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Introduction

I We use hybrid systems for modelling and verifying biological
and cyber-physical system models:

I atrial fibrillation (CMSB 2014)
I prostate cancer therapy (HSCC 2015)
I psoriasis UVB treatment (HVC 2016)
I artificial pancreas (this tutorial — paper coming soon)

I Hybrid systems combine continuous dynamics with discrete
state changes.
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Why Nonlinear Real Arithmetic and Hybrid Systems? (I)

A prostate cancer model1
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v =x + y

I v - prostate specific antigen (PSA)

I x - hormone sensitive cells (HSCs)

I y - castration resistant cells (CRCs)

I z - androgen

1
A.M. Ideta, G. Tanaka, T. Takeuchi, K. Aihara: A mathematical model of intermittent androgen suppression

for prostate cancer. Journal of Nonlinear Science, 18(6), 593–614 (2008)
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Why Nonlinear Real Arithmetic and Hybrid Systems? (I)
Intermittent androgen deprivation therapy
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Why Nonlinear Real Arithmetic and Hybrid Systems? (II)

A model of psoriasis development and UVB treatment2
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I Therapy episode: 48 hours of irradiation + 8 hours of rest

I Therapy episode = multiply β1 and β2 by a constant InA

2
H. Zhang, W. Hou, L. Henrot, S. Schnebert, M. Dumas, C. Heusèle, and J. Yang. Modelling epidermis

homoeostasis and psoriasis pathogenesis. Journal of The Royal Society Interface, 12(103), 2015.
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Bounded Reachability

I Reachability is a key property in verification, also for hybrid
systems.

I Reachability is undecidable even for linear hybrid systems
(Alur, Courcoubetis, Henzinger, Ho. 1993).

I [Bounded Reachability] Does the hybrid system reach a goal
state within a finite time and number of (discrete) steps?

I “Can a 5-episode UVB therapy remit psoriasis for a year?”

I Nonlinear arithmetics over the reals is undecidable (Tarski
1951, Richardson 1968).

I Hence, the problem needs to be simplified if we want to solve
it algorithmically!
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Formal Reasoning for Nonlinear Arithmetics

I Novak and Woźniakowski (J of Complexity, 1992) studied the
relaxed verification problem:

I verify that a candidate is close to a problem solution
I introduce a parametric “safety zone” for which either

answer is deemed correct
I focus on computational complexity

I Fränzle’s work on hybrid automata (since 1999).

I Ratschan’s work on constraint solving (since 2001).

I Gao, Avigad, Clarke (LICS 2012): bounded δ-satisfiability over
the reals is decidable:

I δ-complete decision procedure.
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Background: Type 2 Computability

Turning machines operate on finite strings, i.e., integers, which
cannot capture real-valued functions.

I Real numbers can be encoded on infinite tapes.

I Real numbers are functions over integers.

I Real functions can be computed by machines that take infinite
tapes as inputs, and output infinite tapes encoding the values.

Definition (Name of a real number)

A real number a can be encoded by an infinite sequence of
rationals γa : N→ Q such that

∀i ∈ N |a− γa(i)| < 2−i .
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Background: Type 2 Computability

A function f (x) = y is computable if any name of x can be
algorithmically mapped to a name of y

...

...

...

M

... k input tapes

work tapes

output tape

fM (y1, . . . , yk) = y

y

y1

yk

... ...

...

... ...

}
}

Writing on any finite segment of the output tape takes finite time.

9 / 27



Background: Type 2 Computability

I Type 2 computability implies continuity.

I “Numerically computable” roughly means Type 2 computable.

I Approximation up to arbitrary numerical precisions.

Ker-I Ko. Complexity Theory of Real Functions. 1991.
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Background: Type 2 Computability

Type 2 Computable:

I polynomials, sin, exp, . . .

I numerically feasible ODEs, PDEs, . . .

Type 2 Complexity:

I sin, exp, etc. are in P[0,1]

I Lipschitz-continuous ODEs are in PSPACE[0,1]; in fact, can be
PSPACE[0,1]-complete (Kawamura, CCC 2009).

See Ko’s book for many more results . . .

11 / 27



LRF -Formulas (Gao, Avigad, and Clarke. LICS 2012)

Let F be the class of all Type 2 computable real functions.

Definition (LRF -Formulas)

First-order language over 〈>,F〉:

t := x | f (t(~x))

ϕ := t(~x) > 0 | ¬ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ

Example

Let dx/dt = f (x) be an n-dimensional dynamical system.
Lyapunov stability is expressed as:

∀ε∃δ∀t∀x0∀xt .
(
||x0|| < δ ∧ xt = x0 +

∫ t

0
f (s)ds

)
→ ||xt || < ε
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Hybrid Automata

A hybrid automaton is a tuple

H = 〈X ,Q, {flowq(~x , ~y , t) : q ∈ Q}, {jumpq→q′(~x , ~y) : q, q′ ∈ Q},
{invq(~x) : q ∈ Q}, {initq(~x) : q ∈ Q}〉

I X ⊆ Rn for some n ∈ N
I Q = {q1, ..., qm} is a finite set of modes

I Other components are finite sets of quantifier-free
LRF -formulas.
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Example: Nonlinear Bouncing Ball

I X = R2 and Q = {qu, qd}.
I flowqd (x0, v0, xt , vt , t), dynamics in the falling phase:

(xt = x0 +

∫ t

0
v(s)ds) ∧ (vt = v0 +

∫ t

0
g(1 + βv(s)2)ds)

I jumpqu→qd (x , v , x ′, v ′):

(v = 0 ∧ x ′ = x ∧ v ′ = v)

I invqd : (x >= 0 ∧ v >= 0).

