Nonlinear Real Arithmetic and δ -Satisfiability

Paolo Zuliani

School of Computing Science Newcastle University, UK

(Slides courtesy of Sicun Gao, UCSD)

Introduction

- We use hybrid systems for modelling and verifying *biological* and *cyber-physical system* models:
 - atrial fibrillation (CMSB 2014)
 - prostate cancer therapy (HSCC 2015)
 - psoriasis UVB treatment (HVC 2016)
 - artificial pancreas (this tutorial paper coming soon)
- Hybrid systems combine continuous dynamics with discrete state changes.

Why Nonlinear Real Arithmetic and Hybrid Systems? (I)

A prostate cancer model¹

$$\begin{aligned} \frac{dx}{dt} &= \left(\frac{\alpha_x}{1 + e^{(k_1 - z)k_2}} - \frac{\beta_x}{1 + e^{(z - k_3)k_4}} - m_1\left(1 - \frac{z}{z_0}\right) - c_1\right)x + c_2\\ \frac{dy}{dt} &= m_1\left(1 - \frac{z}{z_0}\right)x + \left(\alpha_y\left(1 - d_0\frac{z}{z_0}\right) - \beta_y\right)y\\ \frac{dz}{dt} &= -z\gamma - c_3\\ v &= x + y\end{aligned}$$

- v prostate specific antigen (PSA)
- x hormone sensitive cells (HSCs)
- y castration resistant cells (CRCs)
- z androgen

¹A.M. Ideta, G. Tanaka, T. Takeuchi, K. Aihara: A mathematical model of intermittent androgen suppression for prostate cancer. *Journal of Nonlinear Science*, 18(6), 593–614 (2008)

Why Nonlinear Real Arithmetic and Hybrid Systems? (I)

Intermittent androgen deprivation therapy

$$\begin{aligned} \mathbf{on\text{-therapy}} \\ \frac{dx}{dt} &= \left(\frac{\alpha_x}{1 + e^{(k_1 - z)k_2}} - \frac{\beta_x}{1 + e^{(z - k_3)k_4}} - m_1 \left(1 - \frac{z}{z_0}\right) - c_1\right)x + c_2 \\ \frac{dy}{dt} &= m_1 \left(1 - \frac{z}{z_0}\right)x + \left(\alpha_y \left(1 - \frac{d_0 z}{z_0}\right) - \beta\right)y \\ \frac{dz}{dt} &= -z\gamma + c_3 \end{aligned}$$

$$\begin{aligned} \mathbf{off\text{-therapy}} \\ \frac{dx}{dt} &= \left(\frac{\alpha_x}{1 + e^{(k_1 - z)k_2}} - \frac{\beta_x}{1 + e^{(z - k_3)k_4}} - m_1 \left(1 - \frac{z}{z_0}\right) - c_1\right)x + c_2 \\ \frac{dy}{dt} &= m_1 \left(1 - \frac{z}{z_0}\right)x + \left(\alpha_y \left(1 - \frac{d_0 z}{z_0}\right) - \beta\right)y \\ \frac{dz}{dt} &= (z_0 - z)\gamma + c_3 \end{aligned}$$

Why Nonlinear Real Arithmetic and Hybrid Systems? (II)

