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Who am I, what do I do and why am I here?

1st year PhD student under Prof. Anuj Dawar.

Finite model theory and descriptive complexity, using game
comonads.

We study finite relational structures and the logical sentences they
satisfy using two-player games.
Comonads let us study the non-classical notions of homomorphism
arising from this perspective.
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What am I going to say?

1. Background and motivation

2. Game comonads and approximations to homomorphism

3. Cores for the pebbling comonad?

4. Regularity, obstacles to core uniqueness and open questions
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Background and motivation



Some basic graph notions

A graph G is a set, V(G) of vertices with a single binary relation
E(G) ⊂ V(G)2

A graph homomorphism f : G→ H is a function f : V(G) → V(H) s.t.
vv′ ∈ E(G) =⇒ f(v)f(v′) ∈ E(H)

A subgraph of G is a graph G′ with an injective homomorphism
ιG′ : G′ ↪→ G

A retract of G is a graph is a subgraph G′ with a surjective
homomorphism ρG′ : G↠ G′ s.t. ρG′ ◦ ιG′ = 1G′
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Examples: Subgraphs and Retracts

retr.
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Defining graph cores

Definition
The core H of a graph G is the smallest subgraph which is also a
homomorphic image.
Say a graph is a core if it is its own core, i.e. it has no
homomorphisms to any of its proper subgraphs.

Note: For finite structures this corresponds to the ↪→-minimal retract
of a graph.

5



Examples: Cores

retr.

retr.retr.

retr.
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Why study cores?

Proposition (Properties of cores for finite graphs1)

i If H is a core of G then H is a core (of itself)
ii Every graph has a core.
iii The core of a graph is unique up to isomorphism.
iv If graphs G and H have cores G′ and H′ then G→ H iff G′ → H′

Advantages:

• Cores are simpler graphs.
• Can be used to classify all graphs.
• CSP(G) = CSP(core(G))

1Hell and Nešetřil, The core of a graph, 1990
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Where do these properties come from?

Properties of cores:

i If H is a core of G then H is a core (of itself)
ii Every graph has a core.
iii The core of a graph is unique up to isomorphism.
iv If graphs G and H have cores G′ and H′ then G→ H iff G′ → H′

Properties of category of graphs:

1. ↪→ (substructure) is closed under composition.
2. {H | G retr.−−→ H} has a ↪→-minimal element.
3. a If H and H′ are cores of G, then H↠ H′.
b Schröder-Bernstein property :
H↠ H′ and H′ ↠ H implies H ∼= H′.

4. G⇄ core(G)
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Game comonads and
approximations to
homomorphism



Introducing games and their comonads

Introduced for testing expressiveness of logics over finite structures.

Played by spoiler and duplicator. Former tries to distinguish two
structures, latter tries to show their the same. Duplicator has a
winning strategy iff the structures agree on some logic L. Rules of
the game vary to capture different L.

Example

• n round Ehrenfeucht-Fraïssé game: Duplicator wins iff A ≡Ln B
• k pebble game: Duplicator wins iff A ≡Lk B
• Bijective k-pebble game: Duplicator wins iff A ≡Ck B
• One-way versions: Duplicator wins iff A⇒L B
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Compositional view on this

Idea
Have a category R(σ) of relational structures over some signature σ
with maps being homomorphism. (e.g graphs)

Also have non-classical homomorphisms arising from games.

Want to relate these together categorically.
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The pebbling comonad

Definition
The k pebbling comonad consists of

• an endofunctor Tk sending A to (A× [k])+,
where (t1, . . . tn) ∈ RTkA iff ti ⊏ tj2 and (ϵA(t1), . . . ϵA(tn)) ∈ RA

• counit ϵ : Tk → 1
• comultiplication δ : Tk → TkTk

2ti should be a prefix of tjor vice versa and the last pebble used in the prefix should
not appear in the suffix
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coKleisli Category of Tk

K(Tk) has the same objects as R(σ) but morphisms A→k B are
morphisms TkA→ B.

The identity is given by the counit:

A 1−→k A = TkA
ϵA−→ A

Compositions uses comultiplication:

(TkB
g−→ C) ◦ (TkA

f−→ B) = TkA
δA−→ TkTkA

Tkf−−→ TkB
g−→ C

Important fact:
A→k B iff duplicator has a winning strategy for the one-way k pebble
game from A to B.
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Locality and contextuality

This collection of comonads allows us to give a categorical
perspective on k-local properties of and relations between
structures.
For a pair of structures A and B Abramsky et al. define pebble
number:

πB(A) = min{k | A→ TkB}

and strong consistency number:

scB(A) = max{k | TkA→ B}

Note that scB(A) = |A| ⇐⇒ A→ B.
So truly contextual relations A→k B in K(Tk) will have scB(A) < |A|.
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Example: contextuality in K(Tk)

A B C
D E F
G H I

A
⊕
B
⊕
C = 0 A

⊕
D
⊕
G = 0

D
⊕
E
⊕
F = 0 B

⊕
E
⊕
H = 0

G
⊕
H
⊕
I = 0 C

⊕
F
⊕
I = 1

Table 1: Nine-element magic square seen as a structure M over a signature
with two ternary relations R0 and R1 with x

⊕
y
⊕
z = i meaning (x, y, z) ∈ Ri

Consider Z2 as a structure over this signature too, not hard to see:

M ̸→ Z2

but
M→5 Z2
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Why do this?

