€1.9 — B(P>n) + B(Pl) ) -+ B(PQ) €1 + €1 * €9.

P~,,: the higher order part from (n 4+ 1) to 2n.

B(P): an enclosure bound of P over D.

Operations on sets e; follow set theoretical operations and outward rounding.



Taylor Model Arithmetic — and Intrinsic Functions

Define Taylor model addition, multiplication for T} = (P, e1), To =

with the same conditions {n, D, z¢}.

Th+Ty, = (P1+ Pa,e1+e3),
T1 -Tg = (P1.2,61.2).

P;.5: the part of the polynomial P; - P> up to the order n.
€1.9 — B(P>n) + B(Pl) ) -+ B(PQ) €1 + €1 * €9.

P~,,: the higher order part from (n 4+ 1) to 2n.

B(P): an enclosure bound of P over D.

(P27€2)

Operations on sets e; follow set theoretical operations and outward rounding.

Intrinsic functions for Taylor models can be defined by performing various
manipulations using these. The particularly nice is 0, I antiderivation, being
a Taylor model intrinsic function; because obtaining the integral with respect
to variable z; of P is straightforward, so is an integral of a Taylor model.

Refer to the references in the proceedings paper.



TM Range Bounding of the Function f(z) =1+ z° — z* in [0, 1]

First, express the variable x on the entire domain [0, 1] by a Taylor model as

reT,=P,+e, with P,=05+0.5 -2, e, =0, x9€[—1,1].



TM Range Bounding of the Function f(z) =1+ z° — z* in [0, 1]

First, express the variable x on the entire domain [0, 1] by a Taylor model as

reT,=P,+e, with P,=05+0.5 -2, e, =0, x9€[—1,1].

A self-subtraction test: Subtract the Taylor model 7T, from itself.

T, =T, = (Px_anem_6x>
= ((0.5+0.5-20) — (0.5+0.5-20),0 — 0) = (0,0).

Note that on computers, a tiny nonzero remainder error enclosure will result.



TM Range Bounding of the Function f(z) =1+ z° — z* in [0, 1]

First, express the variable x on the entire domain [0, 1] by a Taylor model as
reT,=P,+e, with P,=05+0.5 -2, e, =0, x9€[—1,1].
Next, evaluate f in Taylor model arithmetic. Try the fifth order.

Tys = f(Tﬂc) = 1+ (Tw)5 - (T:L’)4
= 14+ (05405 -2040)> = (0540529 +0)*
= 1+40.5° (14 5z0 + 1023 + 10z + 5zg + x5 + 0)
—0.5% - (1 + 4z + 622 + 4z) + 28 + O)
= 1405 (=1 —3z¢ — 227 + 227 + 3z5 + 27) + 0.
On computers, a tiny nonzero remainder error enclosure will result.
In lower order Taylor model arithmetic,

the resulting P is truncated by the order,
the P~ ,, contributions are lumped into the remainder error enclosure.



TM Range Bounding of the Function f(z) =1+ z° — z* in [0, 1]
First, express the variable x on the entire domain [0, 1] by a Taylor model as
reT,=P,+e, with P,=05+0.5 -2, e, =0, x9€[—1,1].

Next, evaluate f in Taylor model arithmetic. Try the fifth order.

Ty5 = f(Tx) = 1+ (Tw)5 — (Tw)4
= 1+40.5° (=1 —3zg — 22§ + 225 + 3z + ) + 0.

The simplest range bounding (naive TM bounding):
Sum up the bound contributions from each monomial.
Utilize xq, x3, 23 € [—1,1], x3, z5 € [0, 1].

fra, € 1405°-(=1—-3-[-1,1]—=2-[0,1]+2-[-1,1] +3-[0,1] + [-1,1])
€ 1+4+0.5°-[-9,8 = [0.71875,1.25],
w(fra,) = 0.5°-(8+9)=0.53125.



