
Cellular Automata: Modelling Disease, “Life”, and Shell Patterns

Cellular automata provide a powerful and relatively straightforward way of modelling many different

phenomena, from crystal growth to biological patterning, and from chemical dynamics to social

interaction. They can also be fun and even quite exciting!

 By studying how to implement cellular automata in the Turtle System, we are going to learn also

about a range of other important and useful Computing concepts:

 Using integer division and remainders (operators div and mod);

 Representing numbers in hexadecimal notation, and using these for colour codes;

 Binary numbers and bitwise manipulation (operators not, and, or, xor);

 Using binary numbers and bitwise manipulation to encode rules and data.

This also gives useful experience in the language Pascal, which has been historically a popular teaching

language at university level, often used to illustrate algorithms in university textbooks etc. If you have

never programmed before, don’t worry! And if you have programmed before in some other language

– perhaps in Python or BASIC – then you should find it relatively easy to pick up.

 Some of this material is difficult, so please feel free to email peter.millican@hertford.ox.ac.uk if

you need help. Please also email if you find any mistakes or unclarities in this or other documentation,

or – which I hope you won’t! – if you encounter what seem to be bugs in the software (in which case,

please note down exactly the situation in which it arises, and send me a copy of your program).

0. Preliminaries

Before you start, please familiarise yourself with programming using the Turtle System. If you have a

PC (or a Mac with the ability to run Windows in a virtual machine), please download Turtle System 14

from www.turtle.ox.ac.uk and put it into an appropriate directory on your machine. If not, you can

run Turtle directly from the website www.turtle.ox.ac.uk/online/ (though this is less powerful than

the downloadable system). Exercises are available on the website to help you familiarise yourself with

the system (e.g. try the “self-teach exercises” up to exercise 8). Note also that the various examples

used below (referenced to the website) are also in the relevant “Examples” menu of Turtle System 14.

1. Introduction to Cellular Automata, and Pixel Manipulation

A cellular automaton is a grid of cells, typically in a square array, each of which is in a particular state

at any given moment. Initially, these states might be assigned randomly or in some pattern, but then

as time “ticks” from moment to moment, the state of each cell may change, usually by following simple

rules that determine the new state according to the arrangement of states across the neighbouring

cells. Some cellular automata are asynchronous, with individual cells being processed one by one –

we see a simple example in the next section. Others are synchronous, with all cells being processed

simultaneously, so that with each tick of the clock, we get a new generation of cell states, each of

which has been individually determined by the same simple rules applied (within its neighbourhood)

to the previous generation of states. Surprisingly elaborate changing patterns can emerge from even

very simple rules, as we shall see with the famous “Game of Life”.

 When implementing cellular automata within Turtle, it often makes sense to change the

resolution of the canvas image (as well as the virtual canvas dimensions) so that each cell corresponds

mailto:peter.millican@hertford.ox.ac.uk
http://www.turtle.ox.ac.uk/
http://www.turtle.ox.ac.uk/online/

2

to a single “pixel” (as well as a single coordinate location). Then the cell’s colour can easily be set using

the pixset command, as in the following simple Turtle Pascal program which creates an initial setup

for the Game of Life – an example result is shown in the image.

PROGRAM LifeStart;

CONST width=32;

 height=32;

VAR x,y: integer;

BEGIN

 canvas(0,0,width,height);

 resolution(width,height);

 for x := 0 to width-1 do

 for y := 0 to height-1 do

 if random(7)=0 then

 pixset(x,y,black)

 else

 pixset(x,y,white)

END.

Use of the two constants width and height – both here set to 32 – makes this code very easily

adaptable for different sizes of board, just by setting the constants to different values. The canvas

command then specifies the relevant coordinate range (i.e. 0 to 31 along both axes) and the resolution

command fixes the corresponding image size (i.e. 32×32 pixels). Then the two variables x and y are

used to count through all the cells in turn, randomly making roughly one in seven of them black and

the rest white (though in fact there would be no need to set the latter, because white is the default

colour). And just as the pixels’ colour can be set with the pixset command, so the pixcol function can

be used to read that colour, e.g. thiscol := pixcol(x,y). As we shall see, this makes it possible

to use the pixel colour itself to record the state of each cell.

