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Verified ODE Integrations
Using the interval method, typical issues in general are

• overestimation
• the dependency problem
• the dimensionality curse
When geometric transformations of sets are involved,
such as ODE integrations, there arises an additional issue

• the wrapping effect
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Verified ODE Integrations
Using the interval method, typical issues in general are

• overestimation
• the dependency problem
• the dimensionality curse
When geometric transformations of sets are involved,
such as ODE integrations, there arises an additional issue

• the wrapping effect

How to handle the wrapping effect in

• the interval method
• the Taylor model method;  = ( ) =  +  where

()−  (− 0) ∈  ∀ ∈  0 ∈ 



The Wrapping Effect in Linear ODEs

Initial Condition Interval Box Solution Set

Solution Set in the Optimal Interval Box

Solution Set in Rotated Rectangles

( Here, the Right One is Optimal. )

Solution Set by Taylor Models



The Wrapping Effect in Nonlinear ODEs

Initial Condition Interval Box Solution Set

Solution Set in the Optimal Interval Box

Solution Set by Taylor Models

Solution Set in an Optimal Rotated Rectangle

Solution Set in an Optimal Eight-Corner Polygon



ODE Integration with Taylor Models
Idea: retain full dependence on initial conditions as Taylor model
(Non-verified version: big breakthrough in particle optics and beam physics,
1984 - allows to calculate "aberrations" to any order, from earlier order
three)

1. Different from other validated methods, the approach is single step -
no need for a separate coarse enclosure and subsequent verification step

2. Error due to time stepping is O(nt + 1)

3. Error due to initial variables is O(nv + 1), not O(2) as in other
methods

4. By choosing nt and nv appropriately, the error due to finite domain and
time stepping can be made arbitrarily small.

5. Overall, never leave the TM represenation until possibly the very end.
Doing so may remove higher order dependence.

Refer to the references in the proceedings paper.



The Volterra Equation
Describe dynamics of two conflicting populations

dx1
dt
= 2x1(1− x2),

dx2
dt
= −x2(1− x1)

Interested in initial condition

x01 ∈ 1 + [−0.05, 0.05], x02 ∈ 3 + [−0.05, 0.05] at t = 0.

Satisfies constraint condition

C(x1, x2) = x1x
2
2e
−x1−2x2 = Constant



Trajectories of the Volterra Equations

The solutions have to satisfy the constraint

C(x1, x2) = x1x
2
2e

−x1−2x2 = constant,

so the trajectories follow the contour lines of C(x1, x2).

xy^2*exp(-x-2y)
    0.04
    0.03
    0.02
    0.01

 0.00821

0
1

2
3

4
5 0

1

2

3

0

0.01

0.02

0.03

0.04

0.05

0
1

2
3

4
5

0

1

2

3

-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3.5. −0.3 ≤ x1 ≤ 5, −0.3 ≤ x2 ≤ 3.5.

In the positive quadrant (Left), the trajectories form closed orbits. However, it’s
not the case in the other quadrants (Right).
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Dynamic Domain Decomposition
For extended domains, this is natural equivalent to step size
control. Similarity to what’s done in global optimization.
1. Evaluate ODE for ∆t = 0 for current flow.

2. If resulting remainder boundR greater than ε, split the domain
along variable leading to longest axis.

3. Absorb R in the TM polynomial part using the error parame-
trization method. If it fails, split the domain along variable
leading to largest x dependence of the error.

4. Put one half of the box on stack for future work.
Things to consider:
• Utilize "First-in-last-out" stack; minimizes stack length. Spe-
cial adjustments for stack management in a parallel environ-
ment, including load balancing.

• Outlook: also dynamic order control for dependence on initial
conditions
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Trajectories of the Volterra Equations

The solutions have to satisfy the constraint

C(x1, x2) = x1x
2
2e

−x1−2x2 = constant,

so the trajectories follow the contour lines of C(x1, x2).
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In the positive quadrant (Left), the trajectories form closed orbits. However, it’s
not the case in the other quadrants (Right).
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Rigorous Reachability Analysis

• Obtain a rigorous flow of a large area of interest by integrating
the ODEs using Taylor models for the time step of interest

• During the verified integration process, conduct domain decom-
positions dynamically as needed



The Duffing Equation
The equation describes a damped and driven oscillator.
Exhibits sensitive dependence on initial conditions and chaoticity.

̈ + ̇ +  + 3 =  cos()

Example: Study

̇ = 

̇ = −  − 3 +  cos()

with
 = 025  = 03

for
 ∈ [0 ] ( ) ∈ [−2 2]× [−2 2]
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Graph-Based Methods
Problem: Many problems of dynamical systems are statements
about behavior at infinity. Examples: attracting regions, limit
cycles, etc. How can these be studied using finite integration?
Answer: Discretize space into disjoint sub-regions , study
flow for fixed ∆. Consider the directed graph described by the
following incidence matrix:

̂ =

½
0 if () is certain not to reach 

1 else
Studying the graph allows to rigorously identify basins of attrac-
tion, invariant sets, isolating neighborhoods, etc.
Problem: The quality of the analysis directly depends on the
fineness of the mesh and the reduction of overestimation



Rigorous Reachability Analysis

• Obtain a rigorous flow of a large area of interest by integrating
the ODEs using Taylor models for the time step of interest

• During the verified integration process, conduct domain decom-
positions dynamically as needed

• Discretize the space into disjoint sub-regions for studying graphs
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Rigorous Reachability Analysis

• Obtain a rigorous flow of a large area of interest by integrating
the ODEs using Taylor models for the time step of interest

• During the verified integration process, conduct domain decom-
positions dynamically as needed

• Discretize the space into disjoint sub-regions for studying graphs
— In Taylor models, it’s possible to discretize the resulting flow
in a similar manner as of dynamic domain decompositions.
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Rigorous Reachability Analysis

• Obtain a rigorous flow of a large area of interest by integrating
the ODEs using Taylor models for the time step of interest

• During the verified integration process, conduct domain decom-
positions dynamically as needed

• Discretize the space into disjoint sub-regions for studying graphs
— In Taylor models, it’s possible to discretize the resulting flow
in a similar manner as of dynamic domain decompositions.

— The capability of dividing theTaylormodel objects as needed
— i.e., during the integration process, after obtaining the re-
sulting flow — is a big advantage.

—On the other hand, with the interval method, if further dis-
cretization is needed, it has to be done in the initial area of
interest all over again.



Rigorous Integrations of the Lorenz System

Rigorous flow integrations of large ranges of initial con-
ditions have been computed using Taylor model based
ODE integrators, particularly by COSY-VI version 3.

Example: Flow computations of the standard Lorenz
equations for an area of initial condition

(  )|0 = ([−40 40] [−50 50] [−25 75])
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Work in Progress

• Improvement of the Taylor model arithmetic package in COSY
to allow arbitrarily high precision Taylor model computations

• Improvement of COSY-VI
—Various schemes to conduct Poincare projections
— Computations in parallel environment
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