A model of psoriasis development and UVB treatment²

$$\begin{aligned} \frac{dSC}{dt} &= \gamma_1 \frac{\omega (1 - \frac{SC + SS_d}{SC_{max}})SC}{1 + (\omega - 1)(\frac{TA + TA_d}{P_{ta,h}})^n} - \beta_1 ln_A SC - \frac{k_{1s}\omega}{1 + (\omega - 1)(\frac{TA + TA_d}{P_{ta,h}})^n SC + k_1 TA} \\ \frac{dTA}{dt} &= \frac{k_{1a,s}\omega SC}{1 + (\omega - 1)(\frac{TA + TA_d}{P_{ta,h}})^n} + \frac{2k_{1s\omega}}{1 + (\omega - 1)(\frac{TA + TA_d}{P_{ta,h}})^n + \gamma_2 GA - \beta_2 ln_A TA - k_{2s} TA - k_1 TA} \\ \frac{dGA}{dt} &= (k_{2a,s} + 2k_{2s})TA - k_2 GA - k_3 GA - \beta_3 GA \\ \frac{dSC_d}{dt} &= \gamma_{1d}(1 - \frac{SC + SC_d}{SC_{max,t}}SC_d - \beta_{1d} ln_A SC_d - k_{1sd} SC_d - \frac{k_p SC_d^2}{k_a^2 + SC_d^2} + k_{1d} TA_d) \\ \frac{dTA_d}{dt} &= k_{1a,sd}SC_d + 2k_{1sd}SC_d + \gamma_{2d} TA_d + k_{2d} GA_d - \beta_{2d} ln_A TA - k_{2sd} TA_d - k_{1d} TA_d \\ \frac{dGA_d}{dt} &= (k_{2a,sd} + 2k_{2sd})TA_d - k_{2d} GA_d - k_{3d} GA_d - \beta_{3d} GA_d \end{aligned}$$

▶ Therapy episode: 48 hours of irradiation + 8 hours of rest

²H. Zhang, W. Hou, L. Henrot, S. Schnebert, M. Dumas, C. Heusèle, and J. Yang. Modelling epidermis homoeostasis and psoriasis pathogenesis. *Journal of The Royal Society Interface*, 12(103), 2015.

Why Nonlinear Real Arithmetic and Hybrid Systems? (II)

A model of psoriasis development and UVB treatment²

$$\begin{aligned} \frac{dSC}{dt} &= \gamma_1 \frac{\omega (1 - \frac{SC + \lambda SC_d}{SC_{max}})SC}{1 + (\omega - 1)(\frac{TA + TA_d}{P_{ta,h}})^n} - \boxed{\beta_1} ln_A SC - \frac{k_{1s}\omega}{1 + (\omega - 1)(\frac{TA + TA_d}{P_{ta,h}})^nSC + k_1 TA} \\ \frac{dTA}{dt} &= \frac{k_{1a,s}\omega SC}{1 + (\omega - 1)(\frac{TA + TA_d}{P_{ta,h}})^n} + \frac{2k_{1s\omega}}{1 + (\omega - 1)(\frac{TA + TA_d}{P_{ta,h}})^n + \gamma_2 GA - \boxed{\beta_2} ln_A TA - k_{2s} TA - k_1 TA} \\ \frac{dGA}{dt} &= (k_{2a,s} + 2k_{2s})TA - k_2 GA - k_3 GA - \beta_3 GA \\ \frac{dSC_d}{dt} &= \gamma_{1d} (1 - \frac{SC + SC_d}{SC_{max,t}}SC_d - \beta_{1d} ln_A SC_d - k_{1sd} SC_d - \frac{k_p SC_d^2}{k_a^2 + SC_d^2} + k_{1d} TA_d) \\ \frac{dTA}{dt} &= k_{1a,sd} SC_d + 2k_{1sd} SC_d + \gamma_{2d} TA_d + k_{2d} GA_d - \beta_{2d} ln_A TA - k_{2sd} TA_d - k_{1d} TA_d \\ \frac{dGA_d}{dt} &= (k_{2a,sd} + 2k_{2sd})TA_d - k_{2d} GA_d - k_{3d} GA_d - \beta_{3d} GA_d \end{aligned}$$

Therapy episode: 48 hours of irradiation + 8 hours of rest
 Therapy episode = multiply β₁ and β₂ by a constant In_A

²H. Zhang, W. Hou, L. Henrot, S. Schnebert, M. Dumas, C. Heusèle, and J. Yang. Modelling epidermis homoeostasis and psoriasis pathogenesis. *Journal of The Royal Society Interface*, 12(103), 2015.

