
 The Turtle System, University of Oxford www.turtle.ox.ac.uk 1

Royal Institution Masterclass
Oxford, June 12, 2021

Spirals and Shapes with Turtle Pascal

1. Introducing Turtle Graphics programming
First, click on the “View” menu and select “Simple Mode” to hide the more advanced features of the

system. Then click on the “Help” menu, point to “Examples 1 – drawing and counting loops”, and

select the first program on the list (“Simple drawing with pauses”). This contains simple commands

for moving around and drawing on the Canvas, which is the square area on the right of the screen.

This kind of programming is called Turtle Graphics because we imagine the moving and drawing being

done by an invisible Turtle, which starts off in the middle of the Canvas (pointing “north”).

When the program has loaded, click on the RUN button and see what happens. Then do it again…

Can you work out how the commands are having the effects that you see on the canvas? Notice that

the Turtle leaves a coloured trail (of some particular colour and thickness) when it moves forward, and

that “pause(1000)” makes the program pause for 1000 milliseconds (i.e. one second).

The example programs contain some comments (between curly brackets, and shown in blue italics) –

when you’ve read them, they can be removed using “Remove any comments” from the “Edit” menu.

Then make some simple changes to the program, like changing the colours, blot sizes, distances,

angles, or pause times. Then RUN the program again, and repeat…

At the end of this handout, you’ll find a section called “The Program”. Read this through (because it

explains some of the basics of Turtle Graphics) and ask if there’s anything you don’t understand.

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 2

2. FOR loops and a spiral pattern
Click on the “File” menu, and then on “New program” (the first entry). Alternatively, you can choose

“Skeleton program” (the second entry), which gives you a very short program with PROGRAM, BEGIN,

and END., and a few example commands already written in.

Type in the following program (or edit the skeleton program accordingly), and then click RUN to see

what it does.

PROGRAM SpiralA;

VAR count: integer;
BEGIN

 for count:=1 to 130 do

 begin

 forward(count);

 right(10);

 end
END.

The line “VAR count: integer” defines an integer variable called “count”. You can think of this as

creating a box labelled “count” which is able to contain just one integer (i.e. a whole number, either

positive, zero, or negative). After “BEGIN”, the main program involves a “for loop”:

 for count:=1 to 130 do

 begin

 forward(count);
 right(10);

 end;

This in turn puts all the integers from 1 to 130 into the count variable, each time performing the

commands between “begin” and “end” (this is called a loop, because it goes “round and round” that

sequence of commands). So these commands – “forward(count); right(10)” – get performed

130 times, first with count equal to 1, then 2, then 3, … and finally 130.

What these commands do is first to move the Turtle forward by count units (i.e. by 1 unit, then 2 units,

then 3 units, … and eventually by 130 units), and then (each time) turn the Turtle right by 10 degrees.

So the Turtle moves round a spiral path, getting faster and faster as it goes. If you add a blot command

to the end of the loop, you’ll be able to see more clearly the Turtle’s stopping places:

 for count:=1 to 130 do

 begin

 forward(count);

 right(10);
 blot(5);
 end;

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 3

(If you want to stop the Turtle from automatically drawing a line as it moves “forward” from one

stopping place to another, put the command “penup;” immediately after “BEGIN”, before the FOR

loop starts. This lifts its pen off the Canvas so that it can move without drawing. To put the pen back

down on the Canvas at any point, use “pendown;”.) Having identified the stopping places, you can

now create a simple pattern at each of them, for example a red blot with a black circle around it.

PROGRAM SpiralB;

VAR count: integer;

BEGIN

 for count:=1 to 130 do

 begin

 forward(count);
 right(10);

 colour(red); These four lines draw a red blot surrounded

 blot(200); by a black circle (without moving the Turtle).

 colour(black); You might like to play with different patterns

 circle(200); by changing the colours and blot/circle sizes.

 end
END.

3. Procedures and parameters
The Turtle System comes with several built-in commands for drawing shapes, like blot and circle,

but you can also specify your own commands to make more interesting or complex shapes. To do

this, you write a mini-program called a procedure, and give it the name of the command you want to

define. The following program contains a procedure that defines a command called “filledcircle”,

which draws a red blot of size 200 surrounded by a black circle of size 200:

PROGRAM SpiralC;

VAR count: integer;

 Procedure filledcircle;

 Begin

 colour(red);

 blot(200); here is the procedure, defining

 colour(black); a new command “filledcircle”

 circle(200);
 End;

BEGIN

 for count:=1 to 130 do

 begin

 forward(count);
 right(10);

 filledcircle; this line calls the procedure

 end
END.

In fact, this program (SpiralC) draws exactly the same as the previous program (SpiralB) – the four lines

drawing the red blot surrounded by a black circle have simply been taken out and put inside the

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 4

“filledcircle” procedure. This may seem a bit pointless so far, but procedures become much more

valuable when they are called multiple times in a program, and especially when they are defined with

parameters, which enable them to be flexible (in the same way as most of the built-in commands).

