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0. Quantum computation

A classical computer as a device that operates on states built
from a finite number of bits, i.e. the state of a classical computer
is an element of Bn := {0, 1}n.
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In contrast, a quantum computer works with a set of Qubits or

normalized vectors |ψ〉 ∈ C2 (read “ket-ψ”) i.e.,

|ψ〉 =
∑

i∈B

αi|i〉;
∑

i∈B

|αi|
2 = 1.

where {|0〉, |1〉} is an orthornormal basis called the
computational basis of the state space C2.
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Now, a system of n qubit is a state in C2 ⊗ ...⊗ C2 = (C2)⊗n i.e.,

a vector

|ψ〉 =
∑

x∈Bn

cx|x〉; with
∑

x∈Bn

|cx|
2 = 1.
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While in the classical case, transformations between states are
functions B

n → B
n. In the quantum case they are unitary

transformations U : (C2)⊗n → (C2)⊗n.
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Finally, if a state |ψ〉 = α0|0〉 + α1|1〉 ∈ C2 is measured, the

probability of observing |i〉 ∈ {|0〉, |1〉} is given by

|αi|
2 = |〈ψ|i〉|2 = 〈ψ|i〉〈i|ψ〉 = 〈ψ|Pi|ψ〉

where

P0 :=





1 0

0 0



 andP1 :=





0 0

0 1




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Now, as we will see later, quantum computing with anyons gives
us access only to a finite set of unitary transformation one can
apply on the system. Even in a ‘regular’ (or rather, non-anyonic)
implementation of a quantum computer, we may not have
access to all unitary transformation in the first place but only to a
finite set of them.
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A set of unitary transformations is said to be universal if any
unitary transformation can be ‘simulated’ as a finite sequence of
transformations from that set. Universal sets can be either
‘exact’ if we can simulate exactly any unitary transformation or
‘approximated’ ortherwise.
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Theorem: The set of all 1-qubit transformations 2 × 2 unitaries with

the controlled-NOT i.e.,















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















is exact universal.
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Now, the set of all 2 × 2 unitary transformations is an infinite set
and, when working of anyons, we have access to only a finite
number of transformations so we need to clarify the notion of
‘approximated universal set’.
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Definition: We say that a transformation V approximate U to

accuracy ǫ if ‖ (U − V )|ψ〉 ‖< ǫ for all |ψ〉.

By the Solovay-Kitaev theorem, we know that if a finite

G ⊂ SU(2) containing its inverse and such that the set generated

by G is dense in SU(2), then any 1-qubit transformation

U ∼ gn ◦ ... ◦ g1; gi ∈ G

up to ǫ with n reasonably small.

From which such a set G together with controlled-NOT is
approximately universal.
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1. Anyons

What happens when we exchange 2 undistinguishable particle in

3 dimensions?

Depending wether these two particles are bosons or fermions

we have:

|ψ1ψ2〉 = ±|ψ2ψ1〉.

Note that in both cases, two successive exchanges lead to the
identity.
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Thinking in terms of paths, two particles moving from some initial

configuration to some final configuration leads to two different

scenarios:

Direct Exchange
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Considering the motion of one of these particle relative to the

other and that the initial position is equal to the final position for

both particles, these two classes of paths can be represented as

Direct Exchange

q

−q

From this, we can see that a double exchange yields a path that
can be contracted to the direct – or trivial – path.
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What occurs in 2 dimensions? Let us consider the following

three classes of paths:

Direct Exchange

time time

2 exchanges

time
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Again, we can pass to the motion of one of the two particles

relative to the other:

Direct Exchange

q

−q

2 exchanges

Frow which, we see that there are no way (in general) to contract
the path resulting from an exchange to the trivial path.
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After some tedious calculations using path integrals, one can

verify that for such quasi-particles living in 2 dimensions,

|ψ1ψ2〉 = eiθ|ψ2ψ1〉; θ ∈ [0, 2π).

As the eiθ can take ‘any’ value, such quasi-particles are called
‘any’ons.
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The movement on anyons in 2+1 dimensions is encoded by the

braid group which can be described by giving generators which

obey the following equations:

bibj = bjbi for |i− j| ≥ 2 (1)

bibi+1bi = bi+1bibi+1 for 1 ≤ i ≤ n− 1. (2)
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or, pictorially:

=

i i + 1 j j + 1

...... ...

i i + 1 j j + 1

...... ...

and

=

i i + 1

... ...

i + 2i i + 1

... ...

i + 2

– p. 20/60



Another important point to make about anyons is that these

quasi-particle arise as collective excitations of other particles. If

we let them get close enough together, these anyons will fuse

into another anyon.

