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...

• only one (k − 1)-cell

So the first non-trivial dimension is k.
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objects – trivial

morphisms . objects
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1. Degeneracy

We have coherence cells for interchange:

. .��FF//
��

��
. .��FF//

��

��
∼=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) ∼= (a⊗1 c)⊗0 (b⊗1 d).

We have analogous coherence cells for all dimensions, with
axioms.

This is called k-tuply monoidal.
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2. The Eckmann-Hilton argument

Let A be a set with two binary operations ∗ and ◦ such
that

1. ∗ and ◦ are unital with the same unit

2. ∗ and ◦ distribute over each other

i.e. ∀a, b, c, d ∈ A

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

Then ∗ and ◦ are in fact equal and this operation is
commutative.
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1. Degeneracy

In a bicategory we have the interchange laws:

. .��FF//
��

��
. .��FF//

��

��
=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) = (a⊗1 c)⊗0 (b⊗1 d).

This is exactly the condition needed for the
Eckmann-Hilton argument

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).
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2. The Eckmann-Hilton argument

Increasing dimensions: tricategories

We use a categorified Eckmann-Hilton argument:

Let C be a category with monoidal structures ⊗0 and ⊗1

such that

1. ⊗0 and ⊗1 have the same unit, and

2. there are coherent interchange isomorphisms

(a⊗0 b)⊗1 (c⊗ d)
∼=−→ (a⊗1 c)⊗0 (b⊗1 d).

Then ⊗0 and ⊗1 are isomorphic and we have coherent
isomorphisms

a⊗ b
∼=−→ b⊗ a.

—a braiding.
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2. The Eckmann-Hilton argument

Slight problem

Horizontal composition of 2-cells is not strictly unital in a
bicategory.

α 1 = ?
Instead, we have to use the following operation:

α β

−1

This issue gets worse as we increase dimensions.
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2. The Eckmann-Hilton argument

Doubly degenerate tricategories

0-cells
1-cells

}
trivial

2-cells . objects

3-cells . morphisms

composition of 2-cells

1-composition . ⊗
0-composition . not quite a ⊗

Nevertheless, a lengthy calculation shows that a doubly
degenerate tricategory is indeed a braided monoidal
category.

20.
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2. The Eckmann-Hilton argument

In general

• (k − 1)-composition becomes a ⊗, but

• i-composition gets further and further from really
being a ⊗ as i decreases to 0.

Moral

Our slogan was

k-degenerate n-categories
“are”

k-tuply monoidal (n− k)-categories.

but it does take some effort.

24.
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3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell 1x
is precisely a commutative monoid

with a distinguished invertible element.

This comes from coherence constraints:

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . elements

coherence isomorphisms . invertible elements
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3. Inconvenient elements

Coherence constraints giving distinguished
invertible elements

We might expect three such elements: , , .

However

• the associativity pentagon gives us 2 = 3, so = 1,
and

• in any bicategory, I = I , so we have = .

This leaves just one distinguished invertible element: .

Can we fix this using higher morphisms?

26.
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3. Inconvenient elements

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

F : X −→ Y

is precisely a monoid homomorphism

together with a distinguished invertible element in Y .

We have coherence isomorphisms for weak functoriality

φII : FI ◦ FI ⇒ F (I ◦ I)

φx : I ⇒ FI

The axioms eliminate one of them.

27.
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3. Inconvenient elements

A weak transformation F ⇒ G

X Y

F

��

G

??��

is the assertion F = G.

A modification “from the assertion F = G to itself”

X Y

F

��

G

AA
�% y�

_*4

is a distinguished element in Y .

28.
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3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.
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3. Inconvenient elements
set category 2-category 3-category · · ·

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat. · · ·
≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with

only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon. · · ·
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon. sylleptic mon. · · ·
category 2-category 3-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 2-cell only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric mon. *** mon. · · ·
2-category 3-category

≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with ≡ 7-cat. with
only one 3-cell only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′ symmetric mon. · · ·
3-category

...
...

...
...
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3. Inconvenient elements

In general

• The issue of distinguished elements affects
k-degenerate n-categories for all k ≥ 2.

• The issue goes away for non-algebraic definitions i.e.
when coherence constraints are not specified.

However there are still other problems.

32.
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4. Higher morphisms

Degenerate bicategories

• A bicategory with only one 0-cell is a monoidal
category.

• A weak functor between such is a monoidal functor.

• A weak transformation between such is quite different
from a monoidal transformation.

33.
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4. Higher morphisms

A weak transformation of degenerate bicategories

X Y

F

��

G

??α
��

is an object α ∈ Y together with

for all A ∈ Y a morphism

αA : GA⊗ α −→ α⊗ FA

satisfying axioms.

This is very different from a monoidal transformation,

which has for all A ∈ Y a morphism

αA : FA −→ GA.
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4. Higher morphisms

Can we fix this?

• Modifications don’t help.

• Restrict to α = I and lax transformations?
—not closed under composition.

• Construct closure under composition?
—this doesn’t work (technical).

• Icons? (Lack)
—this works, but it isn’t a restriction of Bicat.
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4. Higher morphisms

We should probably proceed in two separate stages:

k-degenerate n-categories

��

k-tuply monoidal n-categories

��

Periodic Table

Moral so far:

The second step is more precise than the first.

36.
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5. Stabilisation

set category 2-category 3-category · · ·

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat. · · ·
≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with

only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon. · · ·
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon. sylleptic mon. · · ·
category 2-category 3-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 2-cell only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric mon. *** mon. · · ·
2-category 3-category

≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with ≡ 7-cat. with
only one 3-cell only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′ symmetric mon. · · ·
3-category

...
...

...
...
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5. Stabilisation

Idea

There’s a limit to how many monoidal structures we can fit
on an n-category:

n+ 2.

adding a monoidal structure

��

making existing monoidal structure more symmetric

Eventually it becomes maximally symmetric

—we get symmetric monoidal n-categories.

38.
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5. Stabilisation

Extended TQFT Hypothesis (Baez-Dolan)

The n-category of which n-dimensional extended TQFTs
are representations is the free stable weak n-category with
duals on one object.

40.
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6. Other reasons to care

• If we start with an n-category and restrict to a single
0-cell, we get a degenerate n-category.

—like a loop space.

• If we restrict to the identity on that 0-cell, we get a
2-degenerate n-category.

—like a double loop space.

There are many more connections with topology.

41.
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6. Other reasons to care

Degenerate n-categories capture the essence of weak
n-categories.

Coherence tells us

• every weak 2-category is 2-equivalent to a
strict 2-category, but

• not every weak 3-category is 3-equivalent to a
strict 3-category.

The obstruction is braidings.

All the difficulties come from having non-trivial morphisms
between identity cells.

42.
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6. Other reasons to care

Slogan

The Periodic Table measures the difference

between weak and strict n-categories.

43.


