The periodic table of *n*-categories

Eugenia Cheng

University of Sheffield 7 January 2009

1. Degeneracy

1. Degeneracy

2. The Eckmann-Hilton argument

- 1. Degeneracy
- 2. The Eckmann-Hilton argument
- 3. Inconvenient elements

- 1. Degeneracy
- 2. The Eckmann-Hilton argument
- 3. Inconvenient elements
- 4. Higher maps

- 1. Degeneracy
- 2. The Eckmann-Hilton argument
- 3. Inconvenient elements
- 4. Higher maps
- 5. Stabilisation

- 1. Degeneracy
- 2. The Eckmann-Hilton argument
- 3. Inconvenient elements
- 4. Higher maps
- 5. Stabilisation
- 6. Other reasons to care

• J. Baez and J. Dolan. Higher-dimensional algebra and topological quantum field theory.

• J. Baez and J. Dolan. Higher-dimensional algebra and topological quantum field theory. *Journ. Math. Phys.*, 36:6073–6105, 1995. E-print q-alg/9503002v2.

- J. Baez and J. Dolan. Higher-dimensional algebra and topological quantum field theory. *Journ. Math. Phys.*, 36:6073–6105, 1995. E-print q-alg/9503002v2.
- E. Cheng and N. Gurski. The periodic table of *n*-categories for low dimensions I: degenerate categories and degenerate bicategories.

- J. Baez and J. Dolan. Higher-dimensional algebra and topological quantum field theory. *Journ. Math. Phys.*, 36:6073–6105, 1995. E-print q-alg/9503002v2.
- E. Cheng and N. Gurski. The periodic table of *n*-categories for low dimensions I: degenerate categories and degenerate bicategories. In *Categories in Algebra, Geometry and Mathematical Physics*, proceedings of Streetfest, volume 431 of Contemporary Math., pages 143–164. AMS, 2007. E-print 0708.1178.

- J. Baez and J. Dolan. Higher-dimensional algebra and topological quantum field theory. *Journ. Math. Phys.*, 36:6073–6105, 1995. E-print q-alg/9503002v2.
- E. Cheng and N. Gurski. The periodic table of *n*-categories for low dimensions I: degenerate categories and degenerate bicategories. In *Categories in Algebra, Geometry and Mathematical Physics*, proceedings of Streetfest, volume 431 of Contemporary Math., pages 143–164. AMS, 2007. E-print 0708.1178.
- E. Cheng and N. Gurski. The periodic table of *n*-categories for low dimensions II: degenerate tricategories.

- J. Baez and J. Dolan. Higher-dimensional algebra and topological quantum field theory. *Journ. Math. Phys.*, 36:6073–6105, 1995. E-print q-alg/9503002v2.
- E. Cheng and N. Gurski. The periodic table of *n*-categories for low dimensions I: degenerate categories and degenerate bicategories. In *Categories in Algebra, Geometry and Mathematical Physics*, proceedings of Streetfest, volume 431 of Contemporary Math., pages 143–164. AMS, 2007. E-print 0708.1178.
- E. Cheng and N. Gurski. The periodic table of *n*-categories for low dimensions II: degenerate tricategories. Accepted in *Math. Proc. Cam. Phil. Soc.* E-print 0705.2307.

A k-degenerate n-category is an n-category with:

• only one 0-cell

- only one 0-cell
- only one 1-cell

- only one 0-cell
- only one 1-cell
- only one 2-cell

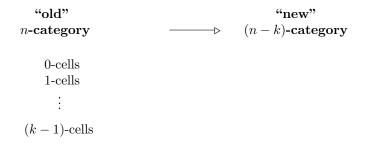
- only one 0-cell
- only one 1-cell
- only one 2-cell :

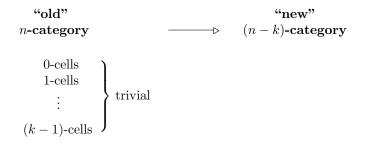
- only one 0-cell
- only one 1-cell
- only one 2-cell :
- only one (k-1)-cell

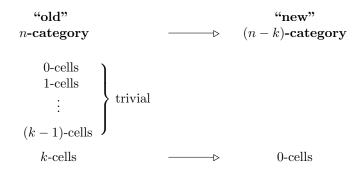
A k-degenerate n-category is an n-category with:

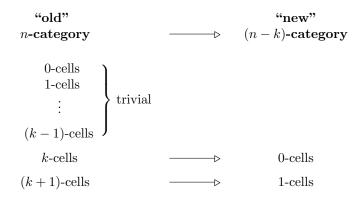
- only one 0-cell
- only one 1-cell
- only one 2-cell
- only one (k-1)-cell

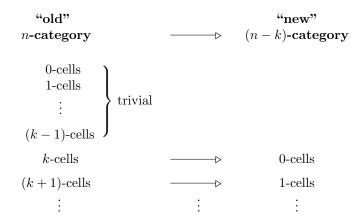
So the first non-trivial dimension is k.

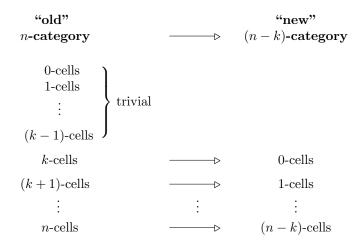

Dimension-shift for k-degenerate n-categories


"old"		"new"
n-category	\longrightarrow	(n-k)-category


0-cells




0-cells 1-cells



Degenerate categories

Degenerate categories

A category with only one object is a monoid.

Degenerate categories

A category with only one object is a monoid.

"old" category

"new" monoid

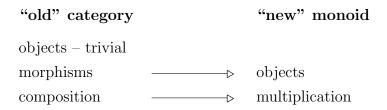
Degenerate categories

A category with only one object is a monoid.

"old" category

"new" monoid

objects – trivial


Degenerate categories

A category with only one object is a monoid.

"old" category "new" monoid objects – trivial morphisms — b objects

Degenerate categories

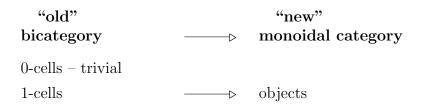
A category with only one object is a monoid.

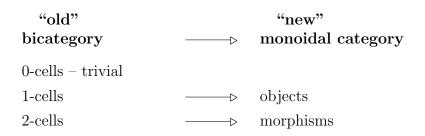
Degenerate categories

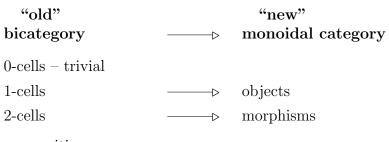
A category with only one object is a monoid.

"old" category		"new" monoid
objects – trivial		
morphisms	\longrightarrow	objects
composition		multiplication
identity	⊳	unit

Degenerate bicategories


Degenerate bicategories


A bicategory with only one object is a monoidal category.


