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In this Masterclass

We will learn how to do the 
following, using pictures:

• Arithmetic

• Binary Arithmetic

• Quantum Arithmetic



Introduction
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Quantum Computers (on the        )

IBM Quantum at https://quantum-computing.ibm.com/



Quantum Computing

IBM Quantum at https://quantum-computing.ibm.com/

quantum
circuit

quantum
gates

measurement
outcomes

Python code 
creating the
quantum 
circuit



Quantum Computing

1. Qubits are 
prepared in a 
standard 
state at the 
start of the 
computation.

2. Gates are applied to 
the qubits one after 
the other, as specified 
by the circuit.

3. Qubits are measured, 
yielding a bitstring (0 or
1 for each qubit), aka a 
“measurement outcome”

4. Process is repeated 
many times and the 
histogram of observed 
outcomes is returned.

ȁ ۧ0



Quantum Computing Material
design

Molecular 
chemistry

Machine 
learning

5. The measurement outcome 
probabilities are post-processed 
and used to solve interesting real-
world problems (usually as part of 
larger classical algorithms).



Quantum Computing

Problem

Given a circuit, how 
do we calculate the 
probabilities that will 
be observed from it?

(That is, how do we know which circuits are useful for which problems?)



Bits and Qubits

• A bit can take two values: 0 or 1

• A qubit can take infinitely many values: points on a sphere

“ket” notation

state name/label

Known as the
“Bloch sphere”

Named quantum states:



Bits and Qubits
Transformations of a qubit: rotations of the sphere

Z-axis rotations X-axis rotations Y-axis rotations other axis rotations



Bits and Qubits
Qubit values (known as “states”) are traditionally written 
as complex vectors.



Bits and Qubits

1-qubit state
= 2 components

2-qubit state
= 4 components

3-qubit state
= 8 components

The vectors for an n-qubit state have      components.2𝑛



Bits and Qubits
Qubit transformations are then written as complex matrices.
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Bits and Qubits
Vectors and matrices are hard to understand, because 
they offer no geometrical intuition. Also, they grow 
exponentially large as more qubits are involved.
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Bits and Qubits
Vectors and matrices are hard to understand, because 
they offer no geometrical intuition. Also, they grow 
exponentially large as more qubits are involved.

For 1 qubit, the sphere provides a nice geometric model.

For 2+ qubits, unfortunately, things get really complicated, 
really fast: geometrical intuition is better left to trained 
mathematicians…



Bits and Qubits

1 bit = 2 points 1 qubit = a hollow sphere



Bits and Qubits

2 bits = 4 points
2 qubits = a filled pyramid where 
each point is a filled cube.



Bits and Qubits

3 qubits = a filled triangle where each point is a filled pyramid, 
where each point is another filled pyramid, where each point is a 
filled cube, where each point is another filled cube.

The generic 3-qubit 
state is a point inside 
one of these cubes at 
the end.



A change of perspective

The traditional representation of qubit states and their transformations 
as complex vectors and matrices is not great:

• gives no intuition => not useful to understand/design circuits

• grows exponentially large => not useful for calculations (by hand)
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A change of perspective

The traditional representation of qubit states and their transformations 
as complex vectors and matrices is not great:

• gives no intuition => not useful to understand/design circuits

• grows exponentially large => not useful for calculations (by hand)

Furthermore, the geometric representation is only useful for single-
qubit states and transformations (the Bloch sphere).

What do we do? We need a change of perspective.



A change of perspective

Quantum circuits make 
it easy to understand 
what’s happening to 
the qubits in a quantum 
computer.

Unfortunately, we can’t 
use them directly to 
perform calculations.



A change of perspective

Solution

Transform quantum 
circuits into another 
kind of diagrams, with 
simple graphical rules 
that can be used to 
perform calculations.