2. Modelling the Spread of Disease, and Its Prevention

Before tackling the complexities of the Game of Life, it will be helpful to start with a much simpler

cellular automaton, and one which – somewhat ironically – is far more closely related to real life! The

“Disease” example program (which you can run, or copy and paste, from numbered link 4.2 at

https://www.turtle.ox.ac.uk/csac) is an implementation of the famous “SIR” (Susceptible, Infected,

Recovered) model of the spread of infectious disease, and conveys some very important practical

lessons about disease prevention. The program begins by defining various constants:

(a) Canvas dimensions width and height (both 100 in this case).

(b) Colours to indicate cells that are susceptible (lightgreen), infected (red), and recovered (blue).

(c) An integer startradius (10) that defines the maximum boundary of the initial infection.

(d) Three probabilities, each of which is to be interpreted as a percentage: infectprob (1%), the

probability that a cell within startradius will be initially infected; immuneprob (2%), the

probability that a cell will be immune throughout (e.g. due to prior inoculation); and

recoverprob (15%), the probability that an infected cell will recover in any time period.

As before, the point of defining these constants (rather than using the numbers directly in the code)

is to make them very easy to change, so you can experiment with different values. The whole point

of this program, indeed, is to see how the behaviour then changes.

https://www.turtle.ox.ac.uk/csac

3

 Following the constants and a few variables – including numinfected, which keeps count of

infected cells – there is a simple procedure infect(x,y), which colours cell (x,y) with the infected colour

(i.e. red) and increments numinfected accordingly. Then the main program begins, defining the canvas

and resolution (just as we saw above), initialising numinfected to zero, and colouring the cells of the

canvas according to the following rules:

 If a cell’s distance from the centre of the canvas is less than or equal to startradius (10), then

with probability infectprob (1%), it will be infected (red) from the start.

 Otherwise, with probability immuneprob (2%), the cell will be recovered (blue) from the start

– this colour is given to cells that are immune, mostly after recovery from the infection.

 Otherwise, the cell will be susceptible (lightgreen).

The canvas is temporarily frozen (using noupdate ... update) while this colouring is taking place, so it

can be completed much more quickly.

 Having finished this initialisation, the spread and eventual decline of the infection are modelled

with a loop that continues until numinfected becomes zero. The loop starts by choosing a random

value of x between 0 and (width-1) and a random value of y between 0 and (height-1). Then we check

the colour of cell (x,y) to see whether it is infected (i.e. red) or not. If it is, then with probability

recoverprob (15%), we change it to recovered (i.e. blue), to indicate that it has now recovered and thus

become immune from further infection. (To do this with the correct probability, we use the

conditional if random(100)<recoverprob to select a random number between 0 and 99 and

check whether it is less than recoverprob.) Finally, if the cell is infected and has not recovered, then

the following code is executed:

n:=random(4)*2+1;

x:=x+n div 3-1;

y:=y+n mod 3-1;

if pixcol(x,y)=susceptible then

 infect(x,y);

The purpose of this code is to select at random one of the four closest neighbours of the infected cell

and then, if that cell is susceptible (i.e. lightgreen), to infect it – this is how the infection spreads. The

arithmetic here is neat but a bit tricky, going through the following steps and using the operators for

integer division (div) and remainder (mod):

random(4) random(4)*2 n n div 3 n div 3 – 1 n mod 3 n mod 3 – 1

0 0 1 0 -1 1 0

1 2 3 1 0 0 -1

2 4 5 1 0 2 1

3 6 7 2 1 1 0

The shaded columns show the four possible random numbers (between 0 and 3), and the

corresponding values that get added to x and y respectively. Adding (-1,0) corresponds to a move left

on the canvas, (0,-1) to a move up, (0,1) to a move down, and (1,0) to a move right. So after these

additions, the coordinates (x,y) do indeed identify one of the four neighbouring cells. Now it just

remains to test whether that cell is susceptible (lightgreen), and if it is, to infect it (red).

