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We have coherence cells for interchange:

@/@ WA
AT RN ZAAN 7

Y

becomes

((Z X0 b) ®1 (C X0 d) = (a ®1 C) ®o (b ®1 d)

We have analogous coherence cells for all dimensions, with
axioms.

This is called k-tuply monoidal.

12.



Slogan:

13.



1. Degeneracy

Slogan:

k-degenerate n-categories

k-tuply monoidal (n — k)-categories.

13.



1. Degeneracy

Slogan:

k-degenerate n-categories

k-tuply monoidal (n — k)-categories.
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Let A be a set with two binary operations % and o such
that

1. * and o are unital with the same unit

2. * and o distribute over each other

ie. Va,b,c,d € A
(axb)o(cxd)=(aoc)*(bod).

Then * and o are in fact equal and this operation is
commutative.
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Let € be a category with monoidal structures ®y and ®;
such that

1. ®y and ®; have the same unit, and
2. there are coherent interchange isomorphisms

(a®ob) @1 (c®d) — (a®1c) @ (b d).

Then ®y and ®; are isomorphic and we have coherent
isomorphisms

a®bib®a.

—a braiding.
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Slight problem

Horizontal composition of 2-cells is not strictly unital in a

bicategory.
-7

Instead, we have to use the following operation:

€0

N

This issue gets worse as we increase dimensions.
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Doubly degenerate tricategories

0-cells } trivial

1-cells
2-cells — objects
3-cells  — morphisms

composition of 2-cells

1-composition E— &

0-composition — > not quite a ®

Nevertheless, a lengthy calculation shows that a doubly

degenerate tricategory is indeed a braided monoidal
category.
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In general

e (k — 1)-composition becomes a ®, but

e j-composition gets further and further from really
being a ® as ¢ decreases to 0.

Moral

Our slogan was

k-degenerate n-categories
Mare”
k-tuply monoidal (n — k)-categories.

but it does take some effort.

24.
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3. Inconvenient elements

Coherence constraints giving distinguished

invertible elements

We might expect three such elements: a, A, .

However

e the associativity pentagon gives us a?

and

= Q

3

, 80 a =1,

e in any bicategory, A; = nj, so we have 1 = 4.

This leaves just one distinguished invertible element: A.

Can we fix this using higher morphisms?

26.
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3. Inconvenient elements

Theorem (Leinster).

A weak functor between doubly degenerate bicategories
F:X—Y

is precisely a monoid homomorphism

together with a distinguished invertible element in Y.

We have coherence isomorphisms for weak functoriality

¢]] : FIoFI = F(IOI)
6 - I = FI

The axioms eliminate one of them.
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In general

e The issue of distinguished elements affects
k-degenerate n-categories for all £ > 2.

e The issue goes away for non-algebraic definitions i.e.
when coherence constraints are not specified.

However there are still other problems.
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4. Higher morphisms

Degenerate bicategories

e A bicategory with only one 0-cell is a monoidal
category.

e A weak functor between such is a monoidal functor.

e A weak transformation between such is quite different
from a monoidal transformation.
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X oy
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4. Higher morphisms

A weak transformation of degenerate bicategories
F
7N
X oy
N
G

is an object a € Y together with
for all A € Y a morphism
ap :GARa — a® FA

satisfying axioms.

This is very different from a monoidal transformation,
which has for all A € Y a morphism

oays: FA— GA.

34.
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4. Higher morphisms

Can we fix this?

e Modifications don’t help.

e Restrict to o = I and lax transformations?
—mnot closed under composition.

e Construct closure under composition?
—this doesn’t work (technical).

e Icons? (Lack)

—this works, but it isn’t a restriction of Bicat.

35.
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4. Higher morphisms

We should probably proceed in two separate stages:

k-degenerate n-categories

|

k-tuply monoidal n-categories

|

Periodic Table

Moral so far:

The second step is more precise than the first.
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5. Stabilisation

set category 2-category 3-category
monoid / monoidal cat. / monoidal 2-cat. / monoidal 3-cat.
= category with = 2-category with = 3-category with = 4-category with
only one object only one object only one object only one object
commutative/ braided mon. /braided mon. /braided mon.
monoid category 2-category 3-category
= 2-cat. with = 3-cat. with = 4-cat. with = 5-cat. with
only one 1—ceAll/ only one 1—cell/ only one 1—ceHA/ only one 1-cell
17 symmetric mon. sylleptic mon. sylleptic mon.
category 2-category 3-category
= 3-cat. with = 4-cat. with = 5-cat. with = 6-cat. with
only one 2—ceAll/ only one 2-cell / only one 2—6611‘/ only one 2-cell
1/ 1/ symmetric mon.  *** mon.
2-category 3-category
= 4-cat. with = 5-cat. with = 6-cat. with = 7-cat. with
only one 3—ce‘ll/ only one 3-cell / only one 3—0611‘/ only one 3-cell
17; 17; 17 symmetric mon.

3-category
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5. Stabilisation

Idea

There’s a limit to how many monoidal structures we can fit
on an n-category: n + 2.

adding a monoidal structure

making existing monoidal structure more symmetric

Eventually it becomes maximally symmetric

—we get symmetric monoidal n-categories.

38.
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5. Stabilisation

set category 2-category 3-category
monoid / monoidal cat. / monoidal 2-cat. / monoidal 3-cat.
= category with = 2-category with = 3-category with = 4-category with
only one object only one object only one object only one object
commutative/ braided mon. /braided mon. /braided mon.
monoid category 2-category 3-category
= 2-cat. with = 3-cat. with = 4-cat. with = 5-cat. with
only one 1—ceAll/ only one 1—cell/ only one 1—ceHA/ only one 1-cell
17 symmetric mon. sylleptic mon. sylleptic mon.
category 2-category 3-category
= 3-cat. with = 4-cat. with = 5-cat. with = 6-cat. with
only one 2—ceAll/ only one 2-cell / only one 2—6611‘/ only one 2-cell
1/ 1/ symmetric mon.  *** mon.
2-category 3-category
= 4-cat. with = 5-cat. with = 6-cat. with = 7-cat. with
only one 3—ce‘ll/ only one 3-cell / only one 3—0611‘/ only one 3-cell
17; 17; 17 symmetric mon.

3-category
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5. Stabilisation

Extended TQFT Hypothesis (Baez-Dolan)
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5. Stabilisation

Extended TQFT Hypothesis (Baez-Dolan)
The n-category of which n-dimensional extended TQFTs

are representations is the free stable weak n-category with
duals on one object.
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6. Other reasons to care

o If we start with an n-category and restrict to a single
0-cell, we get a degenerate n-category.

—Ilike a loop space.

o If we restrict to the identity on that O-cell, we get a
2-degenerate n-category.

—Ilike a double loop space.

There are many more connections with topology.

41.
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n-categories.
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6. Other reasons to care

Degenerate n-categories capture the essence of weak
n-categories.

Coherence tells us

e every weak 2-category is 2-equivalent to a
strict 2-category, but

e not every weak 3-category is 3-equivalent to a
strict 3-category.

The obstruction is braidings.

All the difficulties come from having non-trivial morphisms
between identity cells.

42.



6. Other reasons to care

Slogan

The Periodic Table measures the difference
between weak and strict n-categories.

43.



