
The periodic table of n-categories

Eugenia Cheng

University of Sheffield
7 January 2009

1.



Plan

1. Degeneracy

2. The Eckmann-Hilton argument

3. Inconvenient elements

4. Higher maps

5. Stabilisation

6. Other reasons to care

2.



Plan

1. Degeneracy

2. The Eckmann-Hilton argument

3. Inconvenient elements

4. Higher maps

5. Stabilisation

6. Other reasons to care

2.



Plan

1. Degeneracy

2. The Eckmann-Hilton argument

3. Inconvenient elements

4. Higher maps

5. Stabilisation

6. Other reasons to care

2.



Plan

1. Degeneracy

2. The Eckmann-Hilton argument

3. Inconvenient elements

4. Higher maps

5. Stabilisation

6. Other reasons to care

2.



Plan

1. Degeneracy

2. The Eckmann-Hilton argument

3. Inconvenient elements

4. Higher maps

5. Stabilisation

6. Other reasons to care

2.



Plan

1. Degeneracy

2. The Eckmann-Hilton argument

3. Inconvenient elements

4. Higher maps

5. Stabilisation

6. Other reasons to care

2.



References

• J. Baez and J. Dolan. Higher-dimensional algebra and
topological quantum field theory.

Journ. Math. Phys.,
36:6073–6105, 1995. E-print q-alg/9503002v2 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions I: degenerate categories and degenerate
bicategories. In Categories in Algebra, Geometry and
Mathematical Physics, proceedings of Streetfest, volume 431 of
Contemporary Math., pages 143–164. AMS, 2007. E-print
0708.1178 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions II: degenerate tricategories. Accepted in Math.
Proc. Cam. Phil. Soc. E-print 0705.2307 .

3.



References

• J. Baez and J. Dolan. Higher-dimensional algebra and
topological quantum field theory. Journ. Math. Phys.,
36:6073–6105, 1995. E-print q-alg/9503002v2 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions I: degenerate categories and degenerate
bicategories. In Categories in Algebra, Geometry and
Mathematical Physics, proceedings of Streetfest, volume 431 of
Contemporary Math., pages 143–164. AMS, 2007. E-print
0708.1178 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions II: degenerate tricategories. Accepted in Math.
Proc. Cam. Phil. Soc. E-print 0705.2307 .

3.



References

• J. Baez and J. Dolan. Higher-dimensional algebra and
topological quantum field theory. Journ. Math. Phys.,
36:6073–6105, 1995. E-print q-alg/9503002v2 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions I: degenerate categories and degenerate
bicategories.

In Categories in Algebra, Geometry and
Mathematical Physics, proceedings of Streetfest, volume 431 of
Contemporary Math., pages 143–164. AMS, 2007. E-print
0708.1178 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions II: degenerate tricategories. Accepted in Math.
Proc. Cam. Phil. Soc. E-print 0705.2307 .

3.



References

• J. Baez and J. Dolan. Higher-dimensional algebra and
topological quantum field theory. Journ. Math. Phys.,
36:6073–6105, 1995. E-print q-alg/9503002v2 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions I: degenerate categories and degenerate
bicategories. In Categories in Algebra, Geometry and
Mathematical Physics, proceedings of Streetfest, volume 431 of
Contemporary Math., pages 143–164. AMS, 2007. E-print
0708.1178 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions II: degenerate tricategories. Accepted in Math.
Proc. Cam. Phil. Soc. E-print 0705.2307 .

3.



References

• J. Baez and J. Dolan. Higher-dimensional algebra and
topological quantum field theory. Journ. Math. Phys.,
36:6073–6105, 1995. E-print q-alg/9503002v2 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions I: degenerate categories and degenerate
bicategories. In Categories in Algebra, Geometry and
Mathematical Physics, proceedings of Streetfest, volume 431 of
Contemporary Math., pages 143–164. AMS, 2007. E-print
0708.1178 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions II: degenerate tricategories.

Accepted in Math.
Proc. Cam. Phil. Soc. E-print 0705.2307 .

3.



References

• J. Baez and J. Dolan. Higher-dimensional algebra and
topological quantum field theory. Journ. Math. Phys.,
36:6073–6105, 1995. E-print q-alg/9503002v2 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions I: degenerate categories and degenerate
bicategories. In Categories in Algebra, Geometry and
Mathematical Physics, proceedings of Streetfest, volume 431 of
Contemporary Math., pages 143–164. AMS, 2007. E-print
0708.1178 .

• E. Cheng and N. Gurski. The periodic table of n-categories for
low dimensions II: degenerate tricategories. Accepted in Math.
Proc. Cam. Phil. Soc. E-print 0705.2307 .

3.



1. Degeneracy

Definition

A k-degenerate n-category is an n-category with:

• only one 0-cell

• only one 1-cell

• only one 2-cell
...

• only one (k − 1)-cell

So the first non-trivial dimension is k.

4.



1. Degeneracy

Definition

A k-degenerate n-category is an n-category with:

• only one 0-cell

• only one 1-cell

• only one 2-cell
...

• only one (k − 1)-cell

So the first non-trivial dimension is k.

4.



1. Degeneracy

Definition

A k-degenerate n-category is an n-category with:

• only one 0-cell

• only one 1-cell

• only one 2-cell
...

• only one (k − 1)-cell

So the first non-trivial dimension is k.

4.



1. Degeneracy

Definition

A k-degenerate n-category is an n-category with:

• only one 0-cell

• only one 1-cell

• only one 2-cell
...

• only one (k − 1)-cell

So the first non-trivial dimension is k.

4.



1. Degeneracy

Definition

A k-degenerate n-category is an n-category with:

• only one 0-cell

• only one 1-cell

• only one 2-cell

...

• only one (k − 1)-cell

So the first non-trivial dimension is k.

4.



1. Degeneracy

Definition

A k-degenerate n-category is an n-category with:

• only one 0-cell

• only one 1-cell

• only one 2-cell
...

• only one (k − 1)-cell

So the first non-trivial dimension is k.

4.



1. Degeneracy

Definition

A k-degenerate n-category is an n-category with:

• only one 0-cell

• only one 1-cell

• only one 2-cell
...

• only one (k − 1)-cell

So the first non-trivial dimension is k.

4.



1. Degeneracy

Definition

A k-degenerate n-category is an n-category with:

• only one 0-cell

• only one 1-cell

• only one 2-cell
...

• only one (k − 1)-cell

So the first non-trivial dimension is k.

4.



1. Degeneracy

Dimension-shift for k-degenerate n-categories

“old” “new”
n-category . (n− k)-category

0-cells
1-cells

...

(k − 1)-cells

 trivial

k-cells . 0-cells

(k + 1)-cells . 1-cells
...

...
...

n-cells . (n− k)-cells

5.



1. Degeneracy

Dimension-shift for k-degenerate n-categories

“old” “new”
n-category . (n− k)-category

0-cells
1-cells

...

(k − 1)-cells

 trivial

k-cells . 0-cells

(k + 1)-cells . 1-cells
...

...
...

n-cells . (n− k)-cells

5.



1. Degeneracy

Dimension-shift for k-degenerate n-categories

“old” “new”
n-category . (n− k)-category

0-cells

1-cells
...

(k − 1)-cells

 trivial

k-cells . 0-cells

(k + 1)-cells . 1-cells
...

...
...

n-cells . (n− k)-cells

5.



1. Degeneracy

Dimension-shift for k-degenerate n-categories

“old” “new”
n-category . (n− k)-category

0-cells
1-cells

...

(k − 1)-cells

 trivial

k-cells . 0-cells

(k + 1)-cells . 1-cells
...

...
...

n-cells . (n− k)-cells

5.



1. Degeneracy

Dimension-shift for k-degenerate n-categories

“old” “new”
n-category . (n− k)-category

0-cells
1-cells

...

(k − 1)-cells

 trivial

k-cells . 0-cells

(k + 1)-cells . 1-cells
...

...
...

n-cells . (n− k)-cells

5.



