Quantum Computing
with Pictures

Stefano Gogioso
Quantum Group

University of Oxford

In this Masterclass

We will learn how to do the
following, using pictures:

e Arithmetic
* Binary Arithmetic
e Quantum Arithmetic

§ ¥, ’
’

.
s a-e

- cals
'-.‘ -;.,.T 4 ;’4({

'/)‘ b o

%H'

-

ﬂ f&w"f

Quantum Computers

Google Quantum Al

Quantum Computers

Control (54 qubit + 88 couplers)

300K 3K 10 mK

Sycamore
Qubit flux (Z) —|16dB: :ZUdB Y chip
?XUYI:;It Hwave 20dB 20dB Qubit
Coupler flux =={10d8 {3045} Coupler
Readout (9X) Readout

Readout in o m{1048]

Readout out

IMPA pump ={{_ =t
IMPA flux

300K 3K 10 mK

cryo-LNA bias tee

® = /4

low-pass band-pass
filter IMPA attenuator filter

circulator IR filter

Google Quantum Al

Quantum Computers

Single-qubit gate:

b

Qubit

o W XY control

Two-qubit gate:
12 ns

. . Coupler—r_\—

~{ .
¢ P c D A B Qubit2 _
o I Z control

Column

Time ! 11 10 1L |l |
2 4 5 6 7 8 m

w

Cycle 1

A W

SBRBIRISSARRRARSRRRSRRRRRRRRY)
1

! !
(o

T PR R R T L L L bt

4

Pt
]

Google Quantum Al

Quantum Computers

Qubit:

Vx (sx) error

Avg 5.828e-4

v

Connection:

CNOT error

Avg 1.960e-2

IBM Quantum

Quantum Computers (on the ¢

IBM Quantum

Quantum services

All (28} Yours (22)

Q

Systems
mq_montreal

em s ® Online
T type Falcon rd

27 0w 128

c_casablanca

em st ® Online
1 1ype Falcon r4H

em st ® Online
T lype Falcon r4L

em st ® Online
T type Falcon rdT

bma_manhattan

t t @ Online
Hummingbird r2

65 o 32 o

bmo_manila

t t ® Online
Falconr5.11L

Souwis 32

bmo_athens

t t @ Online

Falcon r4L

5owie 32

bmg_16_melbourne

Paused - In use
Canary r1.1

IBM Quantum at https://quantum-computing.ibm.com/

New reservation £ How
89 card
T
q_toronto >mg_paris
® Online m stal @ Online
Falconrd Falcon r4
27 32 usmum ot 27 ausiis 32 ouantum vt
ma_bogota ibmg_santiago
® Online m sta #® Online
Falcon r4L Falcon rdL
S ouis 32 5 ousits 32 uan
bma_jakarta ome_belem
® Online m stal @ Online
Falcon r5.11H d type Falcon raT
7w 16 5 ousits 6 ouanium v
q_lima me_5_yorktown
@ Online m st @ Online
Falcon rdT Canary rl
= [a] - [s]

to cite (@

E Table

v

Quantum Computing

quantum
gates

quantum = _—p

circuit

measurement

outcomes SO

——>) [1 i il il I I U

IBM Quantum Composer Q @ Q

(] File Edit Inspect View Share Setup and run {8t

5 Asmall example

Visualizations seed 9839 S

s'

BB © : okt o R

Open in Quantum Lab

+ Add s gume @ ;
1 from giskit import QuantumRegister,

ClassicalRegister, QuantumCircuit

2 from numpy import pi

t]

H @ -
T Q

6 circuit = QuantumCircuit(qreg_q, creg_c)

qreg_q = QuantumRegister(2, 'q')

q .é

creg_c = ClassicalRegister(2, 'c')

8 circuit.h(qreg_q[0])
9 circuit.cx(qreg_q[0], qreg_q[1])
10 circuit.sx(qreg_q[0])

Brobabilities, ® . 11 c%l‘cuit.s(qreg_q[ij))

