
 The Turtle System, University of Oxford www.turtle.ox.ac.uk 1

Royal Institution Masterclass
Oxford, July 3, 2021

Getting Started with Cellular Automata

1. Familiar Turtle System Concepts

From the previous Masterclass worksheet “Spirals and Shapes with Turtle Pascal”, you should already

be familiar with some fundamental Turtle System concepts, including:

 Turtle Graphics, invented by Seymour Papert, is a brilliant method for starting programming,

based on imagining an invisible Turtle that moves around the Canvas, drawing as it goes.

 The Turtle’s behaviour is defined by a program, involving various keywords such as PROGRAM,

BEGIN, and END, and set running by clicking on the RUN button.

 At any time, the Turtle has a particular position, recorded by x and y coordinates (usually on a

Canvas measuring 1000x1000 units), and a particular direction.

 The Turtle also has a pen with a particular colour and thickness, set by the colour and

thickness commands.

 All of these values are shown above the Canvas as the program runs (they are also available

as the built-in functions turtx, turty, turtd, turtc, and turtt).

 The system has 50 named colours (which can be seen in the relevant “QuickHelp 1” panel at

the bottom of the Canvas – they start green, red, blue, yellow, violet, lime, orange, …).

 Turtle movement and change of direction can be achieved using commands such as forward,

back, left, and right.

 All of these commands take an integer (i.e. whole number) as a parameter – for example

forward(300) or right(45) to move forward 300 units or turn right by 45°.

 We can define variables that hold values – most often integer variables, though they can also

be defined to hold strings (e.g. words or sentences) and other types (e.g. Booleans, arrays).

 We can use FOR loops to do things repeatedly, using a variable to keep track of the iterations

(e.g. “for count := 1 to 100 …” iterates the “count” variable through the values from 1 to 100);

 Shapes can be drawn in various ways, most simply using circle, blot, ellipse, and

ellblot – these all draw the relevant shape centred on the Turtle’s current position.

 We can also draw shapes by moving the Turtle through a sequence of points, and then using

e.g. polyline(4), or polygon(4) to link up the last 4 points in a line or a circuit.

 We can write our own procedures – mini-programs with names and parameters that we

choose ourselves – which then provide user-defined commands to do particular tasks.

 If we want to use different colours as we iterate some loop, we can use the randomising

function randcol, e.g. randcol(20) randomly chooses from the first 20 system colours.

 We can also generate random behaviour more generally using the random function: e.g.

n:=random(1000) makes variable n equal to a random number between 0 and 999.

 The “if … then …” or “if … then … else …” structure can be used to choose different

behaviour depending on the value of some function or variable.

 To treat a number of commands in sequence within a FOR loop or IF structure, use begin and

end to bracket them together – this effectively combines them into a single command.

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 2

2. An Illustration, and an Exciting Discovery

Here is an example of a short program that illustrates most of these things – this can be found in the

“Examples” menu, under “Examples 2 – procedures and simple recursion”: to load it, select “Triangle

procedure with limit” from the menu. Note that it includes one new command, movexy(-100,150),

which moves the Turtle on the Canvas 100 units to the left and 150 units down.

PROGRAM Triangles;

 Procedure triangle(size: integer);

 Begin

 if size>1 then

 begin

 forward(size);

 right(120);

 forward(size);

 right(120);

 forward(size);

 right(120)

 end

 End;

BEGIN

 movexy(-100,150);

 triangle(256)

END.

The exciting discovery comes if we add the surprising command triangle(size/2) in turn after

each of the forward(size) commands (and remember here that you always need a semicolon to

separate each pair of successive commands). The resulting program can be found in the same

“Examples” menu, labelled “Recursive triangles”.

A procedure which “calls itself” in this way is said to be recursive, and this is an extremely powerful

technique with lots of applications. To see some of the wonderful effects it can produce, you might

like to explore some of the early programs in the menu “Examples 9 – self-similarity and chaos”.

You could also try adding recursion to programs you have written yourself for the “Spirals and Shapes

with Turtle Pascal” worksheet. But if you do this, do notice that any recursive procedure needs to have

a termination condition – a way of stopping it from recursively calling itself on and on forever. In the

example above, this is achieved through the condition:

 if size>1 then
 begin

 ...

 end

which ensures that once size reduces to 1, the triangle procedure stops doing anything. Thus we

progressively get calls of triangle(256), triangle(128), triangle(64), triangle(32), triangle(16),

triangle(8), triangle(4), triangle(2), and triangle(1) – 8 levels of recursion – but no further.

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 3

3. Some Powerful New Turtle System Concepts

Now we’re going to learn some new concepts, in which the Turtle itself will play a much smaller role,

and we’ll be thinking about the Canvas as a whole, rather than focusing specifically on the Turtle’s

position on that Canvas. We start with a short program which can be found under “Examples 5 – user

input, interaction and games”, labelled “Colouring cells”. When you first load it, it will include quite a

lot of comments {in curly brackets like this}. If you want to remove the comments, select “Remove

any comments” from the “Edit” menu.

PROGRAM ColourCells;

CONST width=10;

 height=15;

VAR x: integer;

 mk: integer;

BEGIN

 canvas(1,1,width,height);

 resolution(width,height);

 for x:=1 to width do

 pixset(x,height,rgb(x));

 repeat

 reset(\mousekey);

 mk:=detect(\mousekey,5000);

 if mk=1 then

 pixset(?mousex,?mousey,turtc)

 else

 if mk=2 then

 turtc:=pixcol(?mousex,?mousey)

 else

 if mk=3 then

 pixset(?mousex,?mousey,rgb(random(10)+1))

 until mk=\escape

END.