1. Degeneracy

Dimension-shift for k-degenerate n-categories

“old” “new”
n-category . (n− k)-category

0-cells
1-cells

...

(k − 1)-cells

 trivial

k-cells . 0-cells

(k + 1)-cells . 1-cells
...

...
...

n-cells . (n− k)-cells

5.



1. Degeneracy

Dimension-shift for k-degenerate n-categories

“old” “new”
n-category . (n− k)-category

0-cells
1-cells

...

(k − 1)-cells

 trivial

k-cells . 0-cells

(k + 1)-cells . 1-cells
...

...
...

n-cells . (n− k)-cells

5.



1. Degeneracy

Dimension-shift for k-degenerate n-categories

“old” “new”
n-category . (n− k)-category

0-cells
1-cells

...

(k − 1)-cells

 trivial

k-cells . 0-cells

(k + 1)-cells . 1-cells

...
...

...
n-cells . (n− k)-cells

5.



1. Degeneracy

Dimension-shift for k-degenerate n-categories

“old” “new”
n-category . (n− k)-category

0-cells
1-cells

...

(k − 1)-cells

 trivial

k-cells . 0-cells

(k + 1)-cells . 1-cells
...

...
...

n-cells . (n− k)-cells

5.



1. Degeneracy

Dimension-shift for k-degenerate n-categories

“old” “new”
n-category . (n− k)-category

0-cells
1-cells

...

(k − 1)-cells

 trivial

k-cells . 0-cells

(k + 1)-cells . 1-cells
...

...
...

n-cells . (n− k)-cells

5.



1. Degeneracy

Degenerate categories

A category with only one object is a monoid.

“old” category “new” monoid

objects – trivial

morphisms . objects

composition . multiplication

identity . unit

6.



1. Degeneracy

Degenerate categories

A category with only one object is a monoid.

“old” category “new” monoid

objects – trivial

morphisms . objects

composition . multiplication

identity . unit

6.



1. Degeneracy

Degenerate categories

A category with only one object is a monoid.

“old” category “new” monoid

objects – trivial

morphisms . objects

composition . multiplication

identity . unit

6.



1. Degeneracy

Degenerate categories

A category with only one object is a monoid.

“old” category “new” monoid

objects – trivial

morphisms . objects

composition . multiplication

identity . unit

6.



1. Degeneracy

Degenerate categories

A category with only one object is a monoid.

“old” category “new” monoid

objects – trivial

morphisms . objects

composition . multiplication

identity . unit

6.



1. Degeneracy

Degenerate categories

A category with only one object is a monoid.

“old” category “new” monoid

objects – trivial

morphisms . objects

composition . multiplication

identity . unit

6.



1. Degeneracy

Degenerate categories

A category with only one object is a monoid.

“old” category “new” monoid

objects – trivial

morphisms . objects

composition . multiplication

identity . unit

6.



1. Degeneracy

Degenerate bicategories

A bicategory with only one object is a monoidal category.

7.



1. Degeneracy

Degenerate bicategories

A bicategory with only one object is a monoidal category.

7.



1. Degeneracy

“old” “new”
bicategory . monoidal category

0-cells – trivial

1-cells . objects

2-cells . morphisms

composition

of 1-cells . ⊗ of objects

of 2-cells . . .��
FF��

��
FF�� . ⊗ of morphisms

of 2-cells . .��GG//��
�� . composition of morphisms

8.



1. Degeneracy

“old” “new”
bicategory . monoidal category

0-cells – trivial

1-cells . objects

2-cells . morphisms

composition

of 1-cells . ⊗ of objects

of 2-cells . . .��
FF��

��
FF�� . ⊗ of morphisms

of 2-cells . .��GG//��
�� . composition of morphisms

8.



1. Degeneracy

“old” “new”
bicategory . monoidal category

0-cells – trivial

1-cells . objects

2-cells . morphisms

composition

of 1-cells . ⊗ of objects

of 2-cells . . .��
FF��

��
FF�� . ⊗ of morphisms

of 2-cells . .��GG//��
�� . composition of morphisms

8.



1. Degeneracy

“old” “new”
bicategory . monoidal category

0-cells – trivial

1-cells . objects

2-cells . morphisms

composition

of 1-cells . ⊗ of objects

of 2-cells . . .��
FF��

��
FF�� . ⊗ of morphisms

of 2-cells . .��GG//��
�� . composition of morphisms

8.



1. Degeneracy

“old” “new”
bicategory . monoidal category

0-cells – trivial

1-cells . objects

2-cells . morphisms

composition

of 1-cells . ⊗ of objects

of 2-cells . . .��
FF��

��
FF�� . ⊗ of morphisms

of 2-cells . .��GG//��
�� . composition of morphisms

8.



1. Degeneracy

“old” “new”
bicategory . monoidal category

0-cells – trivial

1-cells . objects

2-cells . morphisms

composition

of 1-cells . ⊗ of objects

of 2-cells . . .��
FF��

��
FF�� . ⊗ of morphisms

of 2-cells . .��GG//��
�� . composition of morphisms

8.



1. Degeneracy

“old” “new”
bicategory . monoidal category

0-cells – trivial

1-cells . objects

2-cells . morphisms

composition

of 1-cells . ⊗ of objects

of 2-cells . . .��
FF��

��
FF�� . ⊗ of morphisms

of 2-cells . .��GG//��
�� . composition of morphisms

8.



1. Degeneracy

“old” “new”
bicategory . monoidal category

0-cells – trivial

1-cells . objects

2-cells . morphisms

composition

of 1-cells . ⊗ of objects

of 2-cells . . .��
FF��

��
FF�� . ⊗ of morphisms

of 2-cells . .��GG//��
�� . composition of morphisms

8.



1. Degeneracy

In a k-degenerate n-category:

k-different types k-different types
composition of k-cells . ⊗
k-different types k-different types

9.



1. Degeneracy

In a k-degenerate n-category:
k-different types k-different types

composition of k-cells . ⊗

k-different types k-different types

9.



1. Degeneracy

In a k-degenerate n-category:
k-different types k-different types

composition of k-cells . ⊗
k-different types

k-different types

9.



1. Degeneracy

In a k-degenerate n-category:
k-different types k-different types

composition of k-cells . ⊗
k-different types k-different types

9.



1. Degeneracy

Example: 2-degenerate

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . .��FF�� . 0-cells

composition

. . .��
FF��

��
FF�� . ⊗0

. .��GG//��
�� . ⊗1 ?

10.



1. Degeneracy

Example: 2-degenerate

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . .��FF�� . 0-cells

composition

. . .��
FF��

��
FF�� . ⊗0

. .��GG//��
�� . ⊗1 ?

10.



1. Degeneracy

Example: 2-degenerate

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . .��FF�� . 0-cells

composition

. . .��
FF��

��
FF�� . ⊗0

. .��GG//��
�� . ⊗1 ?

10.



1. Degeneracy

Example: 2-degenerate

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . .��FF�� . 0-cells

composition

. . .��
FF��

��
FF�� . ⊗0

. .��GG//��
�� . ⊗1 ?

10.



1. Degeneracy

Example: 2-degenerate

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . .��FF�� . 0-cells

composition

. . .��
FF��

��
FF�� . ⊗0

. .��GG//��
�� . ⊗1 ?

10.



1. Degeneracy

Example: 2-degenerate

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . .��FF�� . 0-cells

composition

. . .��
FF��

��
FF�� . ⊗0

. .��GG//��
�� . ⊗1 ?

10.



1. Degeneracy

Example: 2-degenerate

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . .��FF�� . 0-cells

composition

. . .��
FF��

��
FF�� . ⊗0

. .��GG//��
�� . ⊗1

?

10.



1. Degeneracy

Example: 2-degenerate

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . .��FF�� . 0-cells

composition

. . .��
FF��

��
FF�� . ⊗0

. .��GG//��
�� . ⊗1 ?

10.