12 circuit.rz(pi/3, qreg_q[0])

13 circuit.t(qreg_q[1])

14 circuit.sxdg(qreg_q[0])

15 circuit.cx(qreg_ql[0], qreg_q[1])

16 circuit.h(qreg_q[0])

bility (%)

17 circuit.t(qreg_q[1])

1 10 11

Computational basis states

IBM Quantum at https://quantum-computing.ibm.com/

Python code

creating the
< quantum

circuit

Quantum Computing

100

B HyEEE ¢ B R
i omm O
-

q 1 mz %
+ <
el l
2 —~ ! :
l 7 N
/r

1. Qubits are 2. Gates are applied to 3. Qubits are measured,
prepared ina the qubits one after vielding a bitstring (O or
standard |0) the other, as specified 1 for each qubit), aka a
state at the by the circuit. “measurement outcome”
start of the

computation.

60

40

20

T =T T T
00 01 10 11

Computational basis states

4. Process is repeated
many times and the

histogram of observed
outcomes is returned.

Material
design

T Blackbody
i RCWA B 8
- : I 56
! 0 H
. | i @ 4|
P ' . H .E
1 | H H @
TL’L. | T €7 RCWA
- Flanend 0
~ 2 4 6 B 10 12 14 16 18 20
- avelength [
0= 0=
*Fi ure-of-merit
N N 1= /or / 1= /
§i0z SiC PMMA FOM=0.686

100
80
§ : 2 , Experiment b] i Experiment
> 00 % :
Z 05 41
0
= 40) E 2
] < A \ X
g ‘/ﬁ‘ by | 2 Molecular
£ 2
3
" 0o 0 chemistr
[] - . Y
0 =T L ¥ 1.0 eoty Theory
00 01 10 11 61
)) -6 -4 =2 0 2 4 6 -6 -4 =2 0 2 4 6
Computational basis states Wavenumber (x10% cm™) Wavenum ber (x102 cm")

5. The measurement outcome —.
probabilities are post-processed } az:m
and used to solve interesting real- ' <)
world problems (usually as part of - "
larger classical algorithms).

Machine
learning

Discriminator

Quantum Computing

IBM Quantum Composer Q @)

(] File Edit Inspect View Share Setup and run {g

s Asmall example sav Visualizations seed 9839

- IDBHANESEEEEE o o - o
o |0) ﬂ\z |f i Open in Quantum Lab

+ Add

v

Problem

1 from qiskit import QuantumRegister,
ClassicalRegister, QuantumCircuit

2 from numpy import pi

qreg_q = QuantumRegister(2, 'q')

é.

0O

creg_c = ClassicalRegister(2, 'c')

Given a circuit, how s L "4
b Vet o ; circuit = QuantumCircuit(qreg_q, creg_c)
do we calculate the ;

9 circuit.cx(qreg_ql[0], qreg_qla1l)
[} ° ° [} 10 circuit.sx(qreg_q[0])
. 11 circuit.s(qreg_q[1])
ropbabllities that wi paabitios @ i n el
12 circuit.rz(pi/3, qreg_ql[0])
e s 13 circuit.t(qreg_q[1])

f ° ? - 14 circuit.sxdg(qreg_q[0])
e O Se rve rOI I I I . 3 15 circuit.cx(qreg_ql[0], qreg_q[1])

16 circuit.h(qreg_q[0])

17 circuit.t(qreg_q[1])

Probability (%)

) 0 11

Computational basis states

(That is, how do we know which circuits are useful for which problems?)

Bits and Qubits

* A bit can take two values: O or 1
* A qubit can take infinitely many values: points on a sphere

Named quantum states:

“ket” notation

)
|P)
(\

state name/label

Known as the
“Bloch sphere”

Bits and Qubits

Transformations of a qubit: rotations of the sphere

OO0

Z-axis rotations X-axis rotations Y-axis rotations other axis rotations

Bits and Qubits

Qubit values (known as “states”) are traditionally written
as complex vectors.