• Compositional language for k-local methods in CSP
A→k B captures the notion of k-locally satisfying constraints of
A in domain B (example shows this doesn’t capture all tractable
cases)

• New connections in descriptive complexity
Tk-algebras are tree decompositions, πA(A) = treewidth(A) + 1,
isomorphism in K(Tk) is ≡Ck ,

• More systematic finite model theory
Rossman and Otto’s preservation theorems are more naturally
phrased in this setting, perhaps this will lead to simpler proofs.
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Cores for the pebbling comonad?



Revisiting cores in this setting

Properties of category of graphs that allowed unique cores:

1. ↪→ (substructure) is closed under composition.
2. {H | G retr.−−→ H} has a ↪→-minimal element.
3. a If H and H′ are cores of G, then H↠ H′.
b Schröder-Bernstein property :
H↠ H′ and H′ ↠ H implies H ∼= H′.

4. G⇄ core(G)
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First challenge: defining ↪→ and↠

Definition
Define a branch-injective (resp. branch-surjective) winning strategy
for the k pebble game as a map f : TkA→ B where for every
t ∈ TkA, j ∈ [k] the map

ψt,j(x) = f(t : (j, x))

is injective (resp. surjective), write A→i
k B (resp.A→s

k B)
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First challenge: defining ↪→ and↠

Lemma

• →i
k corresponds to monomorphism in K(Tk)

• →s
k corresponds to epimorphism in K(Tk)

Lemma

• A→i
k B ⇐⇒ A⇛∃+Ck B

• A→s
k B ⇐⇒ A⇛+Lk B
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Defining cores in K(Tk)

A k-pebble retract of B ∈ K(Tk) is a structure A ∈ K(Tk) with maps
ιA : A→i

k B and ρA : B→s
k A s.t. ρA ◦ ιA = 1A, write A

retr.−−→k B

A k-pebble core of B is a→i
k-minimal k-pebble retract of A.3

3As structures are finite this is the same as being the smallest structure
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Revisiting cores in this setting

Properties of K(Tk):

1. →i
k is closed under composition.

4(easy by Lemma 2)

2. {H | G retr.−−→k H} has a→i
k-minimal element.

4(from previous)

3. a If H and H′ are k-pebble cores of G, then H→s
k H′.

?

b Schröder-Bernstein property :
H→s

k H′ and H′ →s
k H implies H ∼=K(Tk) H

′.

4(Abramsky et al., 2017)

4. G⇄k core(G)

4(by definition)

Properties of k-pebble cores:

i If H is a core of G then H is a core (of itself) 4

ii Every graph has a core. 4

iii The core of a graph is unique up to isomorphism. ?
iv If graphs G and H have cores G′ and H′ then G→ H iff G′ → H′ 4
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Regularity, obstacles to core
uniqueness and open questions



Re-cap

There are “cores” in K(Tk) but are they unique?

Equivalently, is it the case that for any two k-pebble cores H,H′ of G,
there is a surjection H→s

k H′
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Regularity is a sufficient condition

Definition (Informal)
A category is regular if it admits some form of epi-mono image
factorisation, i.e. any morphism factors into an epimorphism
followed by a monomorphism as shown below:

A B

im(f)

f

Why is this sufficient?
Suppose H,H′ are→i

k-minimal k retracts of G then f = ρH′ ◦ ιH is a
map from H to H′. By regularity, this factorizes as an epi followed by
a mono. But im(f) is a homomorphic image of G so by→i

k-minimality
of H′ the mono part of the factorisation must also be an epi. Thus f
is an epi.
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K(Tk) is not regular!

Example
There are strategies (i.e. maps in K(Tk) for which the “branch” maps
ψt,j have differently sized domains.
This is a problem as any mono (resp. epi) in K(Tk) has injective
(resp. surjective) branch maps and any epi-mono factorisation must
by a simultaneous surj-inj factorisation of all the branch maps.
Consider two directed triangles and the two pebble game …
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Possible fixes?

• Restrict to “balanced”/special strategies and show any A→k B
implies the existence of a “balanced”/special strategy. Show
that this subcategory is regular.

• Find another way to show property 3 (a)
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Open questions

There are lots!

• Are k-pebble cores unique?

• Is such a notion well defined in other non-classical settings?
Which ones have unique cores? (e.g. other game comonads En,
quantum monads Qd)

• What’s the relationship between regularity and cores?
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