1. Degeneracy

Example: 3-degenerate

3-cells · ·
��
GG"* u}

_ *4 . 0-cells

composition

· ·
��
GG ·

��
GG"* u} "* u}

_*4 _ *4 . ⊗0

%- qy
_*4

&. px
_*4· ·

��
EE// . ⊗1

���& x�
_*4 _ *4· ·

��
CC . ⊗2 ?

11.



1. Degeneracy

Example: 3-degenerate

3-cells · ·
��
GG"* u}

_ *4 . 0-cells

composition

· ·
��
GG ·

��
GG"* u} "* u}

_*4 _ *4 . ⊗0

%- qy
_*4

&. px
_*4· ·

��
EE// . ⊗1

���& x�
_*4 _ *4· ·

��
CC . ⊗2 ?

11.



1. Degeneracy

Example: 3-degenerate

3-cells · ·
��
GG"* u}

_ *4 . 0-cells

composition

· ·
��
GG ·

��
GG"* u} "* u}

_*4 _ *4 . ⊗0

%- qy
_*4

&. px
_*4· ·

��
EE// . ⊗1

���& x�
_*4 _ *4· ·

��
CC . ⊗2 ?

11.



1. Degeneracy

Example: 3-degenerate

3-cells · ·
��
GG"* u}

_ *4 . 0-cells

composition

· ·
��
GG ·

��
GG"* u} "* u}

_*4 _ *4 . ⊗0

%- qy
_*4

&. px
_*4· ·

��
EE// . ⊗1

���& x�
_*4 _ *4· ·

��
CC . ⊗2 ?

11.



1. Degeneracy

Example: 3-degenerate

3-cells · ·
��
GG"* u}

_ *4 . 0-cells

composition

· ·
��
GG ·

��
GG"* u} "* u}

_*4 _ *4 . ⊗0

%- qy
_*4

&. px
_*4· ·

��
EE// . ⊗1

���& x�
_*4 _ *4· ·

��
CC . ⊗2

?

11.



1. Degeneracy

Example: 3-degenerate

3-cells · ·
��
GG"* u}

_ *4 . 0-cells

composition

· ·
��
GG ·

��
GG"* u} "* u}

_*4 _ *4 . ⊗0

%- qy
_*4

&. px
_*4· ·

��
EE// . ⊗1

���& x�
_*4 _ *4· ·

��
CC . ⊗2 ?

11.



1. Degeneracy

We have coherence cells for interchange:

. .��FF//
��

��
. .��FF//

��

��
∼=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) ∼= (a⊗1 c)⊗0 (b⊗1 d).

We have analogous coherence cells for all dimensions, with
axioms.

This is called k-tuply monoidal.

12.



1. Degeneracy

We have coherence cells for interchange:

. .��FF//
��

��
. .��FF//

��

��
∼=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) ∼= (a⊗1 c)⊗0 (b⊗1 d).

We have analogous coherence cells for all dimensions, with
axioms.

This is called k-tuply monoidal.

12.



1. Degeneracy

We have coherence cells for interchange:

. .��FF//
��

��
. .��FF//

��

��
∼=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) ∼= (a⊗1 c)⊗0 (b⊗1 d).

We have analogous coherence cells for all dimensions, with
axioms.

This is called k-tuply monoidal.

12.



1. Degeneracy

We have coherence cells for interchange:

. .��FF//
��

��
. .��FF//

��

��
∼=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) ∼= (a⊗1 c)⊗0 (b⊗1 d).

We have analogous coherence cells for all dimensions, with
axioms.

This is called k-tuply monoidal.

12.



1. Degeneracy

We have coherence cells for interchange:

. .��FF//
��

��
. .��FF//

��

��
∼=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) ∼= (a⊗1 c)⊗0 (b⊗1 d).

We have analogous coherence cells for all dimensions, with
axioms.

This is called k-tuply monoidal.

12.



1. Degeneracy

We have coherence cells for interchange:

. .��FF//
��

��
. .��FF//

��

��
∼=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) ∼= (a⊗1 c)⊗0 (b⊗1 d).

We have analogous coherence cells for all dimensions, with
axioms.

This is called k-tuply monoidal.

12.



1. Degeneracy

Slogan:

k-degenerate n-categories

“are”

k-tuply monoidal (n− k)-categories.

—but this is only part of the point.

13.



1. Degeneracy

Slogan:

k-degenerate n-categories

“are”

k-tuply monoidal (n− k)-categories.

—but this is only part of the point.

13.



1. Degeneracy

Slogan:

k-degenerate n-categories

“are”

k-tuply monoidal (n− k)-categories.

—but this is only part of the point.

13.



1. Degeneracy

only one object symmetric mon. symmetric mon. symmetric mon. · · ·

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category

monoid

≡ category with
only one object

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category

monoid

≡ category with
only one object

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category

monoid

≡ category with
only one object

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category

monoid monoidal cat.

≡ category with ≡ 2-category with
only one object only one object

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category

monoid monoidal cat.

≡ category with ≡ 2-category with
only one object only one object

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category

monoid monoidal cat.

≡ category with ≡ 2-category with
only one object only one object

commutative
monoid

≡ 2-cat. with
only one 1-cell

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat.

≡ category with ≡ 2-category with
only one object only one object

commutative
monoid

≡ 2-cat. with
only one 1-cell

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat.

≡ category with ≡ 2-category with
only one object only one object

commutative
monoid

≡ 2-cat. with
only one 1-cell

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat.

≡ category with ≡ 2-category with ≡ 3-category with
only one object only one object only one object

commutative
monoid

≡ 2-cat. with
only one 1-cell

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat.

≡ category with ≡ 2-category with ≡ 3-category with
only one object only one object only one object

commutative
monoid

≡ 2-cat. with
only one 1-cell

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat.

≡ category with ≡ 2-category with ≡ 3-category with
only one object only one object only one object

commutative braided mon.
monoid category

≡ 2-cat. with ≡ 3-cat. with
only one 1-cell only one 1-cell

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat.

≡ category with ≡ 2-category with ≡ 3-category with
only one object only one object only one object

commutative braided mon.
monoid category

≡ 2-cat. with ≡ 3-cat. with
only one 1-cell only one 1-cell

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat.

≡ category with ≡ 2-category with ≡ 3-category with
only one object only one object only one object

commutative braided mon.
monoid category

≡ 2-cat. with ≡ 3-cat. with
only one 1-cell only one 1-cell

′′
≡ 3-cat. with

only one 2-cell

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat.

≡ category with ≡ 2-category with ≡ 3-category with
only one object only one object only one object

commutative braided mon.
monoid category

≡ 2-cat. with ≡ 3-cat. with
only one 1-cell only one 1-cell

′′
≡ 3-cat. with

only one 2-cell

′′
≡ 4-cat. with

only one 3-cell

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat.

≡ category with ≡ 2-category with ≡ 3-category with
only one object only one object only one object

commutative braided mon.
monoid category

≡ 2-cat. with ≡ 3-cat. with
only one 1-cell only one 1-cell

′′
≡ 3-cat. with

only one 2-cell

′′
≡ 4-cat. with

only one 3-cell

′′
...

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat.

≡ category with ≡ 2-category with ≡ 3-category with
only one object only one object only one object

commutative braided mon.
monoid category

≡ 2-cat. with ≡ 3-cat. with
only one 1-cell only one 1-cell

′′ symmetric mon.
category

≡ 3-cat. with ≡ 4-cat. with
only one 2-cell only one 2-cell

′′
≡ 4-cat. with

only one 3-cell

′′
...

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat.

≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with
only one object only one object only one object only one object

commutative braided mon. braided mon.
monoid category 2-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with
only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon.
category

≡ 3-cat. with ≡ 4-cat. with
only one 2-cell only one 2-cell

′′
≡ 4-cat. with

only one 3-cell

′′
...

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat.

≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with
only one object only one object only one object only one object

commutative braided mon. braided mon.
monoid category 2-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with
only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon.
category

≡ 3-cat. with ≡ 4-cat. with
only one 2-cell only one 2-cell

′′ ′′
≡ 4-cat. with ≡ 5-cat. with

only one 3-cell only one 3-cell

′′ ′′
...

...