"old" bicategory "new" ──⊳ monoidal category

"old" bicategory "new" —→ monoidal category

0-cells - trivial

 $\operatorname{composition}$

"old" bicategory	⊳	"new" monoidal category
0-cells – trivial		
1-cells	\longrightarrow	objects
2-cells	\longrightarrow	morphisms
composition		
of 1-cells	\longrightarrow	\otimes of objects

"old" bicategory	⊳	"new" monoidal category
0-cells – trivial		
1-cells		objects
2-cells	\longrightarrow	morphisms
composition		
of 1-cells	\longrightarrow	\otimes of objects
of 2-cells (ψ, ψ)	⊳	\otimes of morphisms

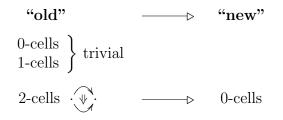
"old" bicategory	>	"new" monoidal category
0-cells – trivial		
1-cells	\longrightarrow	objects
2-cells	\longrightarrow	morphisms
composition		
of 1-cells	\longrightarrow	\otimes of objects
of 2-cells $\cdot \underbrace{\psi} \cdot \underbrace{\psi} \cdot \underbrace{\psi} \cdot$	\longrightarrow	\otimes of morphisms
of 2-cells $\underbrace{\psi}_{\psi}$		composition of morphisms

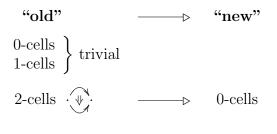
In a k-degenerate n-category:

In a k-degenerate n-category:

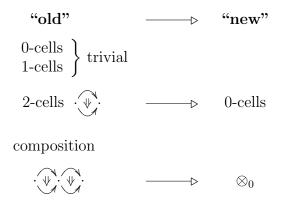
composition of k-cells \longrightarrow \otimes

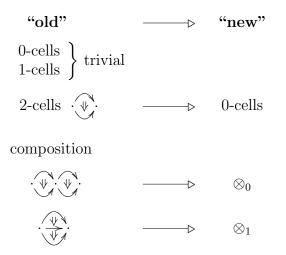
In a k-degenerate n-category:

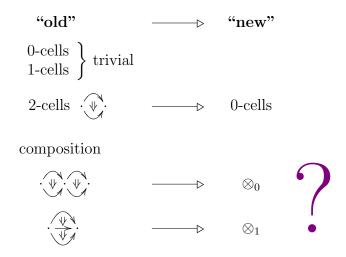

composition of k-cells \longrightarrow \otimes k-different types


In a k-degenerate n-category:

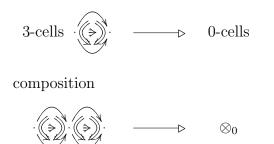
 $\begin{array}{ccc} \mbox{composition of k-cells} & \longrightarrow & \otimes \\ \mbox{k-different types} & & \mbox{k-different types} \end{array}$

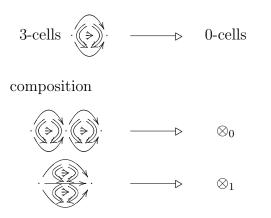


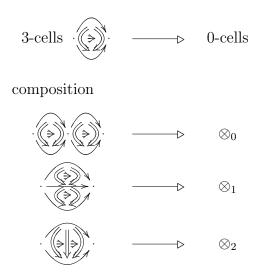




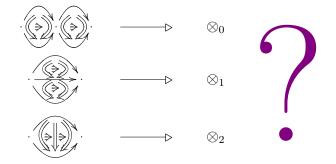
 $\operatorname{composition}$

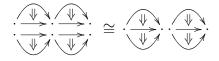




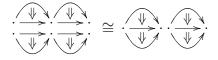


 $\operatorname{composition}$





 $\operatorname{composition}$



We have coherence cells for interchange:

We have coherence cells for interchange:

We have coherence cells for interchange:

becomes

We have coherence cells for interchange:

becomes

$$(a \otimes_0 b) \otimes_1 (c \otimes_0 d) \cong (a \otimes_1 c) \otimes_0 (b \otimes_1 d).$$

We have coherence cells for interchange:

becomes

$$(a \otimes_0 b) \otimes_1 (c \otimes_0 d) \cong (a \otimes_1 c) \otimes_0 (b \otimes_1 d).$$

We have analogous coherence cells for all dimensions, with axioms.

We have coherence cells for interchange:

becomes

$$(a \otimes_0 b) \otimes_1 (c \otimes_0 d) \cong (a \otimes_1 c) \otimes_0 (b \otimes_1 d).$$

We have analogous coherence cells for all dimensions, with axioms.

This is called *k*-tuply monoidal.

Slogan:

Slogan:

k-degenerate n-categories "are" k-tuply monoidal (n - k)-categories.

Slogan:

$k\mbox{-degenerate}\ n\mbox{-categories}$ "are" $k\mbox{-tuply monoidal}\ (n-k)\mbox{-categories}.$

—but this is only part of the point.

set		

set	category	on. symmetric m	on. symmetric mon	

set	category	symmetric mon.	symmetric mon.	
*				

set	category	symmetric mon.	symmetric mon	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$				

set	category	2-category	symmetric mon.	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$				

set	category	2-category	symmetric mon.	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	*			

set	category	2-category	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \text{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$		

set	category	2-category	symmetric mon	
$\begin{array}{c} \text{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \text{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$			
	<u></u>			

set	category	2-category	symmetric mon.	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$			
commutative monoid ≡ 2-cat. with only one 1-cell				

set	category	2-category	3-category	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$			
commutative monoid ≡ 2-cat. with only one 1-cell				

set	category	2-category	3-category	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	*		
commutative monoid ≡ 2-cat. with only one 1-cell				

set	category	2-category	3-category	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. \blacktriangle \equiv 3-category with only one object		
commutative monoid ≡ 2-cat. with only one 1-cell				

set	category	2-category	3-category	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. $ \equiv 3$ -category with only one object		
commutative monoid ≡ 2-cat. with only one 1-cell				

set	category	2-category	3-category	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. $=$ 3-category with only one object		
commutative monoid ≡ 2-cat. with only one 1-cell	braided mon. category ≡ 3-cat. with only one 1-cell			

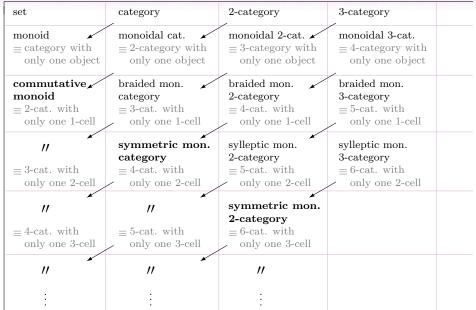
set	category	2-category	3-category	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. $=$ 3-category with only one object		
commutative monoid ≡ 2-cat. with only one 1-cell	braided mon. category \equiv 3-cat. with only one 1-cell			

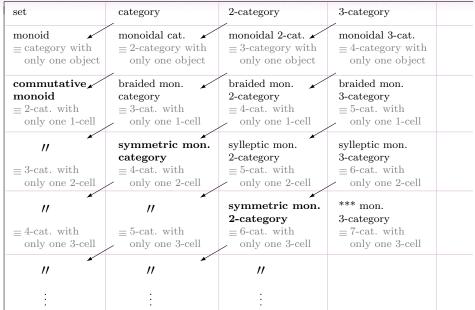
set	category	2-category	3-category	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. \blacktriangle \equiv 3-category with only one object		
commutative monoid ≡ 2-cat. with only one 1-cell	braided mon. category ≡ 3-cat. with only one 1-cell			
$ \begin{array}{c} $				