Range Bounding of the Function f(z) =1+ 2° — 2% in [0, 1]

Method Division | Lower bound | Upper bound | Width
Exact 1 0.91808 1 0.08192
TM | naive, 5th 1 0.71875 1.25 0.53125
Interval 1 0 2 2




Range Bounding of the Function f(z) =1+ 2° — 2% in [0, 1]

Method Division | Lower bound | Upper bound | Width
Exact 1 0.91808 1 0.08192
TM | naive, 5th 1 0.71875 1.25 0.53125
Interval 1 0 2 2

As a common practice, divide the entire domain into smaller subdomains.

TM enhancements:

The Linear Dominated Bounder (LDB), the Fast Quadratic Bounder (QFB),
utilizing the linear, and the quadratic part respectively.

Applicable to multivariate cases. Economical, excellent range bounding.
Great tools in verified global optimizations (GO) in the branch-and-bound
approach, narrowing the search area by pruning and discarding subdomains.



Range Bounding of the Function f(z) =1+ 2° — 2% in [0, 1]

Method Division Lower bound | Upper bound | Width
Exact 1 0.91808 1 0.08192
GO, 5th 3 (8 steps)™
LDB, 5th 16
TM | naive, bth 16
naive, 1st 16
naive, 5th 1 0.71875 1.25 0.53125
Interval 1024
128
16
1 0 2 2
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Moore 1D function f(x)=x"5-x*4+1 in [0,1]. Bounding by 16 intervals
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x"5-x"+1 in [0,1]. Bounding by 128 intervals

Moore 1D function f(x)
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Moore 1D function f(x)=x"5-x"4+1 in [0,1]. Bounding by 1024 intervals
102 T I I |

0.98

0.96

0.94

0.92

09 | | | |




Moore 1D function f(x)=x"5-x*4+1 in [0,1]. Bounding by 16 naive linear TMs
102 T I I |

0.98 | \

0.96

0.94

0.92 | N—

09 | | | |




Moore 1D function f(x)=x"5-x"4+1 in [0,1]. Bounding by 16 naive 5th order TMs

102 T T I |

0.98

0.96

0.94

0.92

09 | | | |




Moore 1D function f(x)=x"5-x*4+1 in [0,1]. Bounding by 16 TM LDB

102 T T I |

1 ——s<

0.98

0.96

0.94

0.92

09 | | | |




Range Bounding of the Function f(z) =1+ 2° — 2% in [0, 1]

tx)

100

095

0.aq

1.00

095

¢ac

100

¢as

0.9q

Intervals: (a) 16, (b) 128, (¢) 1024 subdomains.
TMs: (d) 16 (1st, naive), (e) 16 (5th, naive), (f) 16 (5th, LDB).



Moore 1D func. Process of COSY-GO - Step 2 through 8

| T T I
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0.95 |
0.9 | |
0.85 |- T o
| | I |
0 0.2 0.4 0.6 08 1

IN bound e TM bound === LDB b&p QFB bé&p ®  cutoff



Range Bounding of the Function f(z) =1+ 2° — 2% in [0, 1]

Method Division Lower bound | Upper bound | Width
Exact 1 0.91808 1 0.08192
GO, 5th 3 (8 steps)™ | 0.918079 1.000001 0.081922
LDB, 5th 16 0.918015 1.000001 0.081986
TM | naive, 5th 16 0.916588 1.000030 0.083442
naive, 1st 16 0.906340 1.011237 0.104897
naive, oth 1 0.71875 1.25 0.53125
Interval 1024 0.916065 1.003901 0.087836
128 0.901137 1.030886 0.129749
16 0.724196 1.227524 0.503328
1 0 2 2

Unless exact, the bound values are rounded outward.
* No equi-sized subdomains — involving pruning and deleting of subdomains.