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat.

≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with
only one object only one object only one object only one object

commutative braided mon. braided mon.
monoid category 2-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with
only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon.
category 2-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 2-cell only one 2-cell only one 2-cell

′′ ′′
≡ 4-cat. with ≡ 5-cat. with

only one 3-cell only one 3-cell

′′ ′′
...

...

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat.

≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with
only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon.
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon.
category 2-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 2-cell only one 2-cell only one 2-cell

′′ ′′
≡ 4-cat. with ≡ 5-cat. with

only one 3-cell only one 3-cell

′′ ′′
...

...

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat.

≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with
only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon.
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon.
category 2-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric mon.
2-category

≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′
...

...
...

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat.

≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with
only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon.
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon. sylleptic mon.
category 2-category 3-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 2-cell only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric mon.
2-category

≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′
...

...
...

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat.

≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with
only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon.
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon. sylleptic mon.
category 2-category 3-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 2-cell only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric mon. *** mon.
2-category 3-category

≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with ≡ 7-cat. with
only one 3-cell only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′
...

...
...

14.



1. Degeneracy
only one object symmetric mon. symmetric mon. symmetric mon. · · ·set category 2-category 3-category · · ·

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat. · · ·
≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with

only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon. · · ·
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon. sylleptic mon. · · ·
category 2-category 3-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 2-cell only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric mon. *** mon. · · ·
2-category 3-category

≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with ≡ 7-cat. with
only one 3-cell only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′ symmetric mon. · · ·
3-category

...
...

...
...

14.



2. The Eckmann-Hilton argument

Let A be a set with two binary operations ∗ and ◦ such
that

1. ∗ and ◦ are unital with the same unit

2. ∗ and ◦ distribute over each other

i.e. ∀a, b, c, d ∈ A

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

Then ∗ and ◦ are in fact equal and this operation is
commutative.

15.



2. The Eckmann-Hilton argument

Let A be a set with two binary operations ∗ and ◦ such
that

1. ∗ and ◦ are unital with the same unit

2. ∗ and ◦ distribute over each other

i.e. ∀a, b, c, d ∈ A

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

Then ∗ and ◦ are in fact equal and this operation is
commutative.

15.



2. The Eckmann-Hilton argument

Let A be a set with two binary operations ∗ and ◦ such
that

1. ∗ and ◦ are unital with the same unit

2. ∗ and ◦ distribute over each other

i.e. ∀a, b, c, d ∈ A

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

Then ∗ and ◦ are in fact equal and this operation is
commutative.

15.



2. The Eckmann-Hilton argument

Let A be a set with two binary operations ∗ and ◦ such
that

1. ∗ and ◦ are unital with the same unit

2. ∗ and ◦ distribute over each other

i.e. ∀a, b, c, d ∈ A

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

Then ∗ and ◦ are in fact equal and this operation is
commutative.

15.



2. The Eckmann-Hilton argument

Let A be a set with two binary operations ∗ and ◦ such
that

1. ∗ and ◦ are unital with the same unit

2. ∗ and ◦ distribute over each other

i.e. ∀a, b, c, d ∈ A

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

Then ∗ and ◦ are in fact equal and this operation is
commutative.

15.



2. The Eckmann-Hilton argument

Let A be a set with two binary operations ∗ and ◦ such
that

1. ∗ and ◦ are unital with the same unit

2. ∗ and ◦ distribute over each other

i.e. ∀a, b, c, d ∈ A

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

Then ∗ and ◦ are in fact equal and this operation is
commutative.

15.



1. Degeneracy

In a bicategory we have the interchange laws:

. .��FF//
��

��
. .��FF//

��

��
=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) = (a⊗1 c)⊗0 (b⊗1 d).

This is exactly the condition needed for the
Eckmann-Hilton argument

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

16.



1. Degeneracy

In a bicategory we have the interchange laws:

. .��FF//
��

��
. .��FF//

��

��
=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) = (a⊗1 c)⊗0 (b⊗1 d).

This is exactly the condition needed for the
Eckmann-Hilton argument

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

16.



1. Degeneracy

In a bicategory we have the interchange laws:

. .��FF//
��

��
. .��FF//

��

��
=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) = (a⊗1 c)⊗0 (b⊗1 d).

This is exactly the condition needed for the
Eckmann-Hilton argument

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

16.



1. Degeneracy

In a bicategory we have the interchange laws:

. .��FF//
��

��
. .��FF//

��

��
=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) = (a⊗1 c)⊗0 (b⊗1 d).

This is exactly the condition needed for the
Eckmann-Hilton argument

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

16.



1. Degeneracy

In a bicategory we have the interchange laws:

. .��FF//
��

��
. .��FF//

��

��
=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) = (a⊗1 c)⊗0 (b⊗1 d).

This is exactly the condition needed for the
Eckmann-Hilton argument

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

16.



1. Degeneracy

In a bicategory we have the interchange laws:

. .��FF//
��

��
. .��FF//

��

��
=. . .��//�� ��//��

. . .FF//
��

FF//
��

becomes

(a⊗0 b)⊗1 (c⊗0 d) = (a⊗1 c)⊗0 (b⊗1 d).

This is exactly the condition needed for the
Eckmann-Hilton argument

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

16.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1

β ∗ α
4

(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β

5
(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

α β

α
1

1
β

α 1
1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1
1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

4
(β ◦ 1) ∗ (1 ◦ α)

/

interchange

(β ∗ 1) ◦ (1 ∗ α)

5
β ◦ α

.
(1 ∗ β) ◦ (α ∗ 1)

4

interchange

(1 ◦ α) ∗ (β ◦ 1)

/α ∗ β
5

(α ◦ 1) ∗ (1 ◦ β)

.

interchange

(α ∗ 1) ◦ (1 ∗ β)

4
α ◦ β

/
(1 ∗ α) ◦ (β ∗ 1)

5

interchange

(1 ◦ β) ∗ (α ◦ 1)

.

17.



2. The Eckmann-Hilton argument

Increasing dimensions: tricategories

We use a categorified Eckmann-Hilton argument:

Let C be a category with monoidal structures ⊗0 and ⊗1

such that

1. ⊗0 and ⊗1 have the same unit, and

2. there are coherent interchange isomorphisms

(a⊗0 b)⊗1 (c⊗ d)
∼=−→ (a⊗1 c)⊗0 (b⊗1 d).

Then ⊗0 and ⊗1 are isomorphic and we have coherent
isomorphisms

a⊗ b
∼=−→ b⊗ a.

—a braiding.

18.



2. The Eckmann-Hilton argument

Increasing dimensions: tricategories

We use a categorified Eckmann-Hilton argument:

Let C be a category with monoidal structures ⊗0 and ⊗1

such that

1. ⊗0 and ⊗1 have the same unit, and

2. there are coherent interchange isomorphisms

(a⊗0 b)⊗1 (c⊗ d)
∼=−→ (a⊗1 c)⊗0 (b⊗1 d).

Then ⊗0 and ⊗1 are isomorphic and we have coherent
isomorphisms

a⊗ b
∼=−→ b⊗ a.

—a braiding.

18.



2. The Eckmann-Hilton argument

Increasing dimensions: tricategories

We use a categorified Eckmann-Hilton argument:

Let C be a category with monoidal structures ⊗0 and ⊗1

such that

1. ⊗0 and ⊗1 have the same unit, and

2. there are coherent interchange isomorphisms

(a⊗0 b)⊗1 (c⊗ d)
∼=−→ (a⊗1 c)⊗0 (b⊗1 d).

Then ⊗0 and ⊗1 are isomorphic and we have coherent
isomorphisms

a⊗ b
∼=−→ b⊗ a.

—a braiding.

18.



2. The Eckmann-Hilton argument

Increasing dimensions: tricategories

We use a categorified Eckmann-Hilton argument:

Let C be a category with monoidal structures ⊗0 and ⊗1

such that

1. ⊗0 and ⊗1 have the same unit, and

2. there are coherent interchange isomorphisms

(a⊗0 b)⊗1 (c⊗ d)
∼=−→ (a⊗1 c)⊗0 (b⊗1 d).