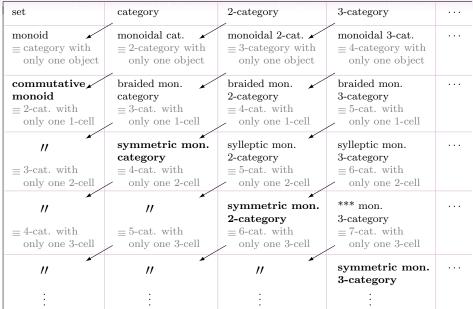
set	category	2-category	3-category	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \text{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. $ \equiv 3$ -category with only one object		
commutative monoid ≡ 2-cat. with only one 1-cell	braided mon. category ≡ 3-cat. with only one 1-cell			
$ \begin{array}{c} $				
$ \begin{array}{c} \label{eq:alpha} \label{eq:alpha} \\ \equiv 4\text{-cat. with} \\ \text{only one 3-cell} \end{array} $				

set	category	2-category	3-category	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \text{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. $ = 3$ -category with only one object		
commutative monoid ≡ 2-cat. with only one 1-cell	braided mon. category ≡ 3-cat. with only one 1-cell			
$ \begin{array}{c} $				
// :				

set	category	2-category	3-category	
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. ▲ ≡ 3-category with only one object		
commutative monoid ≡ 2-cat. with only one 1-cell	braided mon. category ≡ 3-cat. with only one 1-cell			
$ \begin{array}{c} $	symmetric mon. category $\equiv 4$ -cat. with only one 2-cell			
$ \begin{array}{c} \textit{''} \\ \equiv 4\text{-cat. with} \\ \text{only one 3-cell} \end{array} $				
"				


set	category	2-category	3-category
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. \blacksquare \equiv 3-category with only one object	$\begin{array}{l} \text{monoidal 3-cat.} \\ \equiv 4\text{-category with} \\ \text{only one object} \end{array}$
commutative monoid ≡ 2-cat. with only one 1-cell	braided mon. category ≡ 3-cat. with only one 1-cell	braided mon. 2-category ≡ 4-cat. with only one 1-cell	
$ \begin{array}{c} $	symmetric mon. category ≡ 4-cat. with only one 2-cell		
$ \begin{array}{c} \label{eq:linear} \label{eq:linear} \label{eq:linear} \begin{tabular}{l} \label{eq:linear} \label{eq:linear} \\ \label{eq:linear} \label{eq:linear} \end{tabular} \\ \end{tabular} \end{tabular}$			
<i>"</i> :			


set	category	2-category	3-category
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. \blacktriangle \equiv 3-category with only one object	$\begin{array}{l} \textbf{monoidal 3-cat.} \\ \equiv 4\text{-category with} \\ \text{only one object} \end{array}$
commutative monoid ≡ 2-cat. with only one 1-cell	braided mon. category ≡ 3-cat. with only one 1-cell	braided mon. 2-category ≡ 4-cat. with only one 1-cell	
$ \begin{array}{c} $	symmetric mon. category $\equiv 4$ -cat. with only one 2-cell		
$ \begin{array}{c} $	<i>II</i> ≡ 5-cat. with only one 3-cell		
//	//		
:	÷		


set	category	2-category	3-category
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. \blacksquare \equiv 3-category with only one object	$\begin{array}{l} \text{monoidal 3-cat.} \\ \equiv 4\text{-category with} \\ \text{only one object} \end{array}$
commutative monoid ≡ 2-cat. with only one 1-cell	braided mon. category ≡ 3-cat. with only one 1-cell	braided mon. 2-category ≡ 4-cat. with only one 1-cell	
$ \begin{array}{c} $	symmetric mon. category $\equiv 4$ -cat. with only one 2-cell	<pre>sylleptic mon. 2-category ≡ 5-cat. with only one 2-cell</pre>	
$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	<i>II</i> ≡ 5-cat. with only one 3-cell		
//	//		
:	÷		

set	category	2-category	3-category
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \textbf{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. \blacktriangle \equiv 3-category with only one object	$\begin{array}{l} \text{monoidal 3-cat.} \\ \equiv 4\text{-category with} \\ \text{only one object} \end{array}$
commutative monoid ≡ 2-cat. with only one 1-cell	braided mon. category = 3-cat. with only one 1-cell	braided mon. 2-category \equiv 4-cat. with only one 1-cell	braided mon. 3-category ≡ 5-cat. with only one 1-cell
$ \begin{array}{c} $	symmetric mon. category = 4-cat. with only one 2-cell	sylleptic mon. 2-category ≡ 5-cat. with only one 2-cell	
$ \begin{array}{c} $	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
	<i>II</i>		
	:		

set	category	2-category	3-category
$\begin{array}{c} \textbf{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	$\begin{array}{l} \text{monoidal cat.} \\ \equiv 2\text{-category with} \\ \text{only one object} \end{array}$	monoidal 2-cat. \blacksquare \equiv 3-category with only one object	$\begin{array}{l} \text{monoidal 3-cat.} \\ \equiv 4\text{-category with} \\ \text{only one object} \end{array}$
commutative monoid ≡ 2-cat. with only one 1-cell	braided mon. category ≡ 3-cat. with only one 1-cell	braided mon. 2-category \equiv 4-cat. with only one 1-cell	braided mon. 3-category ≡ 5-cat. with only one 1-cell
$ \begin{array}{c} $	symmetric mon. category ≡ 4-cat. with only one 2-cell	sylleptic mon. 2-category ≡ 5-cat. with only one 2-cell	
$ \begin{array}{c} $	" ≡ 5-cat. with only one 3-cell	symmetric mon. 2-category ≡ 6-cat. with only one 3-cell	
11	//	//	
÷	:	:	

Let A be a set with two binary operations \ast and \circ such that

Let A be a set with two binary operations \ast and \circ such that

1. * and \circ are unital with the same unit

Let A be a set with two binary operations \ast and \circ such that

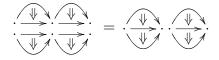
- 1. * and \circ are unital with the same unit
- 2. * and \circ distribute over each other

Let A be a set with two binary operations \ast and \circ such that

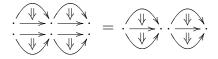
- 1. * and \circ are unital with the same unit
- 2. * and \circ distribute over each other
 - i.e. $\forall a, b, c, d \in A$

Let A be a set with two binary operations \ast and \circ such that

- 1. * and \circ are unital with the same unit
- 2. * and \circ distribute over each other

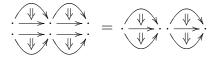

i.e.
$$\forall a, b, c, d \in A$$

$$(a\ast b)\circ (c\ast d)=(a\circ c)\ast (b\circ d).$$


Then \ast and \circ are in fact equal and this operation is commutative.

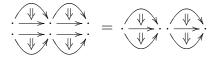
In a bicategory we have the interchange laws:

In a bicategory we have the interchange laws:



In a bicategory we have the interchange laws:

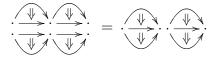
becomes


In a bicategory we have the interchange laws:

becomes

$$(a \otimes_0 b) \otimes_1 (c \otimes_0 d) = (a \otimes_1 c) \otimes_0 (b \otimes_1 d).$$

In a bicategory we have the interchange laws:

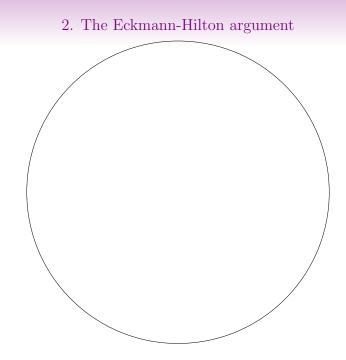


becomes

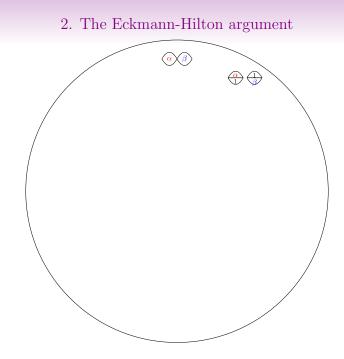
$$(a \otimes_0 b) \otimes_1 (c \otimes_0 d) = (a \otimes_1 c) \otimes_0 (b \otimes_1 d).$$