Bits and Qubits

The vectors for an n-qubit state have 2" components.

| ‘ g
L . I - I 3
(T \—« 1~ —)

1-qubit state 2-qubit state 3-qubit state
= 2 components =4 components = 8 components

Bits and Qubits

Qubit transformations are then written as complex matrices.

Bits and Qubits

Qubit transformations are then written as complex matrices.

0

1

VU9~-0
90—

0-06
-909

Bits and Qubits

Qubit transformations are then written as complex matrices.

S

OC.Lr0830I ON 1A Gl 0.0F030] —0.0F-ol*

Q.33-0901 <0.340.427 O3 -0%es - 0.t7 +0u10 |
O.4l106.13. 0.30F6.121 ObLLsoN, 0.9 ¢07%0.

Q.04-G, b, —030d0ly. 0.c3 -0l 612-03es

Bits and Qubits

Vectors and matrices are hard to understand, because
they offer no geometrical intuition. Also, they grow
exponentially large as more qubits are involved.

Bits and Qubits

Vectors and matrices are hard to understand, because
they offer no geometrical intuition. Also, they grow
exponentially large as more qubits are involved.

For 1 qubit, the sphere provides a nice geometric model.

Bits and Qubits

Vectors and matrices are hard to understand, because
they offer no geometrical intuition. Also, they grow
exponentially large as more qubits are involved.

For 1 qubit, the sphere provides a nice geometric model.

For 2+ qubits, unfortunately, things get really complicated,
really fast: geometrical intuition is better left to trained
mathematicians...

Bits and Qubits

115

1 bit = 2 points 1 qubit = a hollow sphere

Bits and Qubits

<
D
& e
Q0 @ ® 19
10>
114y =

2 qubits = a filled pyramid where
2 bits = 4 points each point is a filled cube.

3 qubits = a filled triangle where each point is a filled pyramid,
where each point is another filled pyramid, where each point is a
filled cube, where each point is another filled cube.

The generic 3-qubit
state is a point inside
one of these cubes at
the end.

-« =
o b
.§

A change of perspective

The traditional representation of qubit states and their transformations
as complex vectors and matrices is not great:

* gives no intuition => not useful to understand/design circuits
* grows exponentially large => not useful for calculations (by hand)

A change of perspective

The traditional representation of qubit states and their transformations
as complex vectors and matrices is not great:

* gives no intuition => not useful to understand/design circuits
* grows exponentially large => not useful for calculations (by hand)

Furthermore, the geometric representation is only useful for single-
qgubit states and transformations (the Bloch sphere).

A change of perspective

The traditional representation of qubit states and their transformations
as complex vectors and matrices is not great:

* gives no intuition => not useful to understand/design circuits
* grows exponentially large => not useful for calculations (by hand)

Furthermore, the geometric representation is only useful for single-
qgubit states and transformations (the Bloch sphere).

What do we do? We need a change of perspective.

A change of perspective

it easy to understand
what’s happening to
the qubits in a quantum
computer.

Quantum circuits make H é X . X' é H
T

Unfortunately, we can’t
use them directly to
perform calculations.

A change of perspective

Solution . é RZ é .
S T T

Transform quantum
circuits into another
kind of diagrams, with
simple graphical rules
that can be used to
perform calculations.

90’
H—O—®

90°

_d oo

N

O

%0’

L%’

o

Gates for arithmetic

Addition as a gate:

2 numbers go
into the gate
(its “inputs”)

N

R N

1 number
comes out of
the gate

(its “output”)

Gates for arithmetic

Addition: n j 4+ [—nnim

Negation: A _):Jv (-n)

Multiplication:

Prepare O:

Prepare 1:

Copy:

Discard:

Gates for arithmetic

Preparing O and 1 is enough: all other numbers can be prepared
by applying addition gates to enough copies of 1.