Then ⊗0 and ⊗1 are isomorphic and we have coherent
isomorphisms

a⊗ b
∼=−→ b⊗ a.

—a braiding.

18.



2. The Eckmann-Hilton argument

Increasing dimensions: tricategories

We use a categorified Eckmann-Hilton argument:

Let C be a category with monoidal structures ⊗0 and ⊗1

such that

1. ⊗0 and ⊗1 have the same unit, and

2. there are coherent interchange isomorphisms

(a⊗0 b)⊗1 (c⊗ d)
∼=−→ (a⊗1 c)⊗0 (b⊗1 d).

Then ⊗0 and ⊗1 are isomorphic and we have coherent
isomorphisms

a⊗ b
∼=−→ b⊗ a.

—a braiding.

18.



2. The Eckmann-Hilton argument

Slight problem

Horizontal composition of 2-cells is not strictly unital in a
bicategory.

α 1 = ?
Instead, we have to use the following operation:

α β

−1

This issue gets worse as we increase dimensions.

19.



2. The Eckmann-Hilton argument

Slight problem

Horizontal composition of 2-cells is not strictly unital in a
bicategory.

α 1 = ?

Instead, we have to use the following operation:

α β

−1

This issue gets worse as we increase dimensions.

19.



2. The Eckmann-Hilton argument

Slight problem

Horizontal composition of 2-cells is not strictly unital in a
bicategory.

α 1 = ?
Instead, we have to use the following operation:

α β

−1

This issue gets worse as we increase dimensions.

19.



2. The Eckmann-Hilton argument

Slight problem

Horizontal composition of 2-cells is not strictly unital in a
bicategory.

α 1 = ?
Instead, we have to use the following operation:

α β

−1

This issue gets worse as we increase dimensions.

19.



2. The Eckmann-Hilton argument

Slight problem

Horizontal composition of 2-cells is not strictly unital in a
bicategory.

α 1 = ?
Instead, we have to use the following operation:

α β

−1

This issue gets worse as we increase dimensions.

19.



2. The Eckmann-Hilton argument

Doubly degenerate tricategories

0-cells
1-cells

}
trivial

2-cells . objects

3-cells . morphisms

composition of 2-cells

1-composition . ⊗
0-composition . not quite a ⊗

Nevertheless, a lengthy calculation shows that a doubly
degenerate tricategory is indeed a braided monoidal
category.

20.



2. The Eckmann-Hilton argument

Doubly degenerate tricategories

0-cells
1-cells

}
trivial

2-cells . objects

3-cells . morphisms

composition of 2-cells

1-composition . ⊗
0-composition . not quite a ⊗

Nevertheless, a lengthy calculation shows that a doubly
degenerate tricategory is indeed a braided monoidal
category.

20.



2. The Eckmann-Hilton argument

Doubly degenerate tricategories

0-cells
1-cells

}
trivial

2-cells . objects

3-cells . morphisms

composition of 2-cells

1-composition . ⊗
0-composition . not quite a ⊗

Nevertheless, a lengthy calculation shows that a doubly
degenerate tricategory is indeed a braided monoidal
category.

20.



2. The Eckmann-Hilton argument

Doubly degenerate tricategories

0-cells
1-cells

}
trivial

2-cells . objects

3-cells . morphisms

composition of 2-cells

1-composition . ⊗
0-composition . not quite a ⊗

Nevertheless, a lengthy calculation shows that a doubly
degenerate tricategory is indeed a braided monoidal
category.

20.



2. The Eckmann-Hilton argument

Doubly degenerate tricategories

0-cells
1-cells

}
trivial

2-cells . objects

3-cells . morphisms

composition of 2-cells

1-composition . ⊗
0-composition . not quite a ⊗

Nevertheless, a lengthy calculation shows that a doubly
degenerate tricategory is indeed a braided monoidal
category.

20.



2. The Eckmann-Hilton argument

Doubly degenerate tricategories

0-cells
1-cells

}
trivial

2-cells . objects

3-cells . morphisms

composition of 2-cells

1-composition . ⊗

0-composition . not quite a ⊗

Nevertheless, a lengthy calculation shows that a doubly
degenerate tricategory is indeed a braided monoidal
category.

20.



2. The Eckmann-Hilton argument

Doubly degenerate tricategories

0-cells
1-cells

}
trivial

2-cells . objects

3-cells . morphisms

composition of 2-cells

1-composition . ⊗
0-composition . not quite a ⊗

Nevertheless, a lengthy calculation shows that a doubly
degenerate tricategory is indeed a braided monoidal
category.

20.



2. The Eckmann-Hilton argument

Doubly degenerate tricategories

0-cells
1-cells

}
trivial

2-cells . objects

3-cells . morphisms

composition of 2-cells

1-composition . ⊗
0-composition . not quite a ⊗

Nevertheless, a lengthy calculation shows that a doubly
degenerate tricategory is indeed a braided monoidal
category.

20.



2. The Eckmann-Hilton argument

21.



2. The Eckmann-Hilton argument

22.



2. The Eckmann-Hilton argument

23.



2. The Eckmann-Hilton argument

In general

• (k − 1)-composition becomes a ⊗, but

• i-composition gets further and further from really
being a ⊗ as i decreases to 0.

Moral

Our slogan was

k-degenerate n-categories
“are”

k-tuply monoidal (n− k)-categories.

but it does take some effort.

24.



2. The Eckmann-Hilton argument

In general

• (k − 1)-composition becomes a ⊗, but

• i-composition gets further and further from really
being a ⊗ as i decreases to 0.

Moral

Our slogan was

k-degenerate n-categories
“are”

k-tuply monoidal (n− k)-categories.

but it does take some effort.

24.



2. The Eckmann-Hilton argument

In general

• (k − 1)-composition becomes a ⊗, but

• i-composition gets further and further from really
being a ⊗ as i decreases to 0.

Moral

Our slogan was

k-degenerate n-categories
“are”

k-tuply monoidal (n− k)-categories.

but it does take some effort.

24.



2. The Eckmann-Hilton argument

In general

• (k − 1)-composition becomes a ⊗, but

• i-composition gets further and further from really
being a ⊗ as i decreases to 0.

Moral

Our slogan was

k-degenerate n-categories
“are”

k-tuply monoidal (n− k)-categories.

but it does take some effort.

24.



2. The Eckmann-Hilton argument

In general

• (k − 1)-composition becomes a ⊗, but

• i-composition gets further and further from really
being a ⊗ as i decreases to 0.

Moral

Our slogan was

k-degenerate n-categories
“are”

k-tuply monoidal (n− k)-categories.

but it does take some effort.

24.



2. The Eckmann-Hilton argument

In general

• (k − 1)-composition becomes a ⊗, but

• i-composition gets further and further from really
being a ⊗ as i decreases to 0.

Moral

Our slogan was

k-degenerate n-categories
“are”

k-tuply monoidal (n− k)-categories.

but it does take some effort.

24.



3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell 1x
is precisely a commutative monoid

with a distinguished invertible element.

This comes from coherence constraints:

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . elements

coherence isomorphisms . invertible elements

25.



3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell 1x
is precisely a commutative monoid

with a distinguished invertible element.

This comes from coherence constraints:

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . elements

coherence isomorphisms . invertible elements

25.



3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell 1x
is precisely a commutative monoid

with a distinguished invertible element.

This comes from coherence constraints:

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . elements

coherence isomorphisms . invertible elements

25.



3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell 1x
is precisely a commutative monoid

with a distinguished invertible element.

This comes from coherence constraints:

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . elements

coherence isomorphisms . invertible elements

25.



3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell 1x
is precisely a commutative monoid

with a distinguished invertible element.

This comes from coherence constraints:

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . elements

coherence isomorphisms . invertible elements

25.



3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell 1x
is precisely a commutative monoid

with a distinguished invertible element.

This comes from coherence constraints:

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . elements

coherence isomorphisms . invertible elements

25.