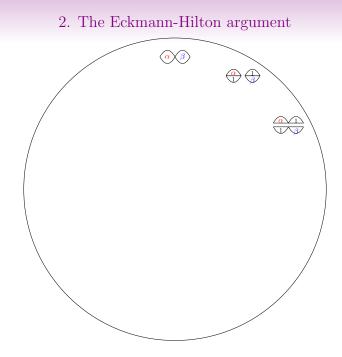
This is exactly the condition needed for the Eckmann-Hilton argument

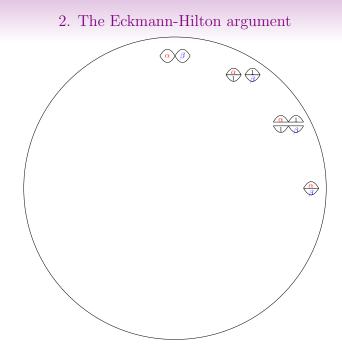
In a bicategory we have the interchange laws:

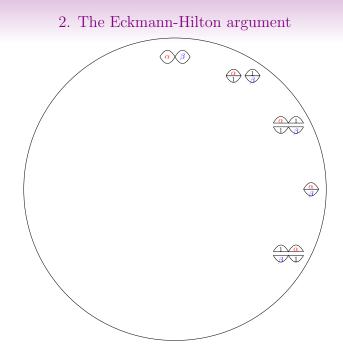


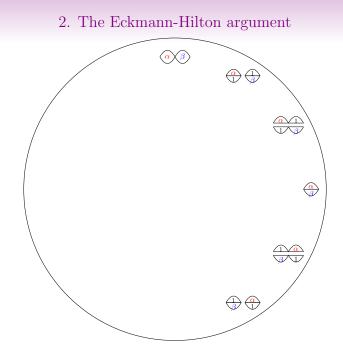
becomes

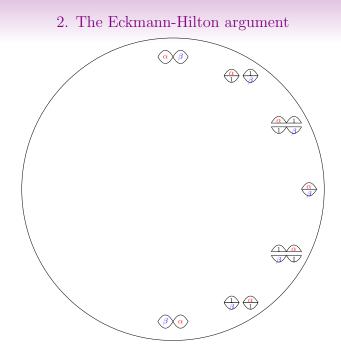

$$(a \otimes_0 b) \otimes_1 (c \otimes_0 d) = (a \otimes_1 c) \otimes_0 (b \otimes_1 d).$$