4

You might have noticed that moving in these ways from a cell on the edge of the grid

could take us to a pixel off the canvas. One convenient feature of pixset and pixcol –

unlike corresponding operations with arrays – is that they do not throw up an error

message if this happens, and since it causes no trouble for the operation of our program,

we are able to ignore this complication here. But an inquisitive student might want to

investigate whether changing the colours could introduce a problem …

 One practical virtue of this model of infection – which

in its more sophisticated forms is highly influential and

widely used – is to demonstrate very clearly the value of

inoculation. If the program is run as it stands, the infection

is very likely to spread from the centre of the canvas to most

of the susceptible cells (the image here shows it spreading

aggressively in several directions). But if the value of

immuneprob is set higher – for example, changed from 2%

to 12% – then you will find that the infection has far less

impact, often dying out quickly and usually reaching only a

small proportion of the canvas. Thus artificially inoculating

even 10% of the population can potentially bring a huge

payoff in disease control for the population as a whole. Real diseases, of course, will vary in infectivity

and other characteristics, so we cannot assume that this conclusion will apply to them. But this model

does allow for variation, and enables us to explore how the critical value of immuneprob at which the

disease can be tamed depends on the probability of recovery in each time period: if recovery typically

takes a long time (because recoverprob is low), then more widespread prior immunity will be required

to keep the disease in check. The crucial point here is that the longer recovery takes for any individual,

the more opportunity the disease has to infect that individual’s neighbours, and so the higher the

probability that it will indeed be passed on to them.

 This particular population structure – which assumes that every individual is statically located

within a fixed grid, with precisely four neighbours each – is of course very crude, but more complex

versions of the “SIR” model play a vitally important role in the real world, helping epidemiologists

(those who study such things) to understand, predict and combat the spread of diseases. In the

mathematics of infection, the most important parameter for any disease is its “basic reproduction

number” (commonly denoted R0) – that is, the number of individuals that could be expected, on

average, to be directly infected from one newly-infected individual within a totally susceptible

population. In our model (with recoverprob at 15%), this parameter is around 2.35 for an individual

surrounded by four “susceptibles”, but of course any individual thus infected will then have only three

adjacent susceptibles (since the individual who infected them is no longer susceptible), and their

expected direct infectivity drops accordingly, to around 1.76. An interesting experiment would be to

see what happens if individuals are allowed to wander (e.g. perhaps by incorporating some sort of

“diffusion”, or long-range swaps – as a crude model for air travel), in which case the spread of disease

is likely to be significantly greater. In general, if a population is “well mixed”, then an infection is likely

to become an epidemic if its numbers systematically grow, i.e. if R0 is greater than 1.

5

3. The Game of Life

The most famous cellular automaton, and one of the most fascinating, is John Conway’s Game of Life.

This involves a square grid of cells – potentially extending for ever in all directions – within which each

cell can be either alive or dead (so there are just two possible cell states). Since an infinite grid is

impractical, most computer implementations involve instead a finite square grid, e.g. 50×50, with the

edges “wrapping around” (so the right-hand column is treated as being adjacent to the left-hand

column, and the bottom row adjacent to the top row). Within this grid, live cells are usually shown

black, and dead cells white – the initial arrangement of these black and white cells may be set

randomly (e.g. perhaps as we saw earlier, with a 1 in 7 chance of each cell being alive).

 Within any such grid, we consider each cell as having 8 neighbour cells, as

shown in the picture here. (This differs from the disease model above, in which we

treated only cells 2, 4, 6, and 8 as neighbours. These are the two most common

options, but many models adopt yet other definitions of “neighbourhood”.) What

happens to each cell then depends on whether it is alive or dead, and how many of

its neighbours are alive or dead. From one generation to the next:

 A cell that is currently alive will stay alive in the next generation if, and only if, it currently has

exactly 2 or 3 live neighbours. Otherwise, it dies.

 A cell that is currently dead will become alive in the next generation if, and only if, it currently

has exactly 3 live neighbours. Otherwise, it stays dead.

Though simple, however, these rules can be tricky to implement, because of the need to perform them

on all cells simultaneously. If A and B are neighbouring cells and we deal with A first, then if A’s state

changes as a result, this risks messing up the calculation for B, whose next state should be determined

(in part) by A’s current state, not by A’s next state. The upshot is that we need to be able to retain in

memory both the current state of each cell, and the newly-calculated state that will take over in the

next generation.