3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell 1x
is precisely a commutative monoid

with a distinguished invertible element.

This comes from coherence constraints:

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . elements

coherence isomorphisms . invertible elements

25.



3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell 1x
is precisely a commutative monoid

with a distinguished invertible element.

This comes from coherence constraints:

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . elements

coherence isomorphisms . invertible elements

25.



3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell 1x
is precisely a commutative monoid

with a distinguished invertible element.

This comes from coherence constraints:

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . elements

coherence isomorphisms

. invertible elements

25.



3. Inconvenient elements

Theorem (Leinster).

A bicategory with only one 0-cell x and one 1-cell 1x
is precisely a commutative monoid

with a distinguished invertible element.

This comes from coherence constraints:

“old” . “new”

0-cells
1-cells

}
trivial

2-cells . elements

coherence isomorphisms . invertible elements

25.



3. Inconvenient elements

Coherence constraints giving distinguished
invertible elements

We might expect three such elements: , , .

However

• the associativity pentagon gives us 2 = 3, so = 1,
and

• in any bicategory, I = I , so we have = .

This leaves just one distinguished invertible element: .

Can we fix this using higher morphisms?

26.



3. Inconvenient elements

Coherence constraints giving distinguished
invertible elements

We might expect three such elements: , , .

However

• the associativity pentagon gives us 2 = 3, so = 1,
and

• in any bicategory, I = I , so we have = .

This leaves just one distinguished invertible element: .

Can we fix this using higher morphisms?

26.



3. Inconvenient elements

Coherence constraints giving distinguished
invertible elements

We might expect three such elements: , , .

However

• the associativity pentagon gives us 2 = 3, so = 1,
and

• in any bicategory, I = I , so we have = .

This leaves just one distinguished invertible element: .

Can we fix this using higher morphisms?

26.



3. Inconvenient elements

Coherence constraints giving distinguished
invertible elements

We might expect three such elements: , , .

However

• the associativity pentagon gives us 2 = 3, so = 1,
and

• in any bicategory, I = I , so we have = .

This leaves just one distinguished invertible element: .

Can we fix this using higher morphisms?

26.



3. Inconvenient elements

Coherence constraints giving distinguished
invertible elements

We might expect three such elements: , , .

However

• the associativity pentagon gives us 2 = 3, so = 1,
and

• in any bicategory, I = I , so we have = .

This leaves just one distinguished invertible element: .

Can we fix this using higher morphisms?

26.



3. Inconvenient elements

Coherence constraints giving distinguished
invertible elements

We might expect three such elements: , , .

However

• the associativity pentagon gives us 2 = 3, so = 1,
and

• in any bicategory, I = I , so we have = .

This leaves just one distinguished invertible element: .

Can we fix this using higher morphisms?

26.



3. Inconvenient elements

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

F : X −→ Y

is precisely a monoid homomorphism

together with a distinguished invertible element in Y .

We have coherence isomorphisms for weak functoriality

φII : FI ◦ FI ⇒ F (I ◦ I)

φx : I ⇒ FI

The axioms eliminate one of them.

27.



3. Inconvenient elements

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

F : X −→ Y

is precisely a monoid homomorphism

together with a distinguished invertible element in Y .

We have coherence isomorphisms for weak functoriality

φII : FI ◦ FI ⇒ F (I ◦ I)

φx : I ⇒ FI

The axioms eliminate one of them.

27.



3. Inconvenient elements

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

F : X −→ Y

is precisely a monoid homomorphism

together with a distinguished invertible element in Y .

We have coherence isomorphisms for weak functoriality

φII : FI ◦ FI ⇒ F (I ◦ I)

φx : I ⇒ FI

The axioms eliminate one of them.

27.



3. Inconvenient elements

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

F : X −→ Y

is precisely a monoid homomorphism

together with a distinguished invertible element in Y .

We have coherence isomorphisms for weak functoriality

φII : FI ◦ FI ⇒ F (I ◦ I)

φx : I ⇒ FI

The axioms eliminate one of them.

27.



3. Inconvenient elements

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

F : X −→ Y

is precisely a monoid homomorphism

together with a distinguished invertible element in Y .

We have coherence isomorphisms for weak functoriality

φII : FI ◦ FI ⇒ F (I ◦ I)

φx : I ⇒ FI

The axioms eliminate one of them.

27.



3. Inconvenient elements

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

F : X −→ Y

is precisely a monoid homomorphism

together with a distinguished invertible element in Y .

We have coherence isomorphisms for weak functoriality

φII : FI ◦ FI ⇒ F (I ◦ I)

φx : I ⇒ FI

The axioms eliminate one of them.

27.



3. Inconvenient elements

Theorem (Leinster).

A weak functor between doubly degenerate bicategories

F : X −→ Y

is precisely a monoid homomorphism

together with a distinguished invertible element in Y .

We have coherence isomorphisms for weak functoriality

φII : FI ◦ FI ⇒ F (I ◦ I)

φx : I ⇒ FI

The axioms eliminate one of them.

27.



3. Inconvenient elements

A weak transformation F ⇒ G

X Y

F

��

G

??��

is the assertion F = G.

A modification “from the assertion F = G to itself”

X Y

F

��

G

AA
�% y�

_*4

is a distinguished element in Y .

28.



3. Inconvenient elements

A weak transformation F ⇒ G

X Y

F

��

G

??��

is the assertion F = G.

A modification “from the assertion F = G to itself”

X Y

F

��

G

AA
�% y�

_*4

is a distinguished element in Y .

28.



3. Inconvenient elements

A weak transformation F ⇒ G

X Y

F

��

G

??��

is the assertion F = G.

A modification “from the assertion F = G to itself”

X Y

F

��

G

AA
�% y�

_*4

is a distinguished element in Y .

28.



3. Inconvenient elements

A weak transformation F ⇒ G

X Y

F

��

G

??��

is the assertion F = G.

A modification “from the assertion F = G to itself”

X Y

F

��

G

AA
�% y�

_*4

is a distinguished element in Y .

28.



3. Inconvenient elements

A weak transformation F ⇒ G

X Y

F

��

G

??��

is the assertion F = G.

A modification “from the assertion F = G to itself”

X Y

F

��

G

AA
�% y�

_*4

is a distinguished element in Y .

28.



3. Inconvenient elements

A weak transformation F ⇒ G

X Y

F

��

G

??��

is the assertion F = G.

A modification “from the assertion F = G to itself”

X Y

F

��

G

AA
�% y�

_*4

is a distinguished element in Y .

28.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison

Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements

Totality of

doubly degenerate

bicategories

structure comparison
Totality of

commutative

monoids

doubly degenerate
bicategories

weak
functors

weak
transformations

modifications

commutative
monoids

homomorphisms

identities

identities

 cat. cat.



not equivalence


bicat. bicat.



equivalence


tricat. tricat.



not equivalence

29.



3. Inconvenient elements
set category 2-category 3-category · · ·

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat. · · ·
≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with

only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon. · · ·
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon. sylleptic mon. · · ·
category 2-category 3-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 2-cell only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric mon. *** mon. · · ·
2-category 3-category

≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with ≡ 7-cat. with
only one 3-cell only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′ symmetric mon. · · ·
3-category

...
...

...
...

30.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison

Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities

 not a category

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities


not a bicategory

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities



tricategory

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities



tricategory tricategory



31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities



tricategory tricategory



equivalence

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities



tricategory tricategory



equivalence



tetracategory

31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities



tricategory tricategory



equivalence



tetracategory tetracategory



31.



3. Inconvenient elements

Totality of

triply degenerate

tricategories

structure comparison
Totality of

commutative

monoids

triply degenerate
tricategories

weak
functors

tritransformations

trimodifications

perturbations

commutative
monoids

homomorphisms

identities

identities

identities



tricategory tricategory



equivalence



tetracategory tetracategory



not equivalence

31.



3. Inconvenient elements

In general

• The issue of distinguished elements affects
k-degenerate n-categories for all k ≥ 2.