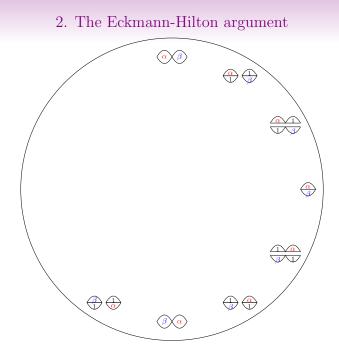

This is exactly the condition needed for the Eckmann-Hilton argument

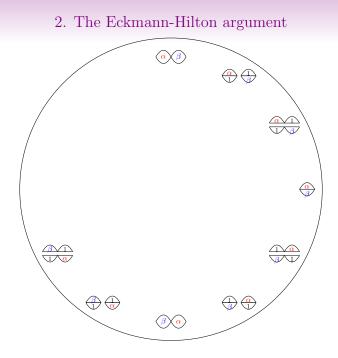

$$(a * b) \circ (c * d) = (a \circ c) * (b \circ d).$$

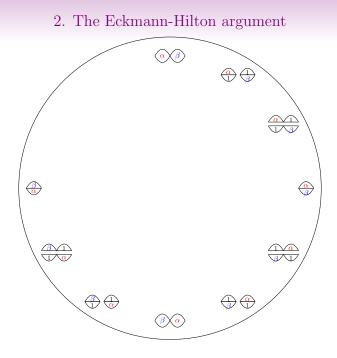


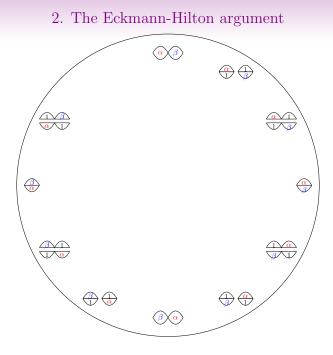


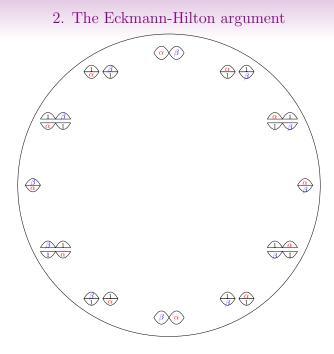


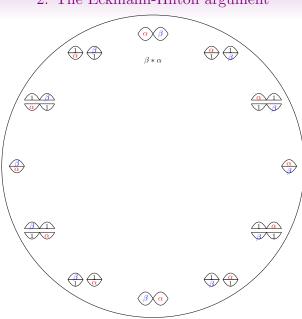


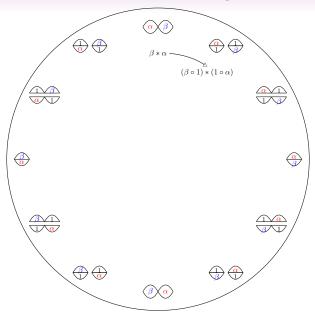


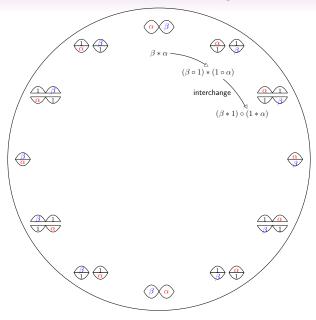


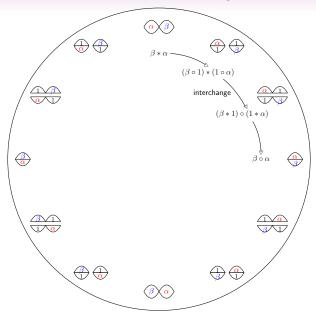


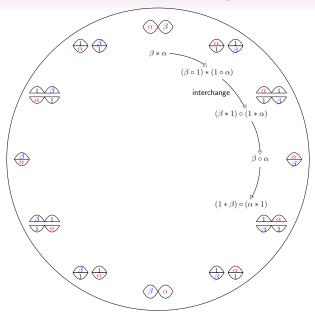


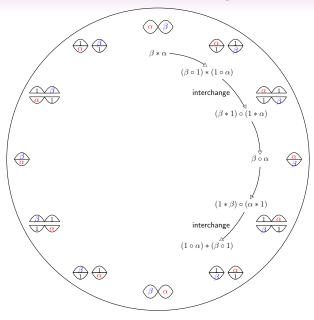


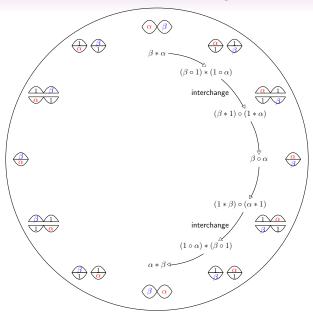


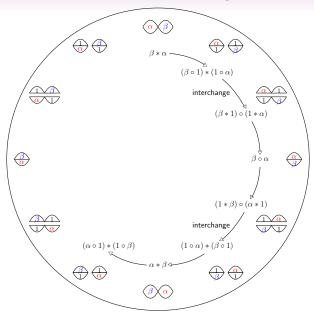


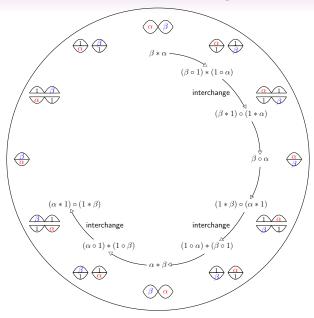


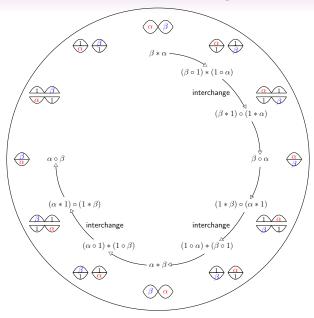


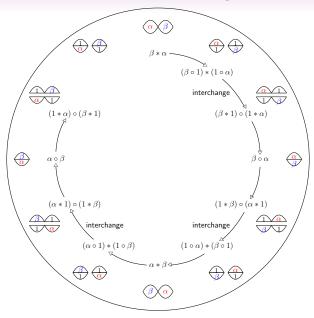

2. The Eckmann-Hilton argument

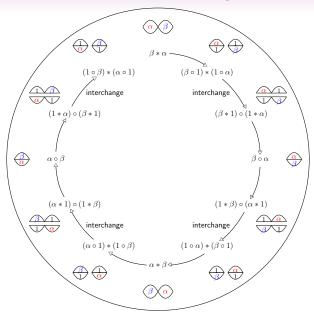


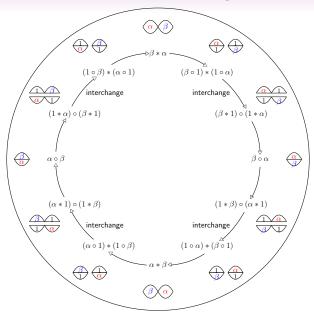












Increasing dimensions: tricategories

We use a categorified Eckmann-Hilton argument:

Increasing dimensions: tricategories

We use a categorified Eckmann-Hilton argument:

Let ${\mathfrak C}$ be a category with monoidal structures \otimes_0 and \otimes_1 such that

Increasing dimensions: tricategories

We use a categorified Eckmann-Hilton argument:

Let ${\mathfrak C}$ be a category with monoidal structures \otimes_0 and \otimes_1 such that

- 1. \otimes_0 and \otimes_1 have the same unit, and
- 2. there are coherent interchange isomorphisms

$$(a \otimes_0 b) \otimes_1 (c \otimes d) \xrightarrow{\cong} (a \otimes_1 c) \otimes_0 (b \otimes_1 d).$$

Increasing dimensions: tricategories

We use a categorified Eckmann-Hilton argument:

Let ${\mathfrak C}$ be a category with monoidal structures \otimes_0 and \otimes_1 such that

- 1. \otimes_0 and \otimes_1 have the same unit, and
- 2. there are coherent interchange isomorphisms

$$(a \otimes_0 b) \otimes_1 (c \otimes d) \xrightarrow{\cong} (a \otimes_1 c) \otimes_0 (b \otimes_1 d).$$

Then \otimes_0 and \otimes_1 are isomorphic and we have coherent isomorphisms

$$a \otimes b \xrightarrow{\cong} b \otimes a.$$

Increasing dimensions: tricategories

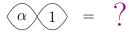
We use a categorified Eckmann-Hilton argument:

Let ${\mathfrak C}$ be a category with monoidal structures \otimes_0 and \otimes_1 such that

- 1. \otimes_0 and \otimes_1 have the same unit, and
- 2. there are coherent interchange isomorphisms

$$(a \otimes_0 b) \otimes_1 (c \otimes d) \xrightarrow{\cong} (a \otimes_1 c) \otimes_0 (b \otimes_1 d).$$

Then \otimes_0 and \otimes_1 are isomorphic and we have coherent isomorphisms


$$a \otimes b \xrightarrow{\cong} b \otimes a.$$

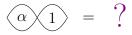
—a braiding.

Slight problem


Slight problem

Horizontal composition of 2-cells is not strictly unital in a bicategory.

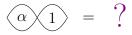
Slight problem


Horizontal composition of 2-cells is not strictly unital in a bicategory.

Instead, we have to use the following operation:

Slight problem

Horizontal composition of 2-cells is not strictly unital in a bicategory.



Instead, we have to use the following operation:

Slight problem

Horizontal composition of 2-cells is not strictly unital in a bicategory.

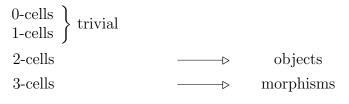
Instead, we have to use the following operation:

This issue gets worse as we increase dimensions.

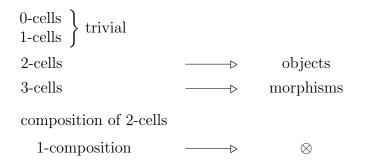
Doubly degenerate tricategories

Doubly degenerate tricategories

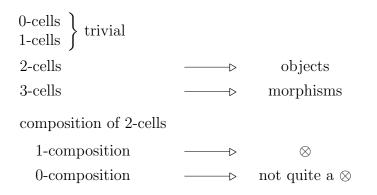
 $\left. \begin{array}{c} \text{0-cells} \\ \text{1-cells} \end{array} \right\} \text{ trivial}$


Doubly degenerate tricategories

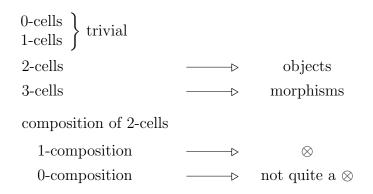
Doubly degenerate tricategories

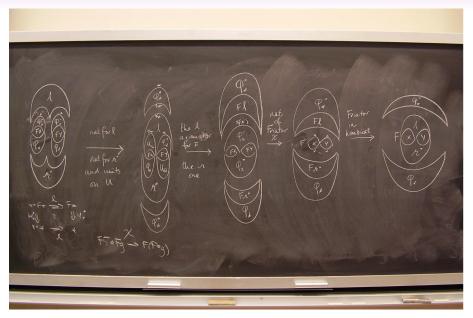


Doubly degenerate tricategories

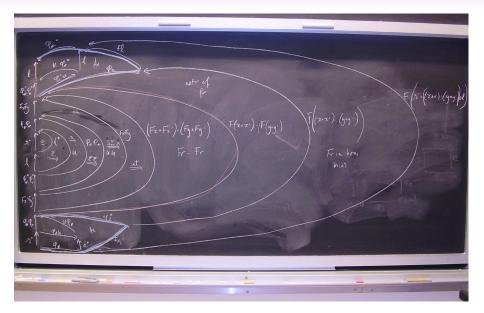


composition of 2-cells


Doubly degenerate tricategories


Doubly degenerate tricategories




Doubly degenerate tricategories

Nevertheless, a lengthy calculation shows that a doubly degenerate tricategory is indeed a braided monoidal category.

In general

In general

• (k-1)-composition becomes a \otimes , but

In general

- (k-1)-composition becomes a \otimes , but
- *i*-composition gets further and further from really being a ⊗ as *i* decreases to 0.

In general

- (k-1)-composition becomes a \otimes , but
- *i*-composition gets further and further from really being a ⊗ as *i* decreases to 0.

Moral

In general

- (k-1)-composition becomes a \otimes , but
- *i*-composition gets further and further from really being a ⊗ as *i* decreases to 0.

Moral

Our slogan was

k-degenerate *n*-categories "are" k-tuply monoidal (n - k)-categories.

In general

- (k-1)-composition becomes a \otimes , but
- *i*-composition gets further and further from really being a \otimes as *i* decreases to 0.