For example, you can change the “filledcircle” procedure in the last program (SpiralC) as follows:

 Procedure filledcircle(size: integer);

 Begin

 colour(red);

 blot(size);

 colour(black);

 circle(size);
 End;

Now the procedure is able to draw filled circles of varying sizes, so when you call it, you must specify

the size you want. To get the previous effect, you need to change the calling line to:

 filledcircle(200);

When this calls the procedure, it “posts in” the value 200, making size equal to 200 – so yet again, the

program does exactly the same thing as before. But now, if you change the value (e.g. to 150, or 240,

or whatever), you’ll see that the size of the filled circles changes accordingly. You can also set the size

of the circles to whatever is the current value of count, so they get bigger as the spiral grows:

 filledcircle(count);

or else to half the current value of count, which gives a very different effect by exposing lines drawn

as the Turtle moves forward (unless you have added the command “penup;” as explained earlier):

 filledcircle(count/2);

In what follows, we’ll only be using this procedure with just a single parameter (i.e. size), but it’s worth

noting that you can also define a procedure to have two or more parameters, for example:

 Procedure filledcircle(size,fillcolour: integer);

 Begin

 colour(fillcolour);
 blot(size);

 colour(black);

 circle(size);
 End;

Now the procedure is able to draw filled circles of different sizes and different fill colours, so when

you call it, you must specify both the size and the colour, for example:

 filledcircle(200,red);

Here is a version of the procedure which has three parameters, and specifies also the border colour:

 Procedure filledcircle(size,fcolour,bcolour: integer);

 Begin

 colour(fcolour);

 blot(size);

 colour(bcolour);

 circle(size);
 End;

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 5

4. Random colours, positions, and sizes
To make the program more colourful, however, it is easiest to use the function randcol(n), which

randomly sets the Turtle’s colour to one of the first n colours defined in the system.1 So to make the

“filledcircle” procedure multi-coloured, you could replace “colour(red);” with “randcol(30);” so

that it chooses one of 30 colours for the blot instead of printing a red blot every time.

So far, the program has just been drawing filled circles in a spiral pattern, but now you have the

“filledcircle” procedure, you might want to try using it differently. Suppose, for example, that you

want to put filled circles at random points on the Canvas. To do this, you can use the command

setxy(x,y) to position the Turtle on the Canvas at coordinates (x, y), and the function random(n)

which generates a random number between 0 and n–1 inclusive. Since the standard Canvas

dimensions are 1000x1000, with coordinates 0 to 999 inclusive, the following command will position

the Turtle randomly on the Canvas:

 setxy(random(1000),random(1000));

Then to draw a filled circle with a random size between 20 and 50 (inclusive) at the new position, you

could use:

 filledcircle(20+random(31));

If you replace the body of your earlier FOR loop with these instructions, and count up to 2000 instead

of only 130, you get:

PROGRAM ScatterA;

VAR count: integer;

 Procedure filledcircle(size: integer);

 Begin

 randcol(30);

 blot(size);
 colour(black);

 circle(size);

 End;

BEGIN

 for count:=1 to 2000 do

 begin

 setxy(random(1000),random(1000));

 filledcircle(20+random(31));

 end
END.

This will display 2000 filled circles, randomly placed, randomly sized (between 20 and 50) and

randomly coloured, which should cover nearly all of the Canvas.2

1 The 50 defined colours can be seen by clicking on the “QuickHelp 1” tab below the Canvas, and choosing
“Operators/Colours” at the right hand side. The “QuickHelp 2” tab lists the built-in commands.

2 If you want the circles to go on accumulating forever (or at least, until you HALT the program), then you could
replace the FOR loop with an unending REPEAT loop. To do this, replace “for count:=1 to 2000 do begin”
with “repeat”; and replace “end” with “until 0=1” (or some other condition that is never true).

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 6

5. Drawing a triangle, square, pentagon and hexagon
Now create another new empty program (click on the “File” menu, and then select “New program”),

and copy the following code:

PROGRAM Triangle;

BEGIN
 forward(200);

 right(120);

 forward(200);
END.

Run the program to see what it does. On the Canvas on the right, you should see two sides of an

equilateral triangle. The current position of the Turtle is shown by the X and Y boxes: X gives the

distance from the left of the canvas, and Y gives the distance from the top. The Canvas is 1000 units

square, so X=500 and Y=500 is in the centre. Direction gives the direction (in angles) that the Turtle is

facing, with 0 meaning North, 90 meaning East, 180 meaning South, and 270 meaning West.

Now try adding two commands to this program (before the “END.” line) so that it draws a complete

equilateral triangle. Can you see how to do this? Can you also add a third command (making six in

all) so that the Turtle ends up pointing in its original direction and in its original place?

Now start another new program, and write a similar program to draw a square, starting like this:

PROGRAM Square;

BEGIN
 forward(200);

 right(90);
 ...

Again make sure that it brings the Turtle back to its original position and direction. (To enable our

shape-drawing routines to be used within programs like the original spiral, without messing them up,

we want all such routines to leave the Turtle’s position and direction unchanged.)