4. Colour Codes, Binary Numbers, and Bitwise Operators

Just as with our earlier model of disease, so in the Game of Life there is no need to keep a separate

record of whether each cell is alive or dead – the pixels store that information already and can be

manipulated individually using pixset and pixcol. And in fact the pixels can store far more information

that this, because each pixel holds a three-byte RGB colour code, in which the most significant byte

(i.e. the one written first, which has the biggest impact on the overall size of the hexadecimal number)

represents the intensity of red, the middle byte the intensity of green, and the least significant byte

the intensity of blue (this is exactly the same colour coding method that is used in web pages). Thus

for example the colour emerald has colour code #00C957, with “#” indicating that the number is

hexadecimal (base 16), so that the red component is #00 (zero), the green component is #C9 (12×16

+ 9 = 201 in decimal), and the blue component is #57 (5×16 + 7 = 87 in decimal). Since the maximum

possible value for any component is #FF (15×16 + 15 = 255 in decimal), we can see that emerald is

overall mostly green, mixed with some blue.

 To get hold of the individual bits and bytes of colour codes (or any other number), we need to

understand how they are stored within the computer as binary (base 2). Consider again the code for

1 2 3

8 4

7 6 5

6

emerald, divided into hexadecimal digits, each of these corresponding to a 4-bit chunk or nybble:

 Hexadecimal (#): 0 0 C 9 5 7

 Binary: 0000 0000 1100 1001 0101 0111

The four binary digits of each nybble count for 8, 4, 2, and 1 respectively, and we call this their place

value (in our familiar decimal system, of course, the place values – starting from the right – are 1, 10,

100 etc.). Thus the binary number “1001” is equivalent to decimal “9” (8+1), “0111” to decimal “7”

(4+2+1), “0101” to decimal “5” (4+1), and “1100” to decimal “12” (8+4). The highest possible value

for a nybble is thus decimal “15” (“1111” = 8+4+2+1), so a nybble can take any value between 0 and

15, which enables it to be represented by a single hexadecimal digit (just as any value between 0 and

9 can be represented by a single decimal digit). Use of hexadecimal obviously requires that we have

16 different digits available, and that’s why we go beyond “9” to use “A” as the hexadecimal digit for

10, “B” for 11, “C” for 12, “D” for 13, “E” for 14, and “F” for 15. (In the table above, notice that the

binary number “1100” – value 8+4 – corresponds to the hexadecimal digit “C”.)

 Once we understand binary numbers, we can make use of bitwise operators to manipulate

them. Turtle provides four such standard operators, which are called:

 not and or xor (Pascal and Python)

 NOT AND OR EOR (BASIC)

The not operator inverts the bits of the integer to which it is applied, taking it to have 32 bits

altogether, rather than only the 24 bits that are taken into account in colour codes. Thus not(0), for

example, will give #FFFFFFFF in hexadecimal, all 1-bits in binary (which in the “two’s complement”

system of integer representation happens to represent the integer -1). The other three operators fix

each bit in accordance with the following truth-tables:

These truth-tables fit with the natural “logical” interpretation of the three operators,

taking 0 as false and 1 as true (e.g. “A and B” comes out true only if both A and B are

individually true). Hence in Turtle these operators can be used both as “logical”

connectives (connecting two statements) and “bitwise” operators (on two numbers).

 A B A and B A B A or B A B A xor B

 1 1 1 1 1 1 1 1 0

 1 0 0 1 0 1 1 0 1

 0 1 0 0 1 1 0 1 1

 0 0 0 0 0 0 0 0 0

 So if, for example, we apply these operators between the decimal numbers 21 (binary 00010101) and

9 (binary 00001001), we get:

 00010101 (21) 00010101 (21) 00010101 (21)

 00001001 (9) 00001001 (9) 00001001 (9)

 and: 00000001 (1) or: 00011101 (29) xor: 00011100 (28)

(21 and 9) yields 1, because the only 1-bits in the result are those that were 1-bits in both of the

original numbers. (21 or 9) yields 29, because the only 0-bits in the result are those that were 0-bits

in both of the original numbers. (21 xor 9) yields 28, because the 1-bits in the result are those that

were a 0-bit in one of the original numbers, and a 1-bit in the other.