Let’s take a short break (10m)



Arithmetic
with Pictures



Gates for arithmetic

2 numbers go 
into the gate
(its “inputs”)

1 number 
comes out of 
the gate
(its “output”)

Addition as a gate:



Gates for arithmetic

Addition:

Negation:

Multiplication:

Prepare 0:

Prepare 1:

Copy:

Discard:



Gates for arithmetic

Preparing 0 and 1 is enough: all other numbers can be prepared 
by applying addition gates to enough copies of 1.

2 := 1+1 3 := 2+1 = (1+1)+1



Gates for arithmetic

We didn’t write a subtraction gate, because it can be defined in 
terms of addition and negation:

We have two gates labelled by “-”, but they cannot be confused: 
one takes two inputs (subtraction), the other takes one (negation). 



Gates for arithmetic

The gates we defined so far are enough to translate all 
arithmetic expressions as circuits. For example:

3 x (2 + 2) ((1+1)+1) x ((1+1) + (1+1))



Exercise (5m)

Using the gates on the left and the definition below for 
subtraction, write the following expressions as circuits:

• 3+1

• (1+2)+1

• (-2)+1

• (2+1)x(2-1)



Exercise (Solutions)

(-2)+1 (2+1)x(2-1)

3+1 (1+2)+1



Rules of arithmetic

With gates we can write expressions, but we cannot perform 
calculations. For example, the following two circuits give the 
same number at the end, but we have no way to equate them:

3+1 1+(1+2)



Rules of arithmetic

In order to perform calculations, we need “rules” to tell us how 
we can turn a circuit into an “equivalent” one, that is, without 
changing its result. 

Luckily, you already know (some of) these rules: they are the 
Laws of Arithmetic!



Neutral elements

Neutral elements give a way to remove gates from a circuit:



Associativity

Associativity allows us to reorder addition gates in sequence:



Computation by addition



Commutativity

Commutativity allows us to change the order of inputs:



Exercise (5m)

Prove that 2+2=4, using associativity and the definitions of the 
numbers 2, 3 and 4:



Exercise (Solutions)
Prove that 2+2=4, using associativity and the def’s of 2 and 4.



Distributivity

Distributivity allows us to reorder addition and multiplication 
gates in sequence:



Computation by multiplication



Cancellativity

Cancellativity is the first rule where deleting becomes 
necessary, because n does not appear in the right hand 
side of the equation n+(-n) = 0.

n is removed from 
the equation here



Computation by subtraction



Rules of copying

Associativity:

Commutativity:

Neutral element 
(deletion):



Copy/delete rules for states

Right hand side is empty because 
the state is removed entirely



Copy/delete rules for gates



Exercise (5m)

Using cancellativity, prove that 1-1=0:



Exercise (Solutions)
Using cancellativity, prove that 1-1=0.



Binary Arithmetic
with Pictures



Gates for binary arithmetic

In binary arithmetic, we only have the numbers 0 and 1. That is,  
we work with bits, or Boolean values, rather than integer 
numbers.



Gates for binary arithmetic

Multiplication is fine as it is (it’s the same as the logical 
conjunction AND).



Gates for binary arithmetic

Addition, on the other hand, doesn’t quite work as it is.

Not a valid 
binary value!



Gates for binary arithmetic

There are two possible ways to fix addition: making it addition 
modulo 2 (still written +) or making it logical disjunction (OR).

Sometimes also called 
XOR, for eXclusive OR.



Gates for binary arithmetic

We define addition to be addition modulo 2. Logical disjunction 
can be defined from this addition and multiplication.



Gates for binary arithmetic

Negation is no longer necessary: we have that 1+1=0, so the 
negative of 1 is 1 itself.



Gates for binary arithmetic
(from now on, implicitly mod 2)



Rules for binary arithmetic

Pretty much the same as for ordinary arithmetic:

• Associativity of +, x and copy

• Commutativity of +, x and copy

• Neutral element for +, x and copy

• Distributivity of x on +

• Copy/delete rules for 0, 1, + and x



Cancellativity

Because there is no negation, cancellativity is simplified, 
becoming the statement that n + n = 0 for all n (i.e. for n=0, 1).



Exercise (5m)

Define the NOT gate using addition and the preparation of 1.