) |
2 :=1+1 3:=2+41 = (1+1)+1
_ o ol
21— = s El— 3F oz T l}—
gg& (} -

Gates for arithmetic

We didn’t write a subtraction gate, because it can be defined in
terms of addition and negation:

n — n
-’__-_n- Q
m— T M—E/":B' nren

o

We have two gates labelled by “-”, but they cannot be confused:
one takes two inputs (subtraction), the other takes one (negation).

Gates for arithmetic

The gates we defined so far are enough to translate all
arithmetic expressions as circuits. For example:

)T l_‘,.u+ —|

ll 3 'L‘ !) ;kj-ijz_(x—\,
- - ==) I \
I"“ ~ - o N i
!L_L“‘“') - D~ [
,t:f__ﬁ. — Jop S +' _
' "'.. !
== Em—@?

3x(2+2) ((1+1)+1) x ((1+1) + (1+1))

Exercise (5m)

,., . Using the gates on the left and the definition below for
subtraction, write the following expressions as circuits:

“)"‘ e 3+1 e (-2)+1

:B— o (1+2)+1 e (2+1)x(2-1)
k= S

Exercise (Solutions)

3+1 E—E]-— (1+2)+1

Rules of arithmetic

With gates we can write expressions, but we cannot perform
calculations. For example, the following two circuits give the
same number at the end, but we have no way to equate them:

I] :

\J

3+1 1+(1+2)

Rules of arithmetic

In order to perform calculations, we need “rules” to tell us how
we can turn a circuit into an “equivalent” one, that is, without
changing its result.

Luckily, you already know (some of) these rules: they are the
Laws of Arithmetic!

Neutral elements

Neutral elements give a way to remove gates from a circuit:

hEJ_B_"w = n—n = n@/—q*w
B e | oy

Assoclativity

Associativity allows us to reorder addition gates in sequence:

O ———] . | ath
s — = @iy = o _B___‘?““"U’"—)
C c beo ')

Computation by addition

el of 1 Gas5cc, del ol 2

= v L Lo
@‘B—: g(]—\ﬂ— = EH‘

Commutativity

Commutativity allows us to change the order of inputs:

Exercise (5m)

Prove that 2+2=4, using associativity and the definitions of the
numbers 2, 3 and 4:

11 al
) = S:E]— 3~ = IDZ:,‘:B— - = gx

Exercise (Solutions)
Prove that 2+2=4, using associativity and the def’s of 2 and 4.

g SuE
;ﬂ-\g' T

Distributivity

Distributivity allows us to reorder addition and multiplication
gates in sequence:

I_q" (‘31':) 7—— (ax‘a) (u:u.)

c_ CQKG

—f—

Computation by multiplication

el <P 7. ol: sI#nL e,xerc,se
e L <)
o o 'P[@L’-’ : ;I"'
nedval eleme

Cancellativity

Cancellativity is the first rule where deleting becomes
necessary, because n does not appear in the right hand
side of the equation n+(-n) = 0.

"9
= - ‘+!—m<-n> = ~=0 [g—oe
) ——~ ‘_j

n is removed from
the equation here

Computation by subtraction

Aef.c‘-\?. oo § “'g Wb die o Zmec.
- = L ~-L = U H— — -
- e S - g
def- o F exereise

QuH'raffbA m \V ‘
= oo = SE - o

Rules of copying

Associativity:

Commutativity:

Neutral element
(deletion):

| o)
e -
/O\hs- h—(‘h
™ ,<> ‘
[o)
-
g4 vV
N — :ﬂ_‘ \ W
n "

Copy/delete rules for states

—
-

G-, = '&° G0
/r

Right hand side is empty because
the state is removed entirely

V]— -
EJ‘\(—C ~ E].__-! EZ—O =

Copy/delete rules for gates

Q
a/\—;w‘a { o+b . Q‘_“{O/BB’— &b
h — _, R ot

a—| |22 — =
b—E‘O — »—0

Exercise (5m)

Using cancellativity, prove that 1-1=0:

1+ -4 g =-—oa

Exercise (Solutions)
Using cancellativity, prove that 1-1=0.