Now, what particular algebraical structure do we need in order to
describe (a system of) such quasi-particles?
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2. Modular tensor categories in a nutshell

• First, we need a system of labels, or types, that will

represent the charges of our anyons.

• We also need a way to express a compound system of

anyons. This will be expressed by a monoidal (tensor)

structure with the trivial charge as the tensor unit.

Importantly, this category is not strict monoidal in general.

This is physically important because, for instance, the

bracketing of a compound system of charges will indicate in

which order fusions occur.
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• The worldlines of a system of anyons is described by

representations of the braid group. We will require that our

monoidal category has a braid structure as opposed to

being symmetric

• We need a way to express the notion of conjugate charge

i.e. for a given charge A, its conjugate charge A∗ is the

unique charge that can fuse with A to yield the trivial charge.

The structure that captures these notions is called a rigid

structure.
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• The fact that the objects we are looking at are extended

objects – flux tubes – means that, in general, representing

their movements graphically with strands in 2 + 1

dimensions is not enough; the correct graphical

representation is realised by using ribbons, which can be

twisted, instead of strands. The algebraic axiomatization of

this has been given – long before mathematicians were

aware of anyons – and is called a ribbon structure on our

category.
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• A formal way to express the fusion rules and to map all the

preceding algebraic formalism into the context of Hilbert

space is taken care via a semisimple structure compatible

with all the preceding structures.
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In particular, semisimplicity captures the following ideas:

- The charge of an anyon is elementary i.e., it cannot be

decomposed into other elementary entities. In categorical

terms, the charge of an anyons has no other subobject than

0 and itself.

- The set of endomorphisms of a charge (a simple object) is

isomorphic to the complex field.

Finally, this structure entails that given two different simple
charges S1 and S2, Hom(S1, S2) = {0}.
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• Finally, we consider a special class of semisimple ribbon

categories called modular tensor categories. Such

categories prohibit an infinite number of possible charges for

an anyon of a given theory. Moreover, its defining conditions

ensure that the braids are not degenerate.
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A category with all these structures is called a semi-simple
modular tensor categories and is fairly long to define in details.
I’ll skip the details and go straight to the simplest example of
such a category in order to describe how to do quantum
computation with anyons.
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3. Quantum computing with Fibonacci anyons

Our intended model to illustrate quantum computation with
anyons is the formal semisimple modular tensor category Fib

which captures the rules of Fibonacci anyons.
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These rules are given as follows:

• Fibonacci anyons have only two charges: 1 and τ , where 1

is the trivial charge,

• Both are their own anti-charge i.e., τ∗ = τ and 1
∗ = 1,

• They satisfies the following fusion rules:

1⊗ 1 ≃ 1

1⊗ τ ≃ τ ⊗ 1 ≃ τ

τ ⊗ τ ≃ 1 ⊕ τ
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Let us inspect the fusion rules. While the two first trivially hold,

the third one:

τ ⊗ τ ≃ 1 ⊕ τ

says that the charge resulting from the fusion of two anyons of
charge τ is either 1 or τ .
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Now, back to our model, consider three anyons of charge τ all

lined up (τ ⊗ τ) ⊗ τ and let them fuse in the order fixed by the

bracketing. Such a process is algebraically described by:

(τ ⊗ τ) ⊗ τ ≃ (1⊕ τ) ⊗ τ

≃ (1⊗ τ) ⊕ (τ ⊗ τ)

≃ τ ⊕ (1 ⊕ τ)

≃ 1⊕ 2 · τ.

Hence, the fusion process for three τ anyons yields a final
charge τ in 2 different ways or 1 in a single way.
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These three scenarios depict as

τ τ τ

τ
τ

or or

τ τ τ

1

τ

τ τ τ

τ
1
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We now pass to the context of finite-dimensional complex vector
spaces via the splitting spaces. Consider

Hom(b, (τ ⊗ τ) ⊗ τ) ≃ Hom(b,1 ⊕ 2 · τ)

≃ Hom(b,1) ⊕ Hom(b, 2 · τ) and as 2 · τ := τ ⊕ τ,

≃ Hom(b,1) ⊕ 2 · Hom(b, τ).