Exercise (Solutions)



CNOT gate

The definition of the NOT gate in terms of addition inspires the 
following Controlled NOT gate, aka CNOT gate.



CNOT gate

When the control bit is 1, the target bit has a NOT applied to it.
When the control bit is 0, the target bit is unchanged.
The control bit is always copied through unchanged.



Let’s take a short break (15m)



Quantum Arithmetic
with Pictures



Spiders

Much of quantum arithmetic is done with special gates known as 
“spiders”. These come in two flavours: Z spiders and X spiders. 
They can have any number of inputs and any number of outputs. 
They have an angle associated (usually omitted if 0°).

Z spiders X spiders



Spiders



Spiders

Each leg of a spider carries one qubit. The generic spider below 
is a gate that takes n qubits in input and returns m qubits in 
output.



Commutativity for Spiders

The ordering of input (resp. output) legs in spiders is irrelevant. 
Think of this as an extreme version of commutativity.



Spiders
Spider “states” are those with no input legs and a single output 
leg. These are the qubit states lying on the equator of the Bloch 
sphere (with respect to the Z and X axis respectively).



Spiders
Spider “states” are those with no input legs and a single output 
leg. These are the qubit states lying on the equator of the Bloch 
sphere (with respect to the Z and X axis respectively).



Spider fusion

Spiders of the same colour sharing at least one leg can be 
“fused” together. The angles are added in the process.

NB: Number of input/output legs is the same on both sides of the equation



Rotation spiders

Spiders with 1 input leg and 1 output leg are the qubit rotations 
about the Z and X axis respectively, because of fusion:



Rotation spiders

Spiders with 1 input leg and 1 output leg are the qubit rotations 
about the Z and X axis respectively, because of fusion:



Identity spiders

Spiders with 1 input leg, 1 output leg and an angle of 0° are 
rotations by 0°: they do nothing, and hence can be omitted.



All qubit states from spiders

All qubit states can be obtained by using two spiders, e.g. an X 
spider state (selecting the latitude on the sphere) followed by a Z 
rotation (selecting the longitude on the sphere):



Addition spiders

Spiders with 2 input legs, 1 output leg and an angle of 0° act as 
“addition spiders”: they take two spider states and return a 
spider state with the sum of their angles.



Addition spiders

Spiders with 2 input legs, 1 output leg and an angle of 0° act as 
“addition spiders”: they take two spider states and return a 
spider state with the sum of their angles.



Exercise (5m)
Prove the following properties using spider fusion:

• Associativity

• Snake equations

• Neutral element



Exercise (Solutions)



Exercise (Solutions)



Exercise (Solutions)



Special spider states

Because 180°+180° = 360° = 0°, the spider states with 0° and 
180° in each colour can be used to encode a bit, with the 
corresponding addition spider acting as binary addition.
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Special spider states

Because 180°+180° = 360° = 0°, the spider states with 0° and 
180° in each colour can be used to encode a bit, with the 
corresponding addition spider acting as binary addition.



NOT gates for spider states

We have addition spiders and we have 180° spider states that act 
as the bit value 1: if we put them together, we get NOT gates for 
spiders (one per colour). 



The X and Z gates

Because there are two possible NOT gates, on qubits, they get 
special names: they are called X gates and Z gates.



Other named rotations



Copy rules for spider states

Spiders with 1 input leg, 2 output legs and an angle of 0° act as 
“copy spiders”, but only on two states each (the spider states 
with angles 0° and 180° of the opposite colour).



Copy rules for spider states

Spiders with 1 input leg, 2 output legs and an angle of 0° act as 
“copy spiders”, but only on two states each (the spider states 
with angles 0° and 180° of the opposite colour).



Delete rules for spider states

Spiders with 1 input leg, no output legs and an angle of 0° act as 
“delete spiders”, but only on two states each (the spider states 
with angles 0° and 180° of the opposite colour).



Delete rules for spider states

Spiders with 1 input leg, no output legs and an angle of 0° act as 
“delete spiders”, but only on two states each (the spider states 
with angles 0° and 180° of the opposite colour).