2 N [

Binary Arithmetic

with Pictures

Gates for binary arithmetic

In binary arithmetic, we only have the numbers 0 and 1. That is,
we work with bits, or Boolean values, rather than integer
numbers.

O (> Falie (F)
\ <—3 Tl"uQ (T)

Gates for binary arithmetic

Multiplication is fine as it is (it’s the same as the logical
conjunction AND).

X| O \ AND| O | I -
ol O O oO| O O
F F ¢
l ' | O |
T F T

Gates for binary arithmetic

Addition, on the other hand, doesn’t quite work as it is.

1 0 | Not a valid

binary value!
‘ l 2(\/ Yy

Gates for binary arithmetic

There are two possible ways to fix addition: making it addition
modulo 2 (still written +) or making it logical disjunction (OR).

7 +] 9) or| O .| | .
oo | ! o|lo | |\
r F T
"1 |9 o
A T T T T
\H—l.—_o \-lori =
Sometimes also called TonT =T

XOR, for eXclusive OR.

Gates for binary arithmetic

We define addition to be addition modulo 2. Logical disjunction
can be defined from this addition and multiplication.

S

O\ ——
4+ /—-—- (0\+'>) Mmcd 2

4

Gates for binary arithmetic

Negation is no longer necessary: we have that 1+1=0, so the
negative of 1 is 1 itself.

’

"-L:}-" — . —

Gates for binary arithmetic

(from now on, implicitly mod 2)

R re S«
s Sy J— |

Rules for binary arithmetic

Pretty much the same as for ordinary arithmetic:
* Associativity of +, x and copy

 Commutativity of +, x and copy

* Neutral element for +, x and copy

* Distributivity of x on +

* Copy/delete rules for 0, 1, + and x

Cancellativity

Because there is no negation, cancellativity is simplified,
becoming the statement that n + n =0 for all n (i.e. for n=0, 1).

Exercise (5m)

Define the NOT gate using addition and the preparation of 1.

S EEd e O

Exercise (Solutions)

O 'uepo.s(

| ite-o
"UOT/\ = @ e oes
9 e=m———— + 0 —

(\a&o&.vse I+ ':o)

CNOT gate

The definition of the NOT gate in terms of addition inspires the
following Controlled NOT gate, aka CNOT gate.

Contrg| B}k —> —%
-‘-w-ﬂol' b+ _]_

CNOT gate

When the control bit is 1, the target bit has a NOT applied to it.
When the control bit is O, the target bit is unchanged.
The control bit is always copied through unchanged.

E#—o\ - l— (6] —

H-o—

N3 _ﬁi—EE.— -

17

Quantum Arithmetic

with Pictures

Spiders

Much of qguantum arithmetic is done with special gates known as
“spiders”. These come in two flavours: Z spiders and X spiders.
They can have any number of inputs and any number of_ggggy\ti.
They have an g_pw\gle associated (usually omitted if 0°).

%! e P
.) TN ~
‘“(o"l—s ¢ ; %O“L"dh LAk . . 7 Ov Fyubg
- ’ _

/ spiders X spiders

NO anqle
(s 0°)]
. /o s
= =&
90’ /

No

I\()ul' \0

-~

CO—

IR6Y

a—— .

D5

no ovtfd (c.as

0o lsqs
ot aa

Spiders

Each leg of a spider carries one qubit. The generic spider below

IS a gate that takes n qubits in input and returns m qubits in
output.

novbilts _ »
30 in ‘> ‘QSS %

Commutativity for Spiders

The ordering of input (resp. output) legs in spiders is irrelevant.
Think of this as an extreme version of commutativity.

.
D&E N

— B2 = -2

Spiders

Spider “states” are those with no input legs and a single output
leg. These are the qubit states lying on the equator of the Bloch
sphere (with respect to the Z and X axis respectively).