Can you create a similar program to draw a regular pentagon (with 5 sides), and one to draw a regular

hexagon (with 6 sides)? You might find it helpful to notice that for the regular triangle you had to turn

120° at each corner, and for the square 90°. So to draw a complete shape, the Turtle has to turn

enough corners to get back to its original direction. So it has to turn through a total of 360° (a complete

circle), which is equal to 3×120° or 4×90°.

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 7

6. Drawing shapes with a FOR loop
Your program to draw a triangle used the same pair of commands (forward and right) three times

in a row, and your program to draw a hexagon used the same pair of commands six times in a row.

Can you see how these programs could be made more efficient by using a FOR loop?

Open a new program again (“File”, “New program”). This program is supposed to draw a triangle, as

before, but this time using a separate “triangle” procedure that uses a FOR loop and also takes a “size”

parameter. In outline, your program should look like this:

PROGRAM Shapes;

 Procedure triangle(size: integer);

 Var count: integer;

 Begin

 for count:=1 to 3 do

 begin

 commands to draw each side of the triangle ...

 end

 End;

BEGIN
 triangle(200)

END.

Now rename your “triangle” procedure “square”. Can you edit the commands so that it draws a square

instead? Think about how many sides a square has, and the angle needed at each point.

Now rename your “square” procedure “shape” instead, and give it also a “corners” parameter:

Procedure shape(corners,size: integer);

Edit the procedure so that it can draw a shape of any given number of corners (as well as any given

size). Test it for “corners” between 3 and 6. Does it work as well when the “corners” value is 7?

If you want your shapes to be filled with colour (rather than just outlines), you can use the built-in

polygon(n) command, which fills in the shape made by the last n points the Turtle has visited, using

the current Turtle colour. You might like to experiment with this a bit.

7. Putting it all together
You have now learned how to draw filled circles and various shapes – all in different sizes – and how

to arrange patterns in spirals or randomly across the Canvas. So now try using these techniques

together, to create an interesting pattern. Note that if you want your program to make a random

choice of shapes, you could do something like this, where “test” is set randomly between 0 and 6:

 VAR test: integer;

 ...
 test:=random(7);

 if test=0 then

 filledcircle(...) don’t put a semicolon before an “else”

 else

 shape(test, ...);

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 8

The Program
The program is a sequence of commands in the programming language Turtle Pascal, which you type

into the Programming Area on the left of the screen, and which are executed when you click the RUN

button. These commands determine what is drawn on the Canvas (the square area on the right of the

screen). You might find it helpful to think of them as instructions being given to a small (and invisible)

Turtle which moves around the Canvas, leaving a coloured trail and drawing shapes as it goes. The

Turtle starts in the middle of the Canvas, pointing “north” (i.e. up towards the top of the screen).

The easiest way to see how all this works is to go to the “Examples” menu at the top of the screen,

select “Examples 1 – drawing and counting loops” and click on the first of these, called “Simple drawing

with pauses”. This will load the following program into the Programming Area:

PROGRAM DrawPause;

BEGIN

 colour(green);

 blot(100);

 pause(1000);

 colour(red);

 forward(450);

 pause(1000);
 right(90);

 thickness(9);

 colour(blue);

 pause(1000);

 forward(300)

END.

If you now click on RUN you will see the effect of this program on the Canvas. Here is a brief

explanation, which should be sufficient to enable you to write similar programs of your own:

Every program has to have a one-word name (here DrawPause), which is given after the word

PROGRAM and followed by a semicolon; then the commands of the program itself are “bracketed”

between BEGIN and END,3 and separated from each other by semicolons (you don’t need a semicolon

before END, but you can put one if you like). The final END must be followed by a full-stop, which

signifies the very end of the program. In this example the first command is colour(green), which

specifies the drawing colour as green; then blot(100) accordingly draws a green “blot” (i.e. a filled-

in circle) of radius 100 around the initial position of the Turtle in the centre of the Canvas.

Next we have a pause(1000) command, which tells the Turtle to pause for 1000 milliseconds (i.e. 1

second). Then after another colour command we have forward(450), which instructs the Turtle

to move forward from its initial position by 450 units. This will leave a red trail, in accordance with

the previous colour(red) command. After another pause(1000), the Turtle is told to turn right

by 90 degrees with right(90), then thickness(9) tells it to thicken its pen from the standard 2

unit thickness to 9 units. This means that after colour(blue) and another pause(1000), the final

command forward(300) will draw a thick blue line of 300 units in what is now the direction of the

Turtle (i.e. horizontal, having turned right by 90 degrees from its original vertical direction).

3 Note that capitalization in Turtle Pascal is entirely optional – PROGRAM, BEGIN, and END are shown in
uppercase only for emphasis, and it would make no difference if you changed them to lower-case and/or if you
capitalised other words (or even if you used a mixture of upper- and lower-case).

http://www.turtle.ox.ac.uk/