• The issue goes away for non-algebraic definitions i.e.
when coherence constraints are not specified.

However there are still other problems.

32.



3. Inconvenient elements

In general

• The issue of distinguished elements affects
k-degenerate n-categories for all k ≥ 2.

• The issue goes away for non-algebraic definitions i.e.
when coherence constraints are not specified.

However there are still other problems.

32.



3. Inconvenient elements

In general

• The issue of distinguished elements affects
k-degenerate n-categories for all k ≥ 2.

• The issue goes away for non-algebraic definitions i.e.
when coherence constraints are not specified.

However there are still other problems.

32.



3. Inconvenient elements

In general

• The issue of distinguished elements affects
k-degenerate n-categories for all k ≥ 2.

• The issue goes away for non-algebraic definitions i.e.
when coherence constraints are not specified.

However there are still other problems.

32.



4. Higher morphisms

Degenerate bicategories

• A bicategory with only one 0-cell is a monoidal
category.

• A weak functor between such is a monoidal functor.

• A weak transformation between such is quite different
from a monoidal transformation.

33.



4. Higher morphisms

Degenerate bicategories

• A bicategory with only one 0-cell is a monoidal
category.

• A weak functor between such is a monoidal functor.

• A weak transformation between such is quite different
from a monoidal transformation.

33.



4. Higher morphisms

Degenerate bicategories

• A bicategory with only one 0-cell is a monoidal
category.

• A weak functor between such is a monoidal functor.

• A weak transformation between such is quite different
from a monoidal transformation.

33.



4. Higher morphisms

Degenerate bicategories

• A bicategory with only one 0-cell is a monoidal
category.

• A weak functor between such is a monoidal functor.

• A weak transformation between such is quite different
from a monoidal transformation.

33.



4. Higher morphisms

Degenerate bicategories

• A bicategory with only one 0-cell is a monoidal
category.

• A weak functor between such is a monoidal functor.

• A weak transformation between such is quite different
from a monoidal transformation.

33.



4. Higher morphisms

A weak transformation of degenerate bicategories

X Y

F

��

G

??α
��

is an object α ∈ Y together with

for all A ∈ Y a morphism

αA : GA⊗ α −→ α⊗ FA

satisfying axioms.

This is very different from a monoidal transformation,

which has for all A ∈ Y a morphism

αA : FA −→ GA.

34.



4. Higher morphisms

A weak transformation of degenerate bicategories

X Y

F

��

G

??α
��

is an object α ∈ Y together with

for all A ∈ Y a morphism

αA : GA⊗ α −→ α⊗ FA

satisfying axioms.

This is very different from a monoidal transformation,

which has for all A ∈ Y a morphism

αA : FA −→ GA.

34.



4. Higher morphisms

A weak transformation of degenerate bicategories

X Y

F

��

G

??α
��

is an object α ∈ Y together with

for all A ∈ Y a morphism

αA : GA⊗ α −→ α⊗ FA

satisfying axioms.

This is very different from a monoidal transformation,

which has for all A ∈ Y a morphism

αA : FA −→ GA.

34.



4. Higher morphisms

A weak transformation of degenerate bicategories

X Y

F

��

G

??α
��

is an object α ∈ Y together with

for all A ∈ Y a morphism

αA : GA⊗ α −→ α⊗ FA

satisfying axioms.

This is very different from a monoidal transformation,

which has for all A ∈ Y a morphism

αA : FA −→ GA.

34.



4. Higher morphisms

A weak transformation of degenerate bicategories

X Y

F

��

G

??α
��

is an object α ∈ Y together with

for all A ∈ Y a morphism

αA : GA⊗ α −→ α⊗ FA

satisfying axioms.

This is very different from a monoidal transformation,

which has for all A ∈ Y a morphism

αA : FA −→ GA.

34.



4. Higher morphisms

A weak transformation of degenerate bicategories

X Y

F

��

G

??α
��

is an object α ∈ Y together with

for all A ∈ Y a morphism

αA : GA⊗ α −→ α⊗ FA

satisfying axioms.

This is very different from a monoidal transformation,

which has for all A ∈ Y a morphism

αA : FA −→ GA.

34.



4. Higher morphisms

Can we fix this?

• Modifications don’t help.

• Restrict to α = I and lax transformations?
—not closed under composition.

• Construct closure under composition?
—this doesn’t work (technical).

• Icons? (Lack)
—this works, but it isn’t a restriction of Bicat.

35.



4. Higher morphisms

Can we fix this?

• Modifications don’t help.

• Restrict to α = I and lax transformations?
—not closed under composition.

• Construct closure under composition?
—this doesn’t work (technical).

• Icons? (Lack)
—this works, but it isn’t a restriction of Bicat.

35.



4. Higher morphisms

Can we fix this?

• Modifications don’t help.

• Restrict to α = I and lax transformations?

—not closed under composition.

• Construct closure under composition?
—this doesn’t work (technical).

• Icons? (Lack)
—this works, but it isn’t a restriction of Bicat.

35.



4. Higher morphisms

Can we fix this?

• Modifications don’t help.

• Restrict to α = I and lax transformations?
—not closed under composition.

• Construct closure under composition?
—this doesn’t work (technical).

• Icons? (Lack)
—this works, but it isn’t a restriction of Bicat.

35.



4. Higher morphisms

Can we fix this?

• Modifications don’t help.

• Restrict to α = I and lax transformations?
—not closed under composition.

• Construct closure under composition?

—this doesn’t work (technical).

• Icons? (Lack)
—this works, but it isn’t a restriction of Bicat.

35.



4. Higher morphisms

Can we fix this?

• Modifications don’t help.

• Restrict to α = I and lax transformations?
—not closed under composition.

• Construct closure under composition?
—this doesn’t work (technical).

• Icons? (Lack)
—this works, but it isn’t a restriction of Bicat.

35.



4. Higher morphisms

Can we fix this?

• Modifications don’t help.

• Restrict to α = I and lax transformations?
—not closed under composition.

• Construct closure under composition?
—this doesn’t work (technical).

• Icons? (Lack)

—this works, but it isn’t a restriction of Bicat.

35.



4. Higher morphisms

Can we fix this?

• Modifications don’t help.

• Restrict to α = I and lax transformations?
—not closed under composition.

• Construct closure under composition?
—this doesn’t work (technical).

• Icons? (Lack)
—this works, but it isn’t a restriction of Bicat.

35.



4. Higher morphisms

We should probably proceed in two separate stages:

k-degenerate n-categories

��

k-tuply monoidal n-categories

��

Periodic Table

Moral so far:

The second step is more precise than the first.

36.



4. Higher morphisms

We should probably proceed in two separate stages:

k-degenerate n-categories

��

k-tuply monoidal n-categories

��

Periodic Table

Moral so far:

The second step is more precise than the first.

36.



4. Higher morphisms

We should probably proceed in two separate stages:

k-degenerate n-categories

��

k-tuply monoidal n-categories

��

Periodic Table

Moral so far:

The second step is more precise than the first.

36.



4. Higher morphisms

We should probably proceed in two separate stages:

k-degenerate n-categories

��

k-tuply monoidal n-categories

��

Periodic Table

Moral so far:

The second step is more precise than the first.

36.



4. Higher morphisms

We should probably proceed in two separate stages:

k-degenerate n-categories

��

k-tuply monoidal n-categories

��

Periodic Table

Moral so far:

The second step is more precise than the first.

36.



4. Higher morphisms

We should probably proceed in two separate stages:

k-degenerate n-categories

��

k-tuply monoidal n-categories

��

Periodic Table

Moral so far:

The second step is more precise than the first.

36.



4. Higher morphisms

We should probably proceed in two separate stages:

k-degenerate n-categories

��

k-tuply monoidal n-categories

��

Periodic Table

Moral so far:

The second step is more precise than the first.

36.



5. Stabilisation

set category 2-category 3-category · · ·

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat. · · ·
≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with

only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon. · · ·
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon. sylleptic mon. · · ·
category 2-category 3-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 2-cell only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric mon. *** mon. · · ·
2-category 3-category

≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with ≡ 7-cat. with
only one 3-cell only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′ symmetric mon. · · ·
3-category

...
...