When you click on the RUN button, you will see a line of ten coloured blocks along the bottom of the

Canvas – each of these is in fact a single coloured pixel. Now try clicking with the left mouse button

on some of the white area of the Canvas – each time you do, the relevant pixel will turn black, and this

will enable you to see that the entire Canvas has been divided into a grid of 10x15 pixels (with

coordinates running from 1 to 10 along the top, and 1 to 15 down the side). Then try clicking with the

right mouse button on one of the coloured pixels at the bottom – this time, you will see from the

“Colour” patch above the Canvas that the Turtle’s colour has changed accordingly. And if you now

left-click elsewhere on the Canvas, you’ll see that the relevant pixel now turns to the new colour

(rather than black), and you can go on in this way making a coloured pattern on the Canvas. Finally,

try clicking with the middle mouse button on some pixel. Now, you will find that the pixel turns into

one of the first 10 build-in colours, chosen randomly. When you’ve played with this enough to

understand what’s happening, press the “Escape” key to finish the program.

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 4

There is a lot going on in this short program, so let’s go through its novel features in turn:

 The program starts by defining two constants, named “width” and “height”. Note carefully

how this is done using the CONST keyword. This makes it very easy to change the number of

pixels into which the Canvas will be divided – both horizontally and vertically.

 Note that constant definitions can only come at the very beginning of any program.

 Two integer variables are also defined: x will be used for counting across the width (i.e. for the

x-coordinate), and mk will be used to identify mouse clicks and key presses.

 The new command canvas(1,1,width,height) defines the Canvas coordinates as

starting from the point (1,1) at the top left, with the given width and height.

 Note for the future, however, that it would be more standard, when creating a cellular

automaton, to use canvas(0,0,width,height), so that the x-coordinates run from 0 to

width-1, and the y-coordinates from 0 to height-1. We’ll do that in future.

 The new command resolution(width,height) defines the Canvas resolution – the

number of pixels actually used in the Canvas image – as width x height. In cellular automata,

we almost always want the resolution dimensions to match the coordinate dimensions.

 The following short loop introduces two new commands …

for x:=1 to width do

 pixset(x,height,rgb(x));

 The command pixset(x,y,red) is used to set the individual pixel at coordinates (x, y) to

the specified colour – in this case, red. Note here that “red” is actually shorthand for a

particular colour code number, in fact for 16711680 which is #FF0000 in hexadecimal.

 The function rgb(n) returns the nth built-in colour code: so, for example, rgb(1) returns the

colour code for green, rgb(2) for red, rgb(3) for blue, rgb(4) for yellow, and so on. Thus

the short loop colours the ten bottom pixels with the first ten build-in colours.

 The program then enters a REPEAT … UNTIL loop (you’ll see the UNTIL part just above the

“END” at the very bottom of the program). This is a very common structure, rather like a FOR

loop except that instead of being controlled by the value of a counting variable, it goes round

the loop until the final condition (the UNTIL condition) becomes true. In this case, that

condition is mk=\escape, which will become true after the “Escape” key has been pressed.

 The following two lines enable us to capture the relevant mouse or keyboard input …

 reset(\mousekey);

 mk:=detect(\mousekey,5000);

 These are using the special \mousekey input code – this is one of many that are defined

within the system, but it’s the only one we need here. The command reset(\mousekey)

“resets” it so that it’s ready to detect a mouse click or keypress.

 Then the command mk:=detect(\mousekey,5000) tells the system to wait for up to 5

seconds (i.e. 5,000 milliseconds) to detect either a mouse click or a keypress. If no such event

is detected, the variable mk will be made equal to 0. If a mouseclick is detected, mk will be

made equal to 1, 2, or 3 depending on whether it was the left, right or middle mouse button.

And if a keypress is detected first, then mk will be made equal to a keycode value (the only

relevant one here is “\escape”, which happens to be equal to 27).

 The following if … then command deals with a left mouseclick …

 if mk=1 then

 pixset(?mousex,?mousey,turtc)

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 5

 Here we see the pixset command again, but now with parameters ?mousex and ?mousey

– which give us the coordinates of the pixel where the mouse has been clicked – and turtc,

which gives us the current Turtle colour.

 If the variable mk wasn’t equal to 1 (i.e. a left mouseclick), then we go on to the following else

condition, which identifies a right mouseclick …

 if mk=1 then

 pixset(?mousex,?mousey,turtc)

 else

 if mk=2 then

 turtc:=pixcol(?mousex,?mousey)

 Now we see another new command pixcol, with the now familar parameters ?mousex and

?mousey – this returns the colour of the pixel where the mouse has been clicked, and here

that colour code is then being assigned to turtc, so that the Turtle takes that colour.

 Finally, if the variable mk was equal to neither 1 nor 2, we get a test for a middle mouseclick,

which corresponds to the value 3 …

 if mk=1 then

 pixset(?mousex,?mousey,turtc)

 else

 if mk=2 then

 turtc:=pixcol(?mousex,?mousey)

 else

 if mk=3 then

 pixset(?mousex,?mousey,rgb(random(10)+1))

 This time, the pixset command is being used with a random third parameter, to set the pixel

where the mouse was clicked to a random choice of the first 10 built-in colours. Note that

random(10) returns a value between 0 and 9, so we add 1 to get a value between 1 and 10,

and then use the rgb function to turn that into a colour code.

4. Onwards to Cellular Automata

You are now in a position to understand how the Turtle System handles the pixel-based manipulation

which is crucial for its ability to implement cellular automata so easily. For much more on these, see

the documents “Cellular Automata: Modelling Disease, ‘Life’, and Shell Patterns”. Or just have fun

exploring the various example programs under the menu “Examples 7 – cellular models”!

http://www.turtle.ox.ac.uk/