AZ R)
230° 'ge°

Spiders

Spider “states” are those with no input legs and a single output
leg. These are the qubit states lying on the equator of the Bloch
sphere (with respect to the Z and X axis respectively).

Spider fusion

Spiders of the same colour sharing at least one leg can be
“fused” together. The angles are added in the process.

e "9°

\/OL
\?o
2t 9c® /w
IIN— —_— o°
%/ — %
G2 = Y
{

NB: Number of input/output legs is the same on both sides of the equation

Rotation spiders

Spiders with 1 input leg and 1 output leg are the qubit rotations
about the Z and X axis respectively, because of fusion:

&+

Rotation spiders

Spiders with 1 input leg and 1 output leg are the qubit rotations
about the Z and X axis respectively, because of fusion:

|[dentity spiders

Spiders with 1 input leg, 1 output leg and an angle of 0° are
rotations by 0°: they do nothing, and hence can be omitted.

OO

—O— = O—
00

—— = —@B— "

(l

All qubit states from spiders

All qubit states can be obtained by using two spiders, e.g. an X
spider state (selecting the latitude on the sphere) followed by a Z
rotation (selecting the longitude on the sphere):

x 3
- = @—0O—
,\ eéneric (-qubl¢

Stte

Addition spiders

Spiders with 2 input legs, 1 output leg and an angle of 0° act as
“addition spiders”: they take two spider states and return a
spider state with the sum of their angles.

X

® e
g = O—

Addition spiders

Spiders with 2 input legs, 1 output leg and an angle of 0° act as
“addition spiders”: they take two spider states and return a
spider state with the sum of their angles.

X

2, o+
o B = &
<

<
B . et
Exercise (5m) Kgé(d— @

Prove the following properties using sp\iWn:

* Associativity
A;/C‘— - Lo g% = S

* Snake equations

N

 Neutral element
'

To-=Sp- = do

Exercise (Solutions)

Exercise (Solutions)

Exercise (Solutions)

Special spider states

Because 180°+180° = 360° = 0°, the spider states with 0° and
180° in each colour can be used to encode a bit, with the
corresponding addition spider acting as binary addition.

O O~
O) O"O (20°
0+0°0 1R0° O+l=z)
) Bo° 108 1800
O 0 :
- = O— Yo = o—
O 4O (

Special spider states

Because 180°+180° = 360° = 0°, the spider states with 0° and
180° in each colour can be used to encode a bit, with the
corresponding addition spider acting as binary addition.

@ N
2) - @/ - @"
@_) @"@ (20°

0400 IR0° O+l=z)

) Bo® s 1800

@ e :
»— - &— C%- = ®—

& 4O | 2

Special spider states

Because 180°+180° = 360° = 0°, the spider states with 0° and
180° in each colour can be used to encode a bit, with the
corresponding addition spider acting as binary addition.

D «» O— Q 7 @

| Yo° \ ?"0

1 &> O— A & &

NOT gates for spider states

We have addition spiders and we have 180° spider states that act
as the bit value 1: if we put them together, we get NOT gates for
spiders (one per colour).

7, =~ = —O—
4 | 0° 120°
190°

| Ro®
(rec;all that —-(KIZ?"-— s = E:\ﬂ’->

The X and Z gates

Because there are two possible NOT gates, on qubits, they get
special names: they are called X gates and Z gates.

H— —O—

| Qo° | go°

X auj‘& Z 3oJ'e.

Other named rotations

< Acke —(O)— Uz 3@(»2 —>—
Rl 90°
+
Yot TR ipk —@7
Tavﬂ —O—
LS°
T+:)°~5-e —J—

Copy rules for spider states

Spiders with 1 input leg, 2 output legs and an angle of 0° act as
“copy spiders”, but only on two states each (the spider states
with angles 0° and 180° of the opposite colour).