Moral

Our slogan was

```
k-degenerate n-categories
"are"
k-tuply monoidal (n - k)-categories.
```

but it does take some effort.

3. Inconvenient elements

3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell $\mathbf{1}_x$ is precisely a commutative monoid

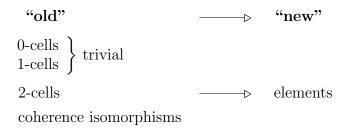
A bicategory with only one 0-cell x and one 1-cell 1_x is precisely a commutative monoid with a distinguished invertible element.

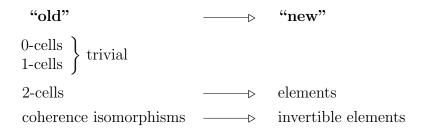
A bicategory with only one 0-cell x and one 1-cell 1_x is precisely a commutative monoid with a distinguished invertible element.

A bicategory with only one 0-cell x and one 1-cell 1_x is precisely a commutative monoid with a distinguished invertible element.

This comes from coherence constraints:

"old" \longrightarrow "new"


A bicategory with only one 0-cell x and one 1-cell 1_x is precisely a commutative monoid with a distinguished invertible element.


A bicategory with only one 0-cell x and one 1-cell 1_x is precisely a commutative monoid with a distinguished invertible element.

A bicategory with only one 0-cell x and one 1-cell 1_x is precisely a commutative monoid with a distinguished invertible element.

A bicategory with only one 0-cell x and one 1-cell 1_x is precisely a commutative monoid with a distinguished invertible element.

3. Inconvenient elements

Coherence constraints giving distinguished invertible elements

We might expect three such elements: $\mathfrak{a}, \mathfrak{l}, \kappa$.

3. Inconvenient elements

Coherence constraints giving distinguished invertible elements

We might expect three such elements: $\mathfrak{a}, \mathfrak{l}, \kappa$. However

Coherence constraints giving distinguished invertible elements

We might expect three such elements: a, λ , κ . However

• the associativity pentagon gives us $a^2 = a^3$, so a = 1, and

Coherence constraints giving distinguished invertible elements

We might expect three such elements: $\mathfrak{a}, \mathfrak{l}, \kappa$. However

- the associativity pentagon gives us $a^2 = a^3$, so a = 1, and
- in any bicategory, $\mathcal{L}_I = \kappa_I$, so we have $\mathcal{L} = \kappa$.

Coherence constraints giving distinguished invertible elements

We might expect three such elements: $\mathfrak{a}, \mathfrak{l}, \kappa$. However

- the associativity pentagon gives us $a^2 = a^3$, so a = 1, and
- in any bicategory, $\mathcal{L}_I = \kappa_I$, so we have $\mathcal{L} = \kappa$.

This leaves just one distinguished invertible element: λ .

Coherence constraints giving distinguished invertible elements

We might expect three such elements: $\mathfrak{a}, \mathfrak{l}, \kappa$. However

- the associativity pentagon gives us $a^2 = a^3$, so a = 1, and
- in any bicategory, $\mathcal{L}_I = \kappa_I$, so we have $\mathcal{L} = \kappa$.

This leaves just one distinguished invertible element: λ .

Can we fix this using higher morphisms?

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

$$F: X \longrightarrow Y$$

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

$$F: X \longrightarrow Y$$

is precisely a monoid homomorphism

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

$$F: X \longrightarrow Y$$

is precisely a monoid homomorphism together with a distinguished invertible element in Y.

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

$$F: X \longrightarrow Y$$

is precisely a monoid homomorphism together with a distinguished invertible element in Y.

We have coherence isomorphisms for weak functoriality

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

$$F: X \longrightarrow Y$$

is precisely a monoid homomorphism together with a distinguished invertible element in Y.

We have coherence isomorphisms for weak functoriality

$$\phi_{II} : FI \circ FI \Rightarrow F(I \circ I)$$

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

$$F: X \longrightarrow Y$$

is precisely a monoid homomorphism together with a distinguished invertible element in Y.

We have coherence isomorphisms for weak functoriality

$$\phi_{II} : FI \circ FI \Rightarrow F(I \circ I) \phi_x : I \Rightarrow FI$$

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

$$F: X \longrightarrow Y$$

is precisely a monoid homomorphism together with a distinguished invertible element in Y.

We have coherence isomorphisms for weak functoriality

$$\phi_{II} : FI \circ FI \Rightarrow F(I \circ I) \phi_x : I \Rightarrow FI$$

The axioms eliminate one of them.

A weak transformation $F \Rightarrow G$

A weak transformation $F \Rightarrow G$

A weak transformation $F \Rightarrow G$

is the assertion F = G.

A weak transformation $F \Rightarrow G$

is the assertion F = G.

A modification "from the assertion F = G to itself"

A weak transformation $F \Rightarrow G$

is the assertion F = G.

A modification "from the assertion F = G to itself"

A weak transformation $F \Rightarrow G$

is the assertion F = G.

A modification "from the assertion F = G to itself"

is a distinguished element in Y.

TOTALITY OF DOUBLY DEGENERATE BICATEGORIES

Totality of doubly degenerate bicategories	structure comparison	

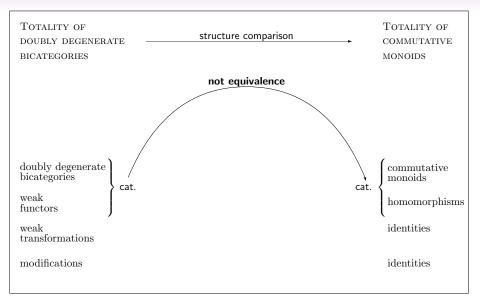
Totality of doubly degenerate — bicategories	structure comparison	Totality of commutative monoids

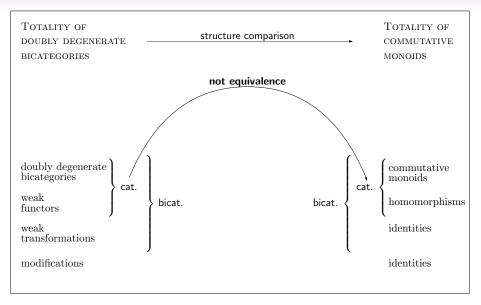
Totality of doubly degenerate bicategories	structure comparison	Totality of commutative monoids
doubly degenerate bicategories		

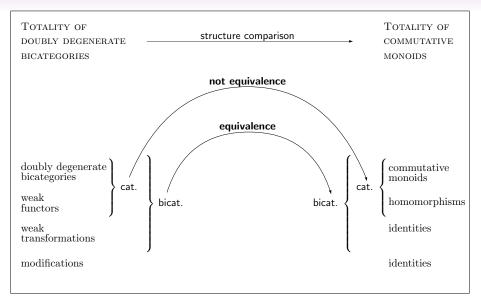
Totality of doubly degenerate bicategories	structure comparison	Totality of commutative monoids
doubly degenerate bicategories weak functors		

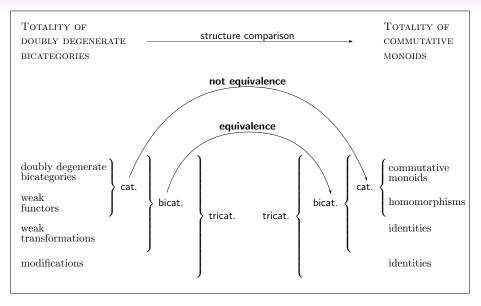
TOTALITY OF DOUBLY DEGENERATE — BICATEGORIES	structure comparison	TOTALITY OF COMMUTATIVE MONOIDS
doubly degenerate bicategories weak functors weak transformations		