Copy rules for addition spiders

The copy rules for spiders relate the copy spider of one colour to 
the addition spider of the other.



Copy rules for addition spiders

The copy rules for spiders relate the copy spider of one colour to 
the addition spider of the other.



The square popping rule

An alternative way to see the copy rule for spider is the following 
“square-popping rule”:



Delete rules for addition spiders

The delete rules for spiders relate the delete spider of one colour 
to the addition spider of the other.



Delete rules for addition spiders

The delete rules for spiders relate the delete spider of one colour 
to the addition spider of the other.



Cancellativity for spiders

There are two cancellativity rules for spiders, one per copy-
addition pair of opposite colours.



Cancellativity for spiders

There are two cancellativity rules for spiders, one per copy-
addition pair of opposite colours.



Leg-chopping rule

Cancellativity is also known as the “leg-chopping rule”.



Exercise (10m)
Use the square-popping, leg-chopping and spider fusion to prove 
the following equation:

(Later on, we’ll see that the gates above are CNOTs. This equation then states that 
three alternating CNOTs can be used to swap qubits, a useful fact that finds many 
applications in quantum computing.)



Exercise (Solutions)



Spider arithmetic

At this point, we have two ways of doing binary arithmetic with 
spiders: one where the 0°/180° Z spider states play the role of a 
bit, another where the 0°/180° X spider states play the same.



Spider arithmetic

At this point, we have two ways of doing binary arithmetic with 
spiders: one where the 0°/180° Z spider states play the role of a 
bit, another where the 0°/180° X spider states play the same.



Spider arithmetic

Traditionally, the 0°/180° X spider states are the ones used to 
encode a bit, hence their name on the Bloch sphere:



CNOTs from spiders 

When using the 0°/180° X spider states to encode the bit values 
0 and 1, the X gate acts as a NOT gate:



CNOTs from spiders 

When using the 0°/180° X spider states to encode the bit values 
0 and 1, the following acts as a CNOT gate:



CNOTs from spiders 



Colour-change gate

There is a special “colour-change” gate, also known as the 
“Hadamard gate”, which can be used to turn spiders of one 
colour into the other. 



Colour-change rules



Colour-change gate

Applying the colour-change gate twice is like doing nothing at all.



Derived colour-change rules

If we apply a colour change gate to one leg of a spider, it passes 
through, changes the spider colour and appears on all other legs:



The CZ gate

Because the X gate acts as NOT gate, the CNOT is sometimes 
called CX (for Controlled X). We can also make a CZ gate (for 
Controlled Z), where a Z gate is applied instead:



Exercise (5m)
Use the copy rules, colour-change rule and spider fusion to prove 
that the gate defined in the previous slide is really the controlled 
Z gate:



Exercise (Solutions)



Numbers

The final ingredient necessary to perform quantum computation 
are numbers, which are circuits with no inputs or outputs. Below 
are some simple numbers coming from spiders:



Measurement outcome probabilities

To compute the probabilities for a measurement outcome (a 
bitstring, 1 bit for each qubit), we do the following:

1. Apply a 0° or 180° X delete spider to each qubit (depending 
on whether the string is 0 or 1 at that qubit).

2. Simplify the circuit until we get to a number we know (let’s 
call it the “weight” for the bitstring).

We then normalise all weights so that they sum to 1. Once 
normalised, those numbers are the probabilities we seek.



Measuring the ȁ ۧ0 state



Measuring the ȁ ۧ+ state



Measuring the Bell state

Circuit preparing the 
Bell state



Measuring the Bell state



Measuring the Bell state



Measuring the Bell state



That’s a wrap!

Bob Coecke and Stefano Gogioso,
“Quantum Theory in Pictures”,
Upcoming publication

Bob Coecke and Aleks Kissinger,
“Picturing Quantum Processes”,
Cambridge University Press

For any questions, please email
csrimasterclasses@cs.ox.ac.uk

mailto:csrimasterclasses@cs.ox.ac.uk