-
——

@—(_
D = o

°°
yR4°

4

@—
@.—-
@ —

Copy rules for spider states

Spiders with 1 input leg, 2 output legs and an angle of 0° act as
“copy spiders”, but only on two states each (the spider states
with angles 0° and 180° of the opposite colour).

O-@ = 2
&

4

(80" N~ - O“

°°
yR4°

Delete rules for spider states

Spiders with 1 input leg, no output legs and an angle of 0° act as
“delete spiders”, but only on two states each (the spider states
with angles 0° and 180° of the opposite colour).

@-——O — [ol~O =

DO = %o -

\ 30°

Delete rules for spider states

Spiders with 1 input leg, no output legs and an angle of 0° act as
“delete spiders”, but only on two states each (the spider states
with angles 0° and 180° of the opposite colour).

O—&
O-®» =

\ 30°

Copy rules for addition spiders

The copy rules for spiders relate the copy spider of one colour to
the addition spider of the other.

—_ —

reC = THeE

Copy rules for addition spiders

The copy rules for spiders relate the copy spider of one colour to
the addition spider of the other.

e O—
Be G

R

The square popping rule

An alternative way to see the copy rule for spider is the following
“square-popping rule”:

\C)/@\/ N

;@/O\

\|

Delete rules for addition spiders

The delete rules for spiders relate the delete spider of one colour
to the addition spider of the other.

— G
= —0 TS
e
’\@/ -0 = — o vee |

Delete rules for addition spiders

The delete rules for spiders relate the delete spider of one colour
to the addition spider of the other.

—30—@
. _

P8

1
|
@

1
|
® @

Cancellativity for spiders

There are two cancellativity rules for spiders, one per copy-
addition pair of opposite colours.

—J_ = = —O e

—C4 =0 w-

Cancellativity for spiders

There are two cancellativity rules for spiders, one per copy-
addition pair of opposite colours.

—&_— = —@ O

Leg-chopping rule

Cancellativity is also known as the “leg-chopping rule”.

O = O &—

—a&_ - = ©® 0O

S

Exercise (10m) \ji('xﬁ\/ : R
e s~

Use the square-popping, leg-chopping and spider fusion to prove
the following equation:

—O—&»—0—
_,@l@-—é}»ép—— = X

(Later on, we’ll see that the gates above are CNOTs. This equation then states that
three alternating CNOTs can be used to swap qubits, a useful fact that finds many
applications in quantum computing.)

Exercise (Solutions) —&- =24
Squease -"eﬂ'.’l‘s

—O— 4
1T -0 -

(- 9
CARUNIA SR

= -G
spider Pusen Spidar Puaion - | \(

Spider arithmetic

At this point, we have two ways of doing binary arithmetic with
spiders: one where the 0°/180° Z spider states play the role of a
bit, another where the 0°/180° X spider states play the same.

ok Aition /_;@— Prefare @ 2@

()r'e,ra»re 3 (62')0;—"

Corj ‘,CC. delete —O

Spider arithmetic

At this point, we have two ways of doing binary arithmetic with
spiders: one where the 0°/180° Z spider states play the role of a
bit, another where the 0°/180° X spider states play the same.

ok Aition /_;o— Prefare @ O

()r'e,ra»re 3 \Cg)o;—"‘

Corj ‘,@C. delete —@@

Spider arithmetic

Traditionally, the 0°/180° X spider states are the ones used to
encode a bit, hence their name on the Bloch sphere:

CNOTs from spiders

When using the 0°/180° X spider states to encode the bit values
0 and 1, the X gate acts as a NOT gate:

O—BD— = @—

0
120% Vor p=g 8=

oH—— = &

12 1Y Nori—= @

CNOTs from spiders

When using the 0°/180° X spider states to encode the bit values
0 and 1, the following acts as a CNOT gate:

CNOTs from spiders

B —O— @@— _ @—
(3 o° s e 18y
) —O— @ @ _ &

Colour-change gate

There is a special “colour-change” gate, also known as the
“Hadamard gate”, which can be used to turn spiders of one
colour into the other.