...
...

37.



5. Stabilisation
set category 2-category 3-category · · ·

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat. · · ·
≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with

only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon. · · ·
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon. sylleptic mon. · · ·
category 2-category 3-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 2-cell only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric mon. *** mon. · · ·
2-category 3-category

≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with ≡ 7-cat. with
only one 3-cell only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′ symmetric mon. · · ·
3-category

...
...

...
...

37.



5. Stabilisation

Idea

There’s a limit to how many monoidal structures we can fit
on an n-category:

n+ 2.

adding a monoidal structure

��

making existing monoidal structure more symmetric

Eventually it becomes maximally symmetric

—we get symmetric monoidal n-categories.

38.



5. Stabilisation

Idea

There’s a limit to how many monoidal structures we can fit
on an n-category: n+ 2.

adding a monoidal structure

��

making existing monoidal structure more symmetric

Eventually it becomes maximally symmetric

—we get symmetric monoidal n-categories.

38.



5. Stabilisation

Idea

There’s a limit to how many monoidal structures we can fit
on an n-category: n+ 2.

adding a monoidal structure

��

making existing monoidal structure more symmetric

Eventually it becomes maximally symmetric

—we get symmetric monoidal n-categories.

38.



5. Stabilisation

Idea

There’s a limit to how many monoidal structures we can fit
on an n-category: n+ 2.

adding a monoidal structure

��

making existing monoidal structure more symmetric

Eventually it becomes maximally symmetric

—we get symmetric monoidal n-categories.

38.



5. Stabilisation

Idea

There’s a limit to how many monoidal structures we can fit
on an n-category: n+ 2.

adding a monoidal structure

��

making existing monoidal structure more symmetric

Eventually it becomes maximally symmetric

—we get symmetric monoidal n-categories.

38.



5. Stabilisation

Idea

There’s a limit to how many monoidal structures we can fit
on an n-category: n+ 2.

adding a monoidal structure

��

making existing monoidal structure more symmetric

Eventually it becomes maximally symmetric

—we get symmetric monoidal n-categories.

38.



5. Stabilisation

Idea

There’s a limit to how many monoidal structures we can fit
on an n-category: n+ 2.

adding a monoidal structure

��

making existing monoidal structure more symmetric

Eventually it becomes maximally symmetric

—we get symmetric monoidal n-categories.

38.



5. Stabilisation

set category 2-category 3-category · · ·

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat. · · ·
≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with

only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon. · · ·
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon. sylleptic mon. · · ·
category 2-category 3-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 2-cell only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric mon. *** mon. · · ·
2-category 3-category

≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with ≡ 7-cat. with
only one 3-cell only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′ symmetric mon. · · ·
3-category

...
...

...
...

39.



5. Stabilisation
set category 2-category 3-category · · ·

monoid monoidal cat. monoidal 2-cat. monoidal 3-cat. · · ·
≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with

only one object only one object only one object only one object

commutative braided mon. braided mon. braided mon. · · ·
monoid category 2-category 3-category

≡ 2-cat. with ≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric mon. sylleptic mon. sylleptic mon. · · ·
category 2-category 3-category

≡ 3-cat. with ≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with
only one 2-cell only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric mon. *** mon. · · ·
2-category 3-category

≡ 4-cat. with ≡ 5-cat. with ≡ 6-cat. with ≡ 7-cat. with
only one 3-cell only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′ symmetric mon. · · ·
3-category

...
...

...
...

39.



5. Stabilisation

Extended TQFT Hypothesis (Baez-Dolan)

The n-category of which n-dimensional extended TQFTs
are representations is the free stable weak n-category with
duals on one object.

40.



5. Stabilisation

Extended TQFT Hypothesis (Baez-Dolan)

The n-category of which n-dimensional extended TQFTs
are representations is the free stable weak n-category with
duals on one object.

40.



6. Other reasons to care

• If we start with an n-category and restrict to a single
0-cell, we get a degenerate n-category.

—like a loop space.

• If we restrict to the identity on that 0-cell, we get a
2-degenerate n-category.

—like a double loop space.

There are many more connections with topology.

41.



6. Other reasons to care

• If we start with an n-category and restrict to a single
0-cell, we get a degenerate n-category.

—like a loop space.

• If we restrict to the identity on that 0-cell, we get a
2-degenerate n-category.

—like a double loop space.

There are many more connections with topology.

41.



6. Other reasons to care

• If we start with an n-category and restrict to a single
0-cell, we get a degenerate n-category.

—like a loop space.

• If we restrict to the identity on that 0-cell, we get a
2-degenerate n-category.

—like a double loop space.

There are many more connections with topology.

41.



6. Other reasons to care

• If we start with an n-category and restrict to a single
0-cell, we get a degenerate n-category.

—like a loop space.

• If we restrict to the identity on that 0-cell, we get a
2-degenerate n-category.

—like a double loop space.

There are many more connections with topology.

41.



6. Other reasons to care

• If we start with an n-category and restrict to a single
0-cell, we get a degenerate n-category.

—like a loop space.

• If we restrict to the identity on that 0-cell, we get a
2-degenerate n-category.

—like a double loop space.

There are many more connections with topology.

41.



6. Other reasons to care

• If we start with an n-category and restrict to a single
0-cell, we get a degenerate n-category.

—like a loop space.

• If we restrict to the identity on that 0-cell, we get a
2-degenerate n-category.

—like a double loop space.

There are many more connections with topology.

41.



6. Other reasons to care

Degenerate n-categories capture the essence of weak
n-categories.

Coherence tells us

• every weak 2-category is 2-equivalent to a
strict 2-category, but

• not every weak 3-category is 3-equivalent to a
strict 3-category.

The obstruction is braidings.

All the difficulties come from having non-trivial morphisms
between identity cells.

42.



6. Other reasons to care

Degenerate n-categories capture the essence of weak
n-categories.

Coherence tells us

• every weak 2-category is 2-equivalent to a
strict 2-category, but

• not every weak 3-category is 3-equivalent to a
strict 3-category.

The obstruction is braidings.

All the difficulties come from having non-trivial morphisms
between identity cells.

42.



6. Other reasons to care

Degenerate n-categories capture the essence of weak
n-categories.

Coherence tells us

• every weak 2-category is 2-equivalent to a
strict 2-category,

but

• not every weak 3-category is 3-equivalent to a
strict 3-category.

The obstruction is braidings.

All the difficulties come from having non-trivial morphisms
between identity cells.

42.



6. Other reasons to care

Degenerate n-categories capture the essence of weak
n-categories.

Coherence tells us

• every weak 2-category is 2-equivalent to a
strict 2-category, but

• not every weak 3-category is 3-equivalent to a
strict 3-category.

The obstruction is braidings.

All the difficulties come from having non-trivial morphisms
between identity cells.

42.



6. Other reasons to care

Degenerate n-categories capture the essence of weak
n-categories.

Coherence tells us

• every weak 2-category is 2-equivalent to a
strict 2-category, but

• not every weak 3-category is 3-equivalent to a
strict 3-category.

The obstruction is braidings.

All the difficulties come from having non-trivial morphisms
between identity cells.

42.



6. Other reasons to care

Degenerate n-categories capture the essence of weak
n-categories.

Coherence tells us

• every weak 2-category is 2-equivalent to a
strict 2-category, but

• not every weak 3-category is 3-equivalent to a
strict 3-category.

The obstruction is braidings.

All the difficulties come from having non-trivial morphisms
between identity cells.

42.



6. Other reasons to care

Degenerate n-categories capture the essence of weak
n-categories.

Coherence tells us

• every weak 2-category is 2-equivalent to a
strict 2-category, but

• not every weak 3-category is 3-equivalent to a
strict 3-category.

The obstruction is braidings.

All the difficulties come from having non-trivial morphisms
between identity cells.

42.



6. Other reasons to care

Slogan

The Periodic Table measures the difference

between weak and strict n-categories.

43.