7

 Suppose now that we are given some six-digit hexadecimal colour code #RRGGBB and we want

to get hold of the green component – the middle 8 bits (2 nybbles). We can do this by anding with

the hexadecimal number #00FF00, which has all 1-bits in the middle byte and 0-bits elsewhere, and

then dividing by #100 (i.e. 256 in decimal). Thus

 (emerald and #FF00) evaluates to #C900 (in hexadecimal)

 ((emerald and #FF00) / #100) evaluates to #C9 (in hexadecimal, 201 in decimal).

If on the other hand we wish to add an element of red (say an intensity of 8/255) to emerald

(#00C957), then we can do this using the or operator:

 (emerald or #80000) evaluates to #08C957

In this way, the and operator can be used to discover which bits are “set” (i.e. are 1-bits) in the binary

representation of a number, and the or operator can be used to ensure that specific bits get set. The

xor operator is useful when we want to change a particular bit (from 0 to 1, or 1 to 0).

5. Life, Hiding in the Pixels

Let’s now see how we can implement the Game of Life, storing all the intermediate information in the

pixels. This incidentally provides a nice illustration of the techniques explained above, which can also

be used for steganography, in which secrets are hidden in what look like ordinary pictures. (You can

find the full program to run or copy, numbered 4.5 at https://www.turtle.ox.ac.uk/csac.)

 So far, we have two colour codes in our Game of Life pixels, black and white. Spelled out in

binary, with all 24 colour bits represented by a digit, black is “000000000000000000000000” and

white is “111111111111111111111111”; so it clearly makes life easier if we work in hexadecimal!

 black (live cells): #000000 – zero intensity of red, green, and blue

 white (dead cells): #FFFFFF – maximum intensity of red, green, and blue

Every bit of black is 0, and every bit of white is 1, but instead of using the entire number to indicate

whether each cell is currently alive or dead, we could use just a single bit, for example the least

significant bit (the very last, whose place value is 1). And then we could use the next least significant

bit (the second last, whose place value is 2) to indicate something quite different, namely, whether

the cell is going to change state in the next generation. So now we can add two new colour codes:

 blackish (live but dying): #000002 (last byte is 00000010 in binary)

 whitish (dead but resurrecting): #FFFFFD (last byte is 11111101 in binary)

Visibly, blackish will be indistinguishable from black, and whitish will be indistinguishable from white.

So we can store this information as we go along, without affecting how the canvas looks! Changing a

code from black to blackish, or white to whitish – or reversing such a change – is easily done by xoring

the code with the number 2, for example (black xor 2) = blackish, and (blackish xor2) = black.

 When calculating which cells are to die or be resurrected, we need to go through every cell in

the grid, applying the rules we saw before:

 A cell that is currently alive will stay alive in the next generation if, and only if, it currently has

exactly 2 or 3 live neighbours. Otherwise, it dies.

 A cell that is currently dead will become alive in the next generation if, and only if, it currently

has exactly 3 live neighbours. Otherwise, it stays dead.

https://www.turtle.ox.ac.uk/csac

8

Recall also that every cell has 8 neighbouring cells, even those on the edges of the grid, because the

grid “wraps around” from left to right, and from top to bottom. Perhaps surprisingly, this wrapping

around is very straightforward, because we can take advantage of the mod operator (written “MOD”

in BASIC) which yields remainders (e.g. 14 mod 4 = 2, because 4 goes into 14 three times, with a

remainder of 2). If we’re concerned with cell (x,y) and use variable dn to count “dead neighbours”,

then the code (in Pascal) might go like this:

var dn, i, j: integer;

...

dn := 0;

for i := -1 to 1 do

 for j := -1 to 1 do

 dn := dn + pixcol((x+i+width) mod width,

 (y+j+height) mod height) and 1;

Suppose for example, that x is 31 and y is 0 on a 32×32 grid, so the pixel (x,y) is at the top-right corner.