Bounded Reachability

- Reachability is a key property in verification, also for hybrid systems.
- Reachability is undecidable even for linear hybrid systems (Alur, Courcoubetis, Henzinger, Ho. 1993).
- [Bounded Reachability] Does the hybrid system reach a goal state within a finite time and number of (discrete) steps?
 - "Can a 5-episode UVB therapy remit psoriasis for a year?"

Bounded Reachability

- Reachability is a key property in verification, also for hybrid systems.
- Reachability is undecidable even for linear hybrid systems (Alur, Courcoubetis, Henzinger, Ho. 1993).
- [Bounded Reachability] Does the hybrid system reach a goal state within a finite time and number of (discrete) steps?
 - "Can a 5-episode UVB therapy remit psoriasis for a year?"
- Nonlinear arithmetics over the reals is undecidable (Tarski 1951, Richardson 1968).
- Hence, the problem needs to be simplified if we want to solve it algorithmically!

- Novak and Woźniakowski (J of Complexity, 1992) studied the relaxed verification problem:
 - verify that a candidate is close to a problem solution
 - introduce a parametric "safety zone" for which either answer is deemed correct
 - focus on computational complexity

- Novak and Woźniakowski (J of Complexity, 1992) studied the relaxed verification problem:
 - verify that a candidate is close to a problem solution
 - introduce a parametric "safety zone" for which either answer is deemed correct
 - focus on computational complexity
- Fränzle's work on hybrid automata (since 1999).

- Novak and Woźniakowski (J of Complexity, 1992) studied the relaxed verification problem:
 - verify that a candidate is close to a problem solution
 - introduce a parametric "safety zone" for which either answer is deemed correct
 - focus on computational complexity
- Fränzle's work on hybrid automata (since 1999).
- Ratschan's work on constraint solving (since 2001).

- Novak and Woźniakowski (J of Complexity, 1992) studied the relaxed verification problem:
 - verify that a candidate is close to a problem solution
 - introduce a parametric "safety zone" for which either answer is deemed correct
 - focus on computational complexity
- Fränzle's work on hybrid automata (since 1999).
- ► Ratschan's work on constraint solving (since 2001).
- Gao, Avigad, Clarke (LICS 2012): bounded δ-satisfiability over the reals is decidable:
 - δ -complete decision procedure.

Turning machines operate on finite strings, *i.e.*, integers, which cannot capture real-valued functions.

- Real numbers can be encoded on *infinite* tapes.
 - Real numbers are functions over integers.
- Real functions can be computed by machines that take infinite tapes as inputs, and output infinite tapes encoding the values.

Definition (Name of a real number)

A real number *a* can be encoded by an **infinite sequence** of rationals $\gamma_a : \mathbb{N} \to \mathbb{Q}$ such that

$$\forall i \in \mathbb{N} |a - \gamma_a(i)| < 2^{-i}.$$

A function f(x) = y is computable if any name of x can be algorithmically mapped to a name of y

Writing on any finite segment of the output tape takes finite time.

- Type 2 computability implies continuity.
- "Numerically computable" roughly means Type 2 computable.
- Approximation up to arbitrary numerical precisions.

Ker-I Ko. Complexity Theory of Real Functions. 1991.

Type 2 Computable:

- polynomials, sin, exp, ...
- numerically feasible ODEs, PDEs,

Type 2 Complexity:

- ▶ sin, exp, etc. are in P_[0,1]
- Lipschitz-continuous ODEs are in PSPACE_[0,1]; in fact, can be PSPACE_[0,1]-complete (Kawamura, CCC 2009).

See Ko's book for many more results

 $\mathcal{L}_{\mathbb{R}_{\mathcal{F}}}$ -Formulas (Gao, Avigad, and Clarke. LICS 2012)

Let \mathcal{F} be the class of all Type 2 computable real functions. Definition ($\mathcal{L}_{\mathbb{R}_{\mathcal{F}}}$ -Formulas)

First-order language over $\langle >, \mathcal{F} \rangle$:

$$egin{aligned} t &:= x \mid f(t(ec{x})) \ arphi &:= t(ec{x}) > 0 \mid
eg arphi \mid arphi \lor arphi \mid arphi \lor arphi \mid \exists x_i arphi \mid orall x_i arphi \end{aligned}$$