I initqd : (x = 10 ∧ v = 0).
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Encode Reachability

Continuous case:

init(~x0) ∧ flow(~x0, t, ~xt) ∧ goal(~xt)

Make one jump:

init(~x0) ∧ flow(~x0, t, ~xt) ∧ jump(~xt , ~x
′
t) ∧ goal(~x ′t)
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Encode Reachability: invariant-free case

∃X~x0∃X~x t0 · · · ∃X~xk∃X~x tk∃[0,M]t0 · · · ∃[0,M]tk∨
q∈Q

(
initq(~x0) ∧ flowq(~x0, ~x

t
0, t0)

)

∧
k−1∧
i=0

( ∨
q,q′∈Q

(
jumpq→q′(~x

t
i , ~xi+1) ∧ flowq′(~xi+1, ~x

t
i+1, ti+1)

))
∧

∨
q∈Q

(goalq(~x tk))

(There’s some simplification here.)
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Difficulty

Suppose F is {+,×}.

R |= ∃a∀b∃c (ax2 + bx + c > 0)?

I Decidable [Tarski 1948] but double-exponential lower-bound.

Suppose F further contains sine.

R |= ∃x , y , z (sin2(πx) + sin2(πy) + sin2(πz) = 0
∧
x3 + y3 = z3)?

I Undecidable.
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Towards δ-Decisions

Defining δ-decision problems of LRF -formulas leads to a totally
different outlook.

18 / 27



Bounded LF -Sentences

Definition (Normal Form)

Any bounded LF -sentence ϕ can be written in the form

Q
[u1,v1]
1 xn · · ·Q [un,vn]

n xn
∧

(
∨

t(~x) > 0 ∨
∨

t(~x) ≥ 0)

I Negations are pushed into atoms.

I Bounded quantifiers: the bounds can use any terms that
contain previously-quantified variables.
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δ-Variants

Definition (Numerical Perturbation)

Let δ ∈ Q+ ∪ {0}. The δ-weakening ϕ−δ of ϕ is

Q
[u1,v1]
1 x1 · · ·Q [un,vn]

n xn
∧

(
∨

t(~x) > −δ ∨
∨

t(~x) ≥ −δ)

I Obviously, ϕ→ ϕ−δ (but not the other way round!)

I δ-strengthening ϕ+δ is defined by replacing −δ by δ.
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δ-Decisions

Let δ ∈ Q+ be arbitrary.

Definition (δ-Decisions)

Decide, for any given bounded ϕ and δ ∈ Q+, whether

I ϕ is false, or

I ϕ−δ is true.

When the two cases overlap, either answer can be returned.

The dual can be defined on δ-strengthening.
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δ-Decisions

There is a grey area that a
δ-complete algorithm can be
wrong about.

  

UNSAT      SATdelta
SAT

Corollary

In undecidable theories, it is undecidable whether a formula falls
into this grey area.

22 / 27



δ-Decidability

Let F be an arbitrary collection of Type 2 computable functions.

Theorem
The δ-decision problem over RF is decidable.

See [Gao et al. LICS 2012].

It stands in sharp contrast to the high undecidability of simple
formulas containing sine.
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δ-Robustness

I A bounded LR-sentence φ is δ-robust iff φδ → φ.
I φ is robust if it is δ-robust for some δ > 0.

I Suppose φ is robust
I if φ is true, then ∀δ > 0 : φδ → φ,
I if φ is false, then ∃δ > 0 : ¬φ→ ¬φδ.

Theorem
Given a robust bounded LR-sentence φ, there exists δ > 0
for which a δ-complete decision procedure correctly decides
whether φ is true or false.

I Thus, robustness ⇒ decidability.
I However, decidability 6⇒ robustness.
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Complexity

Let S be some class of LF -sentences such that all the terms
appearing in S are in Type 2 complexity class C. Then for any
δ ∈ Q+:

Theorem
The δ-decision problem for a Σk-sentence from S is in (ΣP

k )C.

Corollary

I F = {+,×, exp, sin, ...}: ΣP
k -complete.

I F = {ODEs with P right-hand sides}: PSPACE-complete.

These are very reasonable!
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Exactness

The definition of δ-decisions is exact in the following sense.

Theorem
If F is allowed to be arbitrary, then ϕ is decidable iff we consider
bounded δ-decisions.

Theorem
Bounded sentences are δ-decidable iff F is computable.
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Conclusions

The notion of δ-complete decision procedures allows formal
analysis and use of numerical algorithms in decision procedures.

I Standard completeness is impossible.

I δ-completeness: strong enough and achievable.
I Correctness guarantees on both sides
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