___I‘ﬂ___

HQJOL MmasA 3“*&

Colour-change rules

Colour-change gate

Applying the colour-change gate twice is like doing nothing at all.

AR—E- =

Derived colour-change rules

If we apply a colour change gate to one leg of a spider, it passes
through, changes the spider colour and appears on all other legs:

The CZ gate

Because the X gate acts as NOT gate, the CNOT is sometimes
called CX (for Controlled X). We can also make a CZ gate (for
Controlled Z), where a Z gate is applied instead:

T
Y|
— O—

Exercise (5m)

Use the copy rules, colour-change rule and spider fusion to prove
that the gate defined in the previous slide is really the controlled

[gate:

IR0 (R’

DO—-O— p— H—— H—
e = Wl Z
5 T — & —o—

1R0°
/’I %

Z 3a,l-c,

Exercise (Solutions)

\37 | %6° o \ ¢®
— (7 7 ‘ cm—
@ O‘ - 7 ®l "3 Q &— _ @)
(a — X — \Kb ___ O___.
\ — -—-Q’

Numbers

The final ingredient necessary to perform quantum computation
are numbers, which are circuits with no inputs or outputs. Below
are some simple numbers coming from spiders:

o° o° 190 | Lo®
O-2-©& O<0:®
a a 1307
O_@ = l — @—-@
X of \ %

Measurement outcome probabilities

To compute the probabilities for a measurement outcome (a
bitstring, 1 bit for each qubit), we do the following:

1. Apply a 0° or 180° X delete spider to each qubit (depending
on whether the string is O or 1 at that qubit).

2. Simplify the circuit until we get to a number we know (let’s
call it the “weight” for the bitstring).

We then normalise all weights so that they sum to 1. Once
normalised, those numbers are the probabilities we seek.

Measuring the |0) state
O— = {OURW © e -é

| g°

1 o) OArome 1 D—@) = l?v
@ = 2 P(0) = %~ - |
— 21O
190° o o5
) = —

Measuring the |+) state

Tin Odhtome . O—@
(
O—@ =1 (IP(0) = — -
190° s
— = | \

OU‘-c.omc, / —_—
) N { o O—@

Measuring the Bell state
@»C(-

OULCOMC— QDo

ekl

Circuit preparmg the
Bell state

v~
o i) |
q 1 |0) é
I

Ohem e @4

()ul—- &Cm ¢ .4_-@

0 VI'CGmc 11

O+f-o—®

Co{F-o—e
@&>— é——@) \go®

@~ ® \16°
PD— & \&°

e @

¢ ¥y

R

Measuring the Bell state

colowr cL.aAyL

(o(/ p= 0 %)

or X t3
- &
-

Measuring the Bell state
<+R

(W v—zal,,{- . @

~p
OvdtLcme Qo * o(:o"l @;oa =5 /¢ _ @ _ Z
“ O 5 Dﬂ’ﬂ '\ 368 _ O
Ovuvcome (L 0(:()/\’33\30 — @ - ~
’("(? \%0” - o
Olieme L0 1 A7, 0" =) @ = @
A _
OUI*Lcma. 11', p(;)go", P-u-p‘ => @ = @ 2_

Measuring the Bell state

]P(@(o) = 7.4—;?;0\—1‘ -

2z

Ll

o O

hg C@ L) S Teovetr | L
(6]

a

Z

G

0

P (10) ¢ zeom

L
l\‘> (11/> = ltoeotr =

))
C ©

-
-

=

Probabilities

For any questions, please email

csrimasterclasses@cs.ox.ac.uk

|

Bob Coecke and Aleks Kissinger, . | Bob-Coecke and Stefano Gogioso,
“Picturing Quantum Processes”, 1 | e “Quantum Theory in Pictures’,
Cambridge University Press B Upcoming publication

mailto:csrimasterclasses@cs.ox.ac.uk