Important TM Algorithms

e Range Bounding (Evaluate f as TM, bound polynomial,
add remainder bound. LDB, QFB etc.)

e Global Optimization (Use TM bounding schemes, obtain
good cutoff values quickly by using non-verified schemes)

e Quadrature (Evaluate f as TM, integrate polynomial and
remainder bound)

e Implicit Equations (Obtain TMs for implicit solutions of
TM equations)

e Superconvergent Interval Newton Method (Application of
Implicit Equations)

e Implicit ODEs and DAEs
e Complex Arithmetic

e ODEs (Obtain TMs describing dependence of final coordinates
on initial coordinates)



The TM based (Global Optimizer, COSY-GO

has utilized various algorothms based on Taylor models.

e LDB (Linear Dominated Bounding) bounding and domain reduction

e QFB (Quadratic Fast Bounding) bounding and domain reduction for
positive definate cases (Quadratic pruning)

e Various cutoff value update schemes
And, we have

e Adjustment to pallarel environments with low inter-processoer commu-
nication rate

e Restart capability

e Continuation of computations while the underlying arithmetic fails

And, what we are doing further...

e High-order derivative based box rejection and the domain reduction

e Supporting high multiple precision computations for TMs



Applications

There are so many problems requiring optimizations.
Using COSY-GO, we have worked on

e Numerous challenging benchmark tests

e Design parameter optimizations

e Rump’s Toeplits problems

e Entropy estimates for chaotic dynamical systems

e Long-term stability estimates of the Tevatron

e Molecule packing problems

e Gravity assist interplanetary spacecraft trajectory designs
And more are, and will be, coming,.

e Edge curvature design for FFAG magnets

e Complicated field computaions for beam transfer maps

e ... Any problem you can imagine...



; _ r, =5:10%
£ 10™ ; P r,=5:10%

0 %

Fig. 9. Projection of the normal form defect function. Dependence on two angle
variables for the fixed radii 7, = ro = 5 <104

Region Boxes studied | CPU-time | Bound Transversal Iterations
[0.2,0.4] <10~ | 82,930 30,603 sec | 0.859 <1013 | 2.3283 <10®

0.4,0.6] <10~ | 82,626 30,603 sec | 0.587 <1012 | 3.4072 <107

[

[0.6,0.9] <10~* | 64,131 14,441 sec | 0.616 <10~ | 4.8701 <106

[0.9,1.2] <10~ | 73,701 13,501 sec | 0.372 10710 | 8.064 5 <10°

[1.2,1.5] <10~* | 106,929 24,304 sec | 0.144 <1079 | 2.083 3 <10°

[1.5,1.8) 10~* | 111,391 26,103 sec | 0.314 <10~ | 0.95541 <10°

Table 8

Global bounds obtained for six radial regions in normal form Space for the Tevatron.
Also computed are the guaranteed minimum transversal iterations.



ODE Integration with Taylor Models

Idea: retain full dependence on initial conditions as Taylor model
(Non-verified version: big breakthrough in particle optics and beam physics,

1984 - allows to calculate "aberrations" to any order, from earlier order
three)

1. Different from other validated methods, the approach is single step -
no need for a separate coarse enclosure and subsequent verification step

2. Error due to time stepping is O(n; + 1)

3. Error due to initial variables is O(n, + 1), not O(2) as in other
methods

4. By choosing n; and n, appropriately, the error due to finite domain and
time stepping can be made arbitrarily small.

5. Overall, never leave the TM represenation until possibly the very end.
Doing so may remove higher order dependence.

--> Talk by Martin Berz

Refer, also, to the references in the proceedings paper.



The Volterra Equation

Describe dynamics of two conflicting populations

dx
= 221(1 — x9), d_t2 = —x9(1 — 1)

diy

dt

Interested in initial condition

zo1 € 1+ [—0.05,0.05], xg9 € 34 [—0.05,0.05] at t = 0.