Then as i and j both count from -1 to 1, the expression “(x+i, y+j)” passes through 9 combinations of

coordinates (including (31, 0) itself when both i and j are zero):

 (30, -1) (31, -1) (32, -1) j = -1; y+j = -1

 (30, 0) (31, 0) (32, 0) j = 0; y+j = 0

 (31, 1) (31, 1) (32, 1) j = 1; y+j = 1

 i = -1; x+i = 30 i = 0; x+i = 31 i = 1; x+i = 32

The shaded combinations are not legitimate gridpoints, because the coordinates in each direction run

only from 0 to 31, so both -1 and 32 are “illegal” values. But suppose now that we do the following to

the coordinates within each pair – add 32, then take the remainder on division by 32. The effect on

the numbers shown above is as follows (using mod as the remainder function):

n -1 0 1 30 31 32

n + 32 31 32 33 62 63 64
(n + 32) mod 32 31 0 1 30 31 0

Notice how -1 has “wrapped around” to 31, and 32 to 0, while the four legitimate values are

unaffected. This changes our 9 combinations of coordinates to exactly what we want them to be:

 (30, 31) (31, 31) (0, 31)

 (30, 0) (31, 0) (0, 0)

 (31, 1) (31, 1) (0, 1)

Thus our command:

dn := dn + pixcol((x+i+width) mod width,

 (y+j+height) mod height) and 1;

does check the correct neighbourhood of pixels around (x,y), both at the edges and in the middle of

the grid (and it’s written in such a way that width and height could take values other than 32).

 Now let’s look at what’s happening to dn. This is first set to 0, and then gets repeatedly

incremented by (pixel and 1), where pixel is in turn the colour code of the 9 cells in the neighbourhood

of (x,y) – i.e. cell (x,y) itself and its 8 neighbours. “(pixel and 1)” applies the and operator between

pixel and #000001, thus yielding the value of the least significant bit, which is what we are using to

record whether the cell is alive or dead (and we could equally well have used “(pixel mod 2)” here,

9

because the last bit is 1 if and only if pixel is odd). If the cell is alive, and pixel is black or blackish, then

pixel is even, so (pixel and 1) will be 0. If dead, and pixel is white or whitish, then pixel is odd, so (pixel

and 1) will be 1. Hence the command above does indeed succeed in counting the number of dead

cells in the neighbourhood (and its doing so will be unaffected if some of the cells change colour from

black to blackish, or from white to whitish). Having counted the number of dead cells, it’s easy to

modify the Game of Life rules accordingly:

 A cell that is currently alive will stay alive in the next generation if, and only if, there are

currently 5 or 6 dead cells (i.e. 4 or 3 live cells) in the neighbourhood. Otherwise, it dies.

 A cell that is currently dead will become alive in the next generation if, and only if, there are

currently 6 dead cells (i.e. 3 live cells) in the neighbourhood. Otherwise, it stays dead.

Applying these rules to cell (x,y) can now be done as follows, bearing in mind that (black xor 2) is

blackish, and (white xor 2) is whitish. We want to make these colour changes (signifying an impending

change of state) if either cell (x,y) is alive but the neighbourhood has neither 5 nor 6 dead cells, or if

cell (x,y) is dead and the neighbourhood has exactly 6 dead cells:

if ((pixcol(x,y) and 1=0)

 and ((deadns<5) or (deadns>6)))

 or ((pixcol(x,y) and 1=1)

 and (deadns=6)) then

 pixset(x,y,pixcol(x,y) xor 2);

If we go through all the cells in the grid, performing these steps, then by the time we have finished,

we will still have a grid that looks exactly the same (since blackish is indistinguishable from black, and

whitish from white), but in which every cell that is due to change from live to dead, or vice-versa, will

actually have subtly changed colour. And we will have done all this without allowing the calculations

on each cell to affect those on its neighbours. All that remains, to finish this “generation” of the Game

of Life, is to go through the entire grid updating blackish (i.e. dying) to white (i.e. dead), and whitish

(i.e. resurrecting) to black (i.e. alive). This can be done routinely:

if pixcol(x,y)=#2 then

 pixset(x,y,white)

else

if pixcol(x,y)=#FFFFFD then

 pixset(x,y,black)

or more cleverly, with bitwise operations:

if (pixcol(x,y) and 3) mod 3<>0 then

 pixset(x,y,pixcol(x,y) xor #FFFFFD)

This uses the fact that blackish differs from white, just as whitish differs from black, in every bit except

for the second last. So xoring with #FFFFFD – which has every bit set except for the second last –

accomplishes exactly the changes we want. To test for the cells which need to be updated, we take

the bottom two bits of the pixel colour (by anding with 3), and then find the remainder when this

number is divided by 3. If the two bits are the same, then they make either 0 or 3 (00 or 11 in binary),

hence zero remainder. If the two bits are different, we get a remainder of either 1 or 2, so we know

that the current colour cannot be black or white; hence updating is needed. Having completed all

these updates, we will be ready to start again on the next generation, and by putting the whole thing

within a continuous loop (e.g. “while ?key<>\escape do”, which will keep going until the ESCAPE key

is pressed), we finish our implementation of the Game of Life.