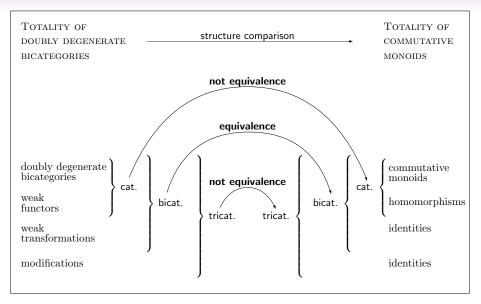
Totality of doubly degenerate bicategories	structure comparison	Totality of commutative monoids
doubly degenerate bicategories		
weak functors		
weak transformations		
modifications		


Totality of doubly degenerate bicategories	structure comparison	Totality of commutative monoids
doubly degenerate bicategories weak functors weak transformations modifications		commutative monoids


Totality of doubly degenerate - bicategories	structure comparison	Totality of commutative monoids
doubly degenerate bicategories		$\operatorname{commutative}_{\operatorname{monoids}}$
weak functors		homomorphisms
weak transformations		
modifications		


Totality of doubly degenerate — bicategories	structure comparison	Totality of commutative monoids
doubly degenerate bicategories		commutative monoids
weak functors		homomorphisms
weak transformations		identities
modifications		


Totality of doubly degenerate ——— bicategories	structure comparison	TOTALITY OF COMMUTATIVE MONOIDS
doubly degenerate bicategories		commutative monoids
weak functors		homomorphisms
weak transformations		identities
modifications		identities


Totality of doubly degenerate —— bicategories	structure comparison	-•	Totality of commutative monoids
doubly degenerate bicategories cat. weak functors weak transformations modifications		cat.	commutative monoids homomorphisms identities identities

set	category	2-category	3-category	
$\begin{array}{c} \begin{array}{c} \text{monoid} \\ \equiv \text{category with} \\ \text{only one object} \end{array}$	monoidal cat. \equiv 2-category with only one object	monoidal 2-cat. \checkmark \equiv 3-category with only one object	monoidal 3-cat. \equiv 4-category with only one object	
commutative monoid	braided mon. category \equiv 3-cat. with only one 1-cell	braided mon. 2-category \equiv 4-cat. with only one 1-cell	braided mon. 3-category $\equiv 5$ -cat. with only one 1-cell	
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	symmetric mon. category $\equiv 4$ -cat. with only one 2-cell	sylleptic mon. 2-category \equiv 5-cat. with only one 2-cell	sylleptic mon. 3-category $\equiv 6$ -cat. with only one 2-cell	
$ \begin{array}{c} $	$ \begin{array}{c} $	symmetric mon. 2-category ≡ 6-cat. with only one 3-cell	*** mon. 3-category \equiv 7-cat. with only one 3-cell	
11	11	11	symmetric mon. 3-category	
	÷		:	

TOTALITY OF TRIPLY DEGENERATE TRICATEGORIES

Totality of triply degenerate tricategories	structure comparison	

Totality of triply degenerate tricategories	structure comparison	Totality of commutative monoids

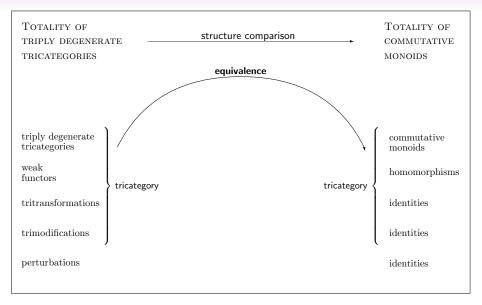
Totality of Triply degenerate Tricategories	structure comparison	Totality of commutative monoids
triply degenerate tricategories		

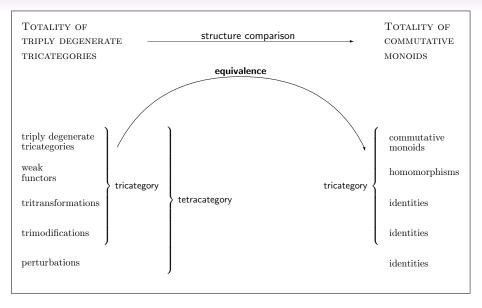
Totality of Triply degenerate ———— Tricategories	structure comparison	Totality of commutative monoids
triply degenerate tricategories weak functors		

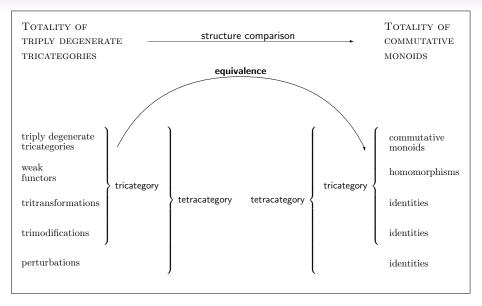
Totality of triply degenerate - tricategories	structure comparison	Totality of commutative monoids
triply degenerate tricategories		
weak functors		
tritransformations		

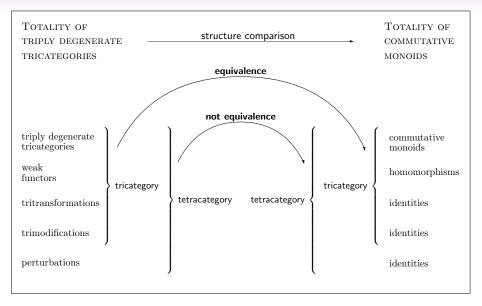
Totality of triply degenerate tricategories	structure comparison	Totality of commutative monoids
triply degenerate tricategories		
weak functors		
tritransformations		
trimodifications		

Totality of triply degenerate tricategories	structure comparison	Totality of commutative monoids
triply degenerate tricategories		
weak functors		
tritransformations		
trimodifications		
perturbations		


Totality of Triply degenerate —— Tricategories	structure comparison	Totality of commutative monoids
triply degenerate tricategories		commutative monoids
weak functors		homomorphisms
tritransformations		identities
trimodifications		identities
perturbations		identities


Totality of triply degenera tricategories	АТЕ	structure comparison	Totality of commutative monoids
triply degenerate tricategories weak functors	> not a category		commutative monoids homomorphisms
tritransformations			identities
trimodifications			identities
perturbations			identities


Totality of triply degenera tricategories	АТЕ ———	structure comparison	Totality of commutative monoids
triply degenerate tricategories weak	> not a bicategory		commutative monoids homomorphisms
functors tritransformations	The a bleategory		identities
trimodifications			identities
perturbations			identities


Totality of triply degener/ tricategories	ATE	structure comparison	Totality of commutative monoids
triply degenerate tricategories			commutative monoids
weak functors	> tricategory		homomorphisms
tritransformations			identities
trimodifications			identities
perturbations			identities

Totality of triply degener/ tricategories	ATE	structure comparison	.	Totality of commutative monoids
triply degenerate tricategories				commutative monoids
weak functors	<pre>> tricategory</pre>		tricategory {	homomorphisms
tritransformations				identities
trimodifications				identities
perturbations				identities

In general

In general

• The issue of distinguished elements affects k-degenerate n-categories for all $k \ge 2$.

In general

- The issue of distinguished elements affects k-degenerate n-categories for all $k \ge 2$.
- The issue goes away for non-algebraic definitions i.e. when coherence constraints are not specified.

In general

- The issue of distinguished elements affects k-degenerate n-categories for all $k \ge 2$.
- The issue goes away for non-algebraic definitions i.e. when coherence constraints are not specified.