Satisfies constraint condition

2%’2 —

Clxy, 19) = xyxie 1~ Constant
’ 2
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Integration of the Volterra eqs. COSY-VI and AWA
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Volterra. IC=(1,3)+-0.5. T=0.0
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Volterra. IC=(1,3)+-0.5. T= 0.5
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Volterra. IC=(1,3)+-0.5. T=1.0
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Volterra. IC=(1,3)+-0.5. T=1.5
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Volterra. IC=(1,3)+-0.5. T= 2.0
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Volterra. IC=(1,3)+-0.5. T=2.5




3.5

2.5

1.5

0.5

Volterra. IC=(1,3)+-0.5. T=3.0
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Volterra. IC=(1,3)+-0.5. T=3.5
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Volterra. IC=(1,3)+-0.5. T=4.0
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Volterra. IC=(1,3)+-0.5. T=4.5




=(1,3)+-0.5. T=5.0

Volterra. IC
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Volterra. IC=(1,3)+-0.5. T=5.5




Volterra. IC=(1,3)+-0.5. T=6.0
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Volterra. IC=(1,3)+-0.5. T=6.5
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Volterra. IC=(1,3)+-0.5. T=7.0
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Volterra. IC=(1,3)+-0.5. T=7.5
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Volterra. IC=(1,3)+-0.5. T=8.0
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Volterra. IC=(1,3)+-0.5. T=8.5
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Volterra. IC=(1,3)+-0.5. T=9.0




=(1,3)+-0.5. T=9.5

Volterra. IC




(1,3)+-0.5. T=10.0

Volterra. IC
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Volterra. IC=(1,3)+-0.5. T=10.5




=(1,3)+-0.5. T=11.0

Volterra. IC




The Milano-Michigan ESA Project

A Collaboration of the Instituto Aerospaziale at Po-
litecnico di Milano and Michigan State University. Cur-
rently funded by the European Space Agency to

e Develop a verified integrator for solar system dynam-
ics in a complete model of the solar system

e Includes influences of all planets, major asteroids,
general relativity, etc

e Analyze its behavior and abilities

e Apply the integrator to study the dynamics of the
Near-Earth Asteroid (99942) Apophis



Near Earth Asteroid (99942) Apophis

e A Near-Earth Asteroid discovered in 2004
e Fccentric orbit between the orbits of Venus and Mars

e Apophis will have a first near collision with Earth on
Friday, April 13, 2029

e Apophis will have another near (?7?) collision with
Earth on (Monday), April 13, 2036

e The near collision in 2029 very significantly alters

Apophis’ orbit

The small uncertainties of Apophis’ current orbit pa-
rameters, amplified by the influence of the near collision
in 2029, makes predictions for 2036 very difficult.



White bar represents
range of uncertainty _
in asteroid trajectory

.ﬁ}{fﬁ
«Earth
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N Trajectory of
99942 Apophis
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2029 Apophis—Earth
close encounter  *




Near Earth Asteroid (99942) Apophis

e A Near-Earth Asteroid discovered in 2004
e Fccentric orbit between the orbits of Venus and Mars

e Apophis will have a first near collision with Earth on
Friday, April 13, 2029

e Apophis will have another near (?7?) collision with
Earth on (Monday), April 13, 2036

e The near collision in 2029 very significantly alters
Apophis’ orbit

The small uncertainties of Apophis’ current orbit pa-
rameters, amplified by the influence of the near collision
in 2029, makes predictions for 2036 very difficult.

--> Further observations have excluded a deadly collision with Earth :-)



Work in Progress

e Improvement of the Taylor model arithmetic package in COSY
to allow arbitrarily high precision Taylor model computations.

— All the preparation work has been completed.
— The final system integration work is in progress.

— Upon the completion, COSY-VI and COSY-GO will be ad-
justed for utilizing it.

e Improvement of COSY-VI

— Various schemes to conduct Poincare projections
— Computations in parallel environment

e Improvement of COSY-GO

— Utilizing Genetic Algorithm based non-rigorous global opti-
mizers for better cut-ofl tests
* Such an optimizer has been implemented in COSY.
The system integration work has to be done.
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