Example

Let dx/dt = f(x) be an n-dimensional dynamical system. Lyapunov stability is expressed as:

$$\forall \varepsilon \exists \delta \forall t \forall x_0 \forall x_t. \left(||x_0|| < \delta \land x_t = x_0 + \int_0^t f(s) ds \right) \to ||x_t|| < \varepsilon$$

Hybrid Automata

A hybrid automaton is a tuple

$$\begin{split} H &= \langle X, Q, \{ \mathsf{flow}_q(\vec{x}, \vec{y}, t) : q \in Q \}, \{ \mathsf{jump}_{q \to q'}(\vec{x}, \vec{y}) : q, q' \in Q \}, \\ &\{ \mathsf{inv}_q(\vec{x}) : q \in Q \}, \{ \mathsf{init}_q(\vec{x}) : q \in Q \} \rangle \end{split}$$

- $X \subseteq \mathbb{R}^n$ for some $n \in \mathbb{N}$
- $Q = \{q_1, ..., q_m\}$ is a finite set of modes
- Other components are finite sets of quantifier-free *L*_{ℝ_F}-formulas.

Example: Nonlinear Bouncing Ball

•
$$X = \mathbb{R}^2$$
 and $Q = \{q_u, q_d\}.$

• flow_{q_d}(x_0, v_0, x_t, v_t, t), dynamics in the falling phase:

$$(x_t = x_0 + \int_0^t v(s)ds) \wedge (v_t = v_0 + \int_0^t g(1 + \beta v(s)^2)ds)$$

Continuous case:

```
\mathsf{init}(\vec{x_0}) \land \mathsf{flow}(\vec{x_0}, t, \vec{x_t}) \land \mathsf{goal}(\vec{x_t})
```

Make one jump:

 $\mathsf{init}(\vec{x_0}) \land \mathsf{flow}(\vec{x_0}, t, \vec{x_t}) \land \mathsf{jump}(\vec{x_t}, \vec{x_t'}) \land \mathsf{goal}(\vec{x_t'})$

Encode Reachability: invariant-free case

$$\exists^{X} \vec{x_{0}} \exists^{X} \vec{x_{0}^{t}} \cdots \exists^{X} \vec{x_{k}} \exists^{X} \vec{x_{k}^{t}} \exists^{[0,M]} t_{0} \cdots \exists^{[0,M]} t_{k}$$

$$\bigvee_{q \in Q} \left(\operatorname{init}_{q}(\vec{x_{0}}) \wedge \operatorname{flow}_{q}(\vec{x_{0}}, \vec{x_{0}^{t}}, t_{0}) \right)$$

$$\wedge \qquad \bigwedge_{i=0}^{k-1} \left(\bigvee_{q,q' \in Q} \left(\operatorname{jump}_{q \to q'}(\vec{x_{i}^{t}}, \vec{x_{i+1}}) \wedge \operatorname{flow}_{q'}(\vec{x_{i+1}}, \vec{x_{i+1}^{t}}, t_{i+1}) \right) \right)$$

$$\wedge \qquad \bigvee_{q \in Q} \left(\operatorname{goal}_{q}(\vec{x_{k}^{t}}) \right)$$

(There's some simplification here.)

Difficulty

Suppose \mathcal{F} is $\{+, \times\}$.

$$\mathbb{R} \models \exists a \forall b \exists c \; (ax^2 + bx + c > 0)?$$

Decidable [Tarski 1948] but double-exponential lower-bound.

Suppose \mathcal{F} further contains sine.

$$\mathbb{R} \models \exists x, y, z \; (\sin^2(\pi x) + \sin^2(\pi y) + \sin^2(\pi z) = 0 \bigwedge x^3 + y^3 = z^3)?$$

Undecidable.

Towards δ -Decisions

Defining δ -decision problems of $\mathcal{L}_{\mathbb{R}_{\mathcal{F}}}$ -formulas leads to a totally different outlook.