10

6. Investigating One-Dimensional Cellular Automata

The simplest cellular automata have two possible states per cell (like the Game of Life) but are only

one-dimensional, meaning that all the activity takes place along a single line. Though simple, however,

this brings a new element of interest for us, because it enables us to picture what happens through

the generations, by showing them on successive lines of the canvas. As usual, we’ll fix the states of

the first generation of cells (along the top line of the canvas) randomly.

 Suppose we consider the states as 0 and 1 – showing as white and black respectively (though

we’ll use the visually indistinguishable #FFFFFE for white and #000001 for black, so that the bottom

bit of each colour code yields 0 and 1 respectively). If we take the neighbourhood of each cell to

consist of itself and the two adjacent cells, then there are eight possibilities for each neighbourhood:

 111 110 101 100 011 010 001 000

Depending on the nature of our automaton’s transition rule – which is assumed to be deterministic

(i.e. not chancy) – each of these possibilities will lead to one of two specific outcomes in the next

generation, making the cell in question (i.e. the middle one of the three) either 0 or 1. For example,

our rule might specify the following transitions for the eight possible neighbourhood situations:

 111 110 101 100 011 010 001 000

(R) 0 1 1 0 1 1 1 0

Suppose we apply this rule to a first line that has randomly turned out like this:

1 1 1 0 1 0 0 0 1 1 0

The rule depends on 3-cell neighbourhoods, but the two end cells don’t have such a neighbourhood

(because they have only one neighbour); hence we imagine the line “wrapping around” so that the

“0” at the right-hand end is considered as adjacent (on the left) to the “1” at the left-hand end:

0 1 1 1 0 1 0 0 0 1 1 0 1

Then the result for each of the cells, derived by examining its 3-cell neighbourhood and consulting the

relevant part of the rule, will be:

1 0 1 1 1 0 0 1 1 1 1

Thus in the first cell, we see “011” leading to “1”; in the second, we see “111” leading to “0”; in the

third, we see “110” leading to “1”; in the fourth, we see “”101” leading to “1”, and so on.

 Of course this is only one possible transition rule, and since there are two possible transitions

for each of eight possible neighbourhood situations, it follows that there are 28 – i.e. 256 – possible

rules altogether. Specifying these rules is very simple, because each transition is to either “0” or “1”,

so each such choice can be treated as a binary digit, giving us rules numbered from “0000000” (zero)

to “11111111” (255 in decimal). And we can see from (R) above that by this method, the illustrated

rule is number “01101110” in binary, or 110 in decimal.

11

 The example program “Automata” (from numbered link

4.6 at https://www.turtle.ox.ac.uk/csac, and pictured here

having processed rule 110) counts through an interesting subset

of these 256 rules, and it can easily be modified to count through

all of them. The setup procedure takes this numeric rulecode as

a parameter, and identifies each of its binary digits in turn (by

finding the remainder on division by 2, then executing rounded-

down integer division by 2 and continuing). Each of these digits

is stored in the nextstate array, so nextstate[5], for example, will

then specify the required transition for the neighbourhood

“101” (which is 5 in binary).

 The main program begins by defining the canvas and resolution dimensions as width×height in

the usual way, and putting appropriate colour codes (#FFFFFE and #1 respectively) into the array

elements cellcol[0] and cellcol[1], so that the binary digit resulting from any transition can easily be

translated into a pixel colour. Then comes a for loop which sets the variable n counting from 4 to 45,

while in turn rule is made equal to (4n+2), so that rule counts from 18 up to 182 in steps of 4 (these

numbers just happen to give an interesting subset of rules). Each time round the loop, the canvas is

cleared to white, and the cells in the top line – generation 0 – are filled randomly with either cellcol[0]

or cellcol[1]. The rest is then filled in by repeated calls of the nextgen procedure, implementing the

generations from 1 to the bottom of the canvas (so the number of the final generation is height-1).