Now, since for different charges S1 and S2 we have
Hom(S1, S2) = {0} and since for any S ∈ {1, τ}, End(S) ≃ C; if
we set S = 1, then the last expression is isomorphic to C ⊕ 2 · 0.
Conversely if S = τ , then it is isomorphic to 0 ⊕ 2 · C.
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From this, we conclude that considering the space of states with

global charge S ∈ {1, τ} is the same as considering

Hom(S, (τ ⊗ τ) ⊗ τ).

In its turn, such a consideration fixes either of the splitting
spaces C or 2 · C := C2 as orthogonal subspaces of C3, the
topological space representing our triple of anyons.
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It is within the two-dimensional complex vector space (i.e. with
S = τ as global charge) that we will simulate our qubit. Indeed,
with this global charge, we are left with two degrees of freedom
which are the two possible outputs of the second splitting. Of
course, such a space is spanned by the two possible scenarios
of the splitting.
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Remark: It is worth stressing that it takes three anyons of charge
τ to simulate a single qubit. Moreover, we shall see later that
braiding these anyons together simulates a unitary
transformation on such a simulated qubit.
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In order to ensure consistency of the model Fib, splitting has to

be associative as expressed categorically via an incarnation of

the pentagon axiom from the monoidal structure.

There are two distinct splitting spaces that can be obtained from
a triple of anyons i.e.: (τ ⊗ τ) ⊗ τ and τ ⊗ (τ ⊗ τ).
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Using splitting diagrams, we have:

=
P

b
(F ST U

W
)ba

S T U

b

W

S T U

a

W

Considering the splitting diagram for fixed a and W as a basis
vector, this is nothing but the matrix expression of F . In order to
obtain a solution for the F -matrix, we need to recast the
pentagon axiom from the monoidal structure in this context in
such a way that we obtain a matrix equation.
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Consider
S T U V

W

S T U V

W

S T U V

W

S T U V

W

S T U V

W

a
b

a

e

d

e

b

c
d

c

=

F
~

F

~F

-

F

+F

S T U V

W

a
b

S T U V

W

e

b

S T U V

W

e

d

S T U V

W

c
d

S T U V

W
a c

==

=
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Now, equating both sides of the diagram yields

(FSTc
W )da(F

aUV
W )cb =

∑

e

(F TUV
d )ce(F

SeV
W )db(F

STU
b )ea. (3)

Solving this in conjunction with a given set of fusion rules yields
the F -matrix. To solve such an equation, one has to fix the
labels for all the possible states in the splitting basis and solve
the resulting system of equations.
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In Fib, for a triple of anyons of charge τ , the trivial charge can

split into such a triple in only one way. In this particular case, the

F -matrix is

F τττ
1 = [1]

as the first splitting must yields τ ⊗ τ .

Conversely, if the initial charge is τ then, the splitting process

can occur in two distinct manners. In order to get the F -matrix,

we must use the previous matrix equation. For instance, a

possible splitting scenario occurs when one fixes a = 1 = c and

d = τ = b. Using this with the matrix equation gives:

(F ττ1
1 )τ1(F 1ττ

1 )1τ =
∑

e∈{1,τ}

(F τττ
τ )1e(F

τeτ
1 )ττ (F

τττ
τ )e1

1 = F 2 + F F .
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Using this, the other consistency relations and the fact that F is

unitary, we find:

F τττ
τ =





F11 F1τ

Fτ1 Fττ



 =





φ−1
√

φ−1

√

φ−1 −φ−1





where φ is the golden ratio.
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Finally, combining the results for F τττ
τ and F τττ

1
yields

F =











1 0 0

0 φ−1
√

φ−1

0
√

φ−1 −φ−1











which is also unitary. The lower-right block induces a change of
basis on the 2-dimensional splitting space while the upper-left
block is the trivial transformation on the one-dimensional splitting
space.
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We now express what will be the consequence of exchanging
two anyons on the splitting space. As such an exchange is
represented categorically by a braiding, this will yield a
representation of the braid group in the splitting space.
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The game here is very similar to the one for the F -matrix except

that we use the hexagon axiom from the braided monoidal

structure instead. The R matrix is described, using splitting

diagrams:

[RST
a ]aa

=

S T U

W

a

ST U

W

a
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We already have the F -matrix thus, the hexagon needs to be

solved only for the R-matrix. Recasted with splitting diagrams,

the hexagon axiom from the braided structure becomes:

S T U

W

a

F F

R

F
R

S T U

W
b

ST U

W

ST U

W
c

ST U

W
b

R

ST U

W
c

a
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Writing it as a matrix equation yields

RSU
c (F TSU

W )caR
ST
a =

∑

b

(F TUS
W )bcR

Sb
W (FSTU

W )ba.