Bounded $\mathcal{L}_{\mathcal{F}}$ -Sentences

Definition (Normal Form)

Any bounded $\mathcal{L}_{\mathcal{F}}\text{-sentence }\varphi$ can be written in the form

$$Q_1^{[u_1,v_1]}x_n\cdots Q_n^{[u_n,v_n]}x_n \ \bigwedge (\bigvee t(\vec{x}) > 0 \lor \bigvee t(\vec{x}) \ge 0)$$

- Negations are pushed into atoms.
- Bounded quantifiers: the bounds can use any terms that contain previously-quantified variables.

δ -Variants

Definition (Numerical Perturbation) Let $\delta \in \mathbb{Q}^+ \cup \{0\}$. The δ -weakening $\varphi^{-\delta}$ of φ is $Q_1^{[u_1,v_1]}x_1 \cdots Q_n^{[u_n,v_n]}x_n \bigwedge (\bigvee t(\vec{x}) > -\delta \lor \bigvee t(\vec{x}) \ge -\delta)$

- Obviously, $\varphi \to \varphi^{-\delta}$ (but not the other way round!)
- δ -strengthening $\varphi^{+\delta}$ is defined by replacing $-\delta$ by δ .

δ -Decisions

Let $\delta \in \mathbb{Q}^+$ be arbitrary.

Definition (δ -Decisions)

Decide, for any given bounded φ and $\delta \in \mathbb{Q}^+,$ whether

- φ is false, or
- $\varphi^{-\delta}$ is true.

When the two cases overlap, either answer can be returned.

The dual can be defined on δ -strengthening.

δ -Decisions

There is a grey area that a δ -complete algorithm can be wrong about.

Corollary

In undecidable theories, it is undecidable whether a formula falls into this grey area.

δ -Decidability

Let \mathcal{F} be an arbitrary collection of Type 2 computable functions. Theorem The δ -decision problem over $\mathbb{R}_{\mathcal{F}}$ is decidable. See [Gao *et al.* LICS 2012].

It stands in sharp contrast to the high undecidability of simple formulas containing sine.

δ -Robustness

- A bounded $\mathcal{L}_{\mathbb{R}}$ -sentence ϕ is δ -robust iff $\phi^{\delta} \to \phi$.
 - ϕ is **robust** if it is δ -robust for some $\delta > 0$.
- Suppose ϕ is robust
 - if ϕ is true, then $\forall \delta > 0 : \phi^{\delta} \to \phi$,
 - if ϕ is false, then $\exists \delta > 0 : \neg \phi \rightarrow \neg \phi^{\delta}$.

Theorem

Given a **robust** bounded $\mathcal{L}_{\mathbb{R}}$ -sentence ϕ , there exists $\delta > 0$ for which a δ -complete decision procedure **correctly** decides whether ϕ is true or false.

- Thus, robustness \Rightarrow decidability.
 - However, decidability \neq robustness.

Complexity

Let S be some class of $\mathcal{L}_{\mathcal{F}}$ -sentences such that all the terms appearing in S are in Type 2 complexity class C. Then for any $\delta \in \mathbb{Q}^+$:

Theorem

The δ -decision problem for a \sum_{k} -sentence from S is in $(\sum_{k}^{P})^{C}$.

Corollary

- $\mathcal{F} = \{+, \times, \exp, \sin, ...\}$: Σ_{k}^{P} -complete.
- ► *F* = {*ODEs with* P *right-hand sides*}: PSPACE-complete.

These are very reasonable!

Exactness

The definition of $\delta\text{-decisions}$ is exact in the following sense.

Theorem

If \mathcal{F} is allowed to be arbitrary, then φ is decidable iff we consider bounded δ -decisions.

Theorem

Bounded sentences are δ -decidable iff \mathcal{F} is computable.

Conclusions

The notion of δ -complete decision procedures allows formal analysis and use of numerical algorithms in decision procedures.

- Standard completeness is impossible.
- δ-completeness: strong enough and achievable.
 - Correctness guarantees on both sides