 Procedure nextgen takes the generation number, g, as a parameter, and counts through the

pixels on canvas row g-1 (i.e. the parent row), working out which transitions should be applied to

create the pixels on row g. Although the parent pixels are indexed horizontally from 0 to width-1, this

count is extended at each end, going from -1 to width, to capture all the 3-cell neighbourhoods using

the remainder operator mod in something like the now familiar way:

for x:=-1 to width do

 begin

 xmod:=(x+width) mod width;

 thispix:=pixcol(xmod,g-1) and 1;

 n3:=n2*2+thispix;

 n2:=n1*2+thispix;

 n1:=thispix;

 if x>0 then

 pixset(x-1,g,cellcol[nextstate[n3]])

 end

At the extremes, when x is -1, xmod will be (width-1), and when x is width, xmod will be 0; in all other

cases, x and xmod are equal. This means that as x counts from -1 to width, xmod will count from

(width-1) to 0, wrapping round from the right-hand edge of the canvas to the left, and thus including

the full neighbourhood of both extreme cells. As this count proceeds, thispix becomes either 0 or 1,

depending on the pixel value of the relevant cell (with “and 1” ensuring that we take only the last

binary digit – as we saw with the Game of Life, “mod 2” would have exactly the same effect). Then,

treating the next three lines in reverse, n1 is made equal to thispix, n2 is made equal to thispix plus

twice the previous value of n1, and n3 is made equal to thispix plus twice the previous value of n2. So

after we have gone round this loop three times – and using p[n] here to signify the value (i.e. 0 or 1)

of the nth pixel on row (g-1) – these variables will be set as follows:

https://www.turtle.ox.ac.uk/csac

12

 x: 1 n1: p[1] n2: p[0]×2 + p[1] n3: p[width-1]×4 + p[0]×2 + p[1]

Thus n3 will now have a value which, in binary, reflects the neighbourhood of cell 0 in generation (g-1).

And so to apply the necessary transition rule, we make the next-generation cell at (0, g) equal to

nextstate[n3], and set the corresponding pixel colour to cellcolour[nextstate[n3]]. Meanwhile, n2 and

n1 are primed to go round the loop again, so as to recalculate n3 to give the neighbourhood of cell 1

next time (when x=2), and so on all the way to cell (width-1), whose neighbourhood transition will be

applied when x finally reaches width (at which point xmod will have wrapped round to 0).

 Following the calculation of the remaining generations, the program ends by displaying the rule

number, at the bottom left of the canvas:

setxy(0,height-15);

box(25+length(str(rule))*7,14,cream,false);

print('Rule '+str(rule),4,8);

This first moves the turtle to location (0,85), assuming the height is 100. Then it draws a cream-

coloured “box” (without a border), whose height is 14 pixels and whose width is:

 25+length(str(rule))*7.

Depending on whether the rule number has 1, 2 or 3 digits, this gives a box width of 32, 39, or 46

respectively. Then we print “Rule 110” (or whatever) in Turtle font number 4 (Comic Sans) and size 8.

As can be seen in the image of rule 18 below, this gives as neat a finish with a two-digit number as we

saw before with three.

7. Cellular Automata, Patterns in Nature, and Alan Turing

If we compare the pattern produced by rule 18 with the pattern

on the shell of a Conus textile sea snail (both are pictured here),

one cannot but be struck by their amazing similarity. This seems

unlikely to be coincidence, especially when we consider that the

snail’s shell has been built up through growth along the line of

its edge, so that its pattern is the result of a sequence of lines

generated through time, just like our cellular automaton

patterns.

 In 1952, Alan Turing published a paper on “The Chemical

Basis of Morphogenesis”, in which he hypothesised a

“reaction/diffusion” process for the creation of biological

patterns such as on the coats of zebras and leopards. In

recent years, this theory has inspired cellular automaton

models that work in a functionally similar way, and the use

of such models to investigate the formation of patterns in

nature has become a significant area of fascinating

research.