For a triple of anyons with charge τ , explicit calculations of the

R-matrix yields:










−e−2iπ/5 0 0

0 e−4iπ/5 0

0 0 −e−2iπ/5











Such a diagonal form is not surprising: whether the global
charge of a couple is 1 (resp. τ ), it must remain so even if we
exchange the two components of the pair. – p. 48/60



The R-matrix provided in the previous section give us a way to

exchange the two leftmost anyons in a set of three. We now

need a way to find the matrix that exchanges the two rightmost

anyons, this will be the B-matrix and defined as:

B := F−1RF
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Now, we have described a way to initialise a qubit as the
two-dimensional subspace of the topological space of a triple of
anyons and we have both the R- and B-matrices as unitaries
acting on such a subspace. The goal now is to show that this is
enough to describe a universal set of gates.
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The basic idea to simulate quantum computation with anyons is

given by the following steps:

1. Consider a compound system of anyons. We initialise a

state in the splitting space by fixing the charges of subsets

of anyons according to the way they will fuse. This

determines the basis state in which the computation starts.

2. We braid the anyons together, it will induce a unitary action

on the chosen splitting space.

3. Finally, we let the anyons fuse together and the way they

fuse determines which state is measured and this

constitutes the output of our computation.
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In fact, we are lucky. The set of R- and B-matrices and their
inverses (the representation of the inverse braiding) is dense in
SU(2) thus satisfies the condition of Sovolay-Kitaev theorem.
Thus, to get an approximate universal set of gates, it just
remains to construct a controlled-NOT gate. We will do so by
following the works of Bonesteel et al.
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The idea is relatively simple: We start with two triplets of anyons.
We need to intertwine a pair of quasi-particles from the first
triplet – the control pair – with the target triplet without disturbing
it ; as the braid operators are dense in SU(2), we will arrange
such an intertwining so that its representation in SU(2) is close
enough to the identity. The next thing is to implement a NOT –
actually a i ·NOT – by braiding our two anyons of the control
pair with those of the target triple. Finally, we extract the control
pair from the second triplet – again – without disturbing it.
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The key point is the following: a braiding involving the trivial
charge 1 with an anyon of arbitrary charge does not change
anything. Thus, when measuring the control pair, the i ·NOT

will occur if and only if the two anyons from the control pair fuse
as an anyon of charge τ ; otherwise the control pair only induces
a trivial change on the system.
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Consider the following braiding:

As an action on the splitting space of the three anyons involved,
this is, in the same order as depicted in the picture:

B3R−2B−4R2B4R2B−2R−2B−4R−4B−2R4B2R−2B2R2B−2R3 ∼

0

B

B

@

1 0 0

0 1 0

0 0 1

1

C

C

A

This tells us how the given braid insert an anyon within a triplet
without disturbing it.
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In fact, this stresses the distinction between the dynamics of the
anyons and the consequences on the splitting space. Indeed,
even if we disturbed the initial configuration of anyons via
multiple braidings, the effect on the splitting space is
approximately the identity.
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Now, we implement an i ·NOT as the following braid:

The unitary acting on the splitting space of the initial triple is
given by:

R−2B−4R4B−2R2B2R−2B4R−2B4R2B−4R2B−2R2B−2R−2 ∼

0

B

B

@

0 i 0

i 0 0

0 0 1

1

C

C

A

This combination of braids tells us how to implements a i ·NOT

gate on the two dimensional fusion space of our triple of anyons.
Again, this gate is approximated.

– p. 57/60



Finally, the i ·CNOT gate acting on two topological qubits is

realised as follows:

insert NOT extract

Note that instead of inserting 1 anyon, we insert a couple that
will be used as a test couple.
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We claim that this implements a CNOT. Indeed, the test couple

can fuse in two ways. If it fuse as 1, then nothing happens as 1

is the trivial charge. If it fuse as τ , then we effectively apply the

i · NOT gate.

Thus, this indeed implements a controlled-NOT which, together
with our four braiding operations define an approximate universal
set of transformations.
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In conclusion, using a set of anyons we can:

• Simulate a qubit,

• Approximate any unitary tranformation on a set of qubits and

• Measure the system using fusion,

from which we can simulate quantum computation with anyons.
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