However there are still other problems.

Degenerate bicategories

Degenerate bicategories

• A bicategory with only one 0-cell is a monoidal category.

Degenerate bicategories

- A bicategory with only one 0-cell is a monoidal category.
- A weak functor between such is a monoidal functor.

Degenerate bicategories

- A bicategory with only one 0-cell is a monoidal category.
- A weak functor between such is a monoidal functor.
- A weak transformation between such is quite different from a monoidal transformation.

A weak transformation of degenerate bicategories

A weak transformation of degenerate bicategories

is an object $\alpha \in Y$ together with

A weak transformation of degenerate bicategories

is an object $\alpha \in Y$ together with

for all $A \in Y$ a morphism

$$\alpha_A:GA\otimes\alpha\longrightarrow\alpha\otimes FA$$

A weak transformation of degenerate bicategories

is an object $\alpha \in Y$ together with

for all $A \in Y$ a morphism

$$\alpha_A:GA\otimes\alpha\longrightarrow\alpha\otimes FA$$

satisfying axioms.

A weak transformation of degenerate bicategories

is an object $\alpha \in Y$ together with

for all $A \in Y$ a morphism

$$\alpha_A:GA\otimes\alpha\longrightarrow\alpha\otimes FA$$

satisfying axioms.

This is very different from a monoidal transformation,

A weak transformation of degenerate bicategories

is an object $\alpha \in Y$ together with

for all $A \in Y$ a morphism

$$\alpha_A:GA\otimes\alpha\longrightarrow\alpha\otimes FA$$

satisfying axioms.

This is very different from a monoidal transformation, which has for all $A \in Y$ a morphism

$$\alpha_A: FA \longrightarrow GA.$$

Can we fix this?

• Modifications don't help.

- Modifications don't help.
- Restrict to $\alpha = I$ and lax transformations?

- Modifications don't help.
- Restrict to $\alpha = I$ and lax transformations? —not closed under composition.

- Modifications don't help.
- Restrict to $\alpha = I$ and lax transformations? —not closed under composition.
- Construct closure under composition?

Can we fix this?

- Modifications don't help.
- Restrict to $\alpha = I$ and lax transformations? —not closed under composition.
- Construct closure under composition? —this doesn't work (technical).

Can we fix this?

- Modifications don't help.
- Restrict to $\alpha = I$ and lax transformations? —not closed under composition.
- Construct closure under composition? —this doesn't work (technical).
- Icons? (Lack)

Can we fix this?

- Modifications don't help.
- Restrict to $\alpha = I$ and lax transformations? —not closed under composition.
- Construct closure under composition? —this doesn't work (technical).
- Icons? (Lack)

—this works, but it isn't a restriction of **Bicat**.

We should probably proceed in two separate stages:

We should probably proceed in two separate stages:

k-degenerate n-categories

We should probably proceed in two separate stages:

k-degenerate n-categories

We should probably proceed in two separate stages:

k-degenerate n-categories

k-tuply monoidal n-categories

ψ

We should probably proceed in two separate stages:

k-degenerate n-categories

 $k\mbox{-tuply}$ monoidal $n\mbox{-categories}$

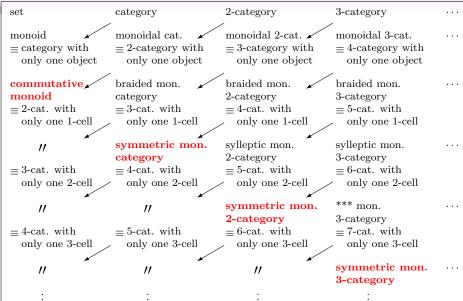
We should probably proceed in two separate stages:

k-degenerate n-categories

k-tuply monoidal *n*-categories

Periodic Table

We should probably proceed in two separate stages:


k-degenerate n-categories

k-tuply monoidal n-categories

Periodic Table

Moral so far:

The second step is more precise than the first.

There's a limit to how many monoidal structures we can fit on an n-category:

There's a limit to how many monoidal structures we can fit on an *n*-category: n + 2.

There's a limit to how many monoidal structures we can fit on an *n*-category: n + 2.

adding a monoidal structure

There's a limit to how many monoidal structures we can fit on an *n*-category: n + 2.

adding a monoidal structure

There's a limit to how many monoidal structures we can fit on an *n*-category: n + 2.

adding a monoidal structure

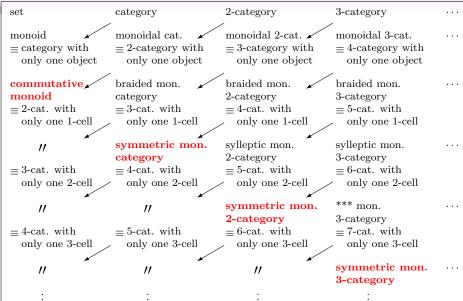
making existing monoidal structure more symmetric

There's a limit to how many monoidal structures we can fit on an *n*-category: n + 2.

adding a monoidal structure

making existing monoidal structure more symmetric

Eventually it becomes maximally symmetric


There's a limit to how many monoidal structures we can fit on an *n*-category: n + 2.

adding a monoidal structure

making existing monoidal structure more symmetric

Eventually it becomes maximally symmetric

—we get symmetric monoidal *n*-categories.

Extended TQFT Hypothesis (Baez-Dolan)

Extended TQFT Hypothesis (Baez-Dolan)

The n-category of which n-dimensional extended TQFTs are representations is the free stable weak n-category with duals on one object.

• If we start with an *n*-category and restrict to a single 0-cell, we get a degenerate *n*-category.

• If we start with an *n*-category and restrict to a single 0-cell, we get a degenerate *n*-category.

—like a loop space.

• If we start with an *n*-category and restrict to a single 0-cell, we get a degenerate *n*-category.

—like a loop space.

• If we restrict to the identity on that 0-cell, we get a 2-degenerate *n*-category.

• If we start with an *n*-category and restrict to a single 0-cell, we get a degenerate *n*-category.

—like a loop space.

• If we restrict to the identity on that 0-cell, we get a 2-degenerate *n*-category.

—like a double loop space.

• If we start with an *n*-category and restrict to a single 0-cell, we get a degenerate *n*-category.

—like a loop space.

• If we restrict to the identity on that 0-cell, we get a 2-degenerate *n*-category.

—like a double loop space.

There are many more connections with topology.

Degenerate n-categories capture the essence of weak n-categories.

Degenerate n-categories capture the essence of weak n-categories.

Coherence tells us

Degenerate n-categories capture the essence of weak n-categories.

Coherence tells us

• every weak 2-category is 2-equivalent to a strict 2-category,

Degenerate n-categories capture the essence of weak n-categories.

Coherence tells us

• every weak 2-category is 2-equivalent to a strict 2-category, but

Degenerate n-categories capture the essence of weak n-categories.

Coherence tells us

- every weak 2-category is 2-equivalent to a strict 2-category, but
- not every weak 3-category is 3-equivalent to a strict 3-category.

Degenerate n-categories capture the essence of weak n-categories.

Coherence tells us

- every weak 2-category is 2-equivalent to a strict 2-category, but
- not every weak 3-category is 3-equivalent to a strict 3-category.

The obstruction is braidings.

Degenerate n-categories capture the essence of weak n-categories.

Coherence tells us

- every weak 2-category is 2-equivalent to a strict 2-category, but
- not every weak 3-category is 3-equivalent to a strict 3-category.

The obstruction is braidings.

All the difficulties come from having non-trivial morphisms between identity cells.

Slogan

The Periodic Table measures the difference between weak and strict *n*-categories.