CONSTRAINT SATISFACTION PROBLEMS INCLUDING QUANTUM RELAXATIONS

A TUTORIAL

Albert Atserias Universitat Politècnica de Catalunya Barcelona

CONSTRAINT SATISFACTION PROBLEMS INCLUDING QUANTUM RELAXATIONS ALGORITHMIC HIERARCHIES A TUTORIAL

Albert Atserias Universitat Politècnica de Catalunya Barcelona

Constraint Satisfaction Problems (CSPs)

Domain of values and constraint language:

$$D = \{b_1, \dots, b_q\} \text{ where } q \ge 2,$$

$$\Gamma = \{R_1, R_2, \dots\} \text{ where } R_i \subseteq D^{r_i}.$$

An instance over Γ :

$$\exists X_1 \cdots \exists X_n (C_1(t_1) \land \ldots \land C_m(t_m))$$

where

each X_j is a *D*-valued variable; $V = \{X_1, \dots, X_n\}$ each $C_j \in \Gamma \cup \{=\}$ is a constraint relation each $t_j \in (V \cup D)^{r_j}$ is a constraint scope

The solution space:

 $f: V \to D$ with $f(t_j) \in C_j$ for $j = 1, \dots, m$.

Example 1:

System of linear equations over \mathbb{Z}_2 :

Here

$$D = \{0,1\}$$
 and $\Gamma = \{R_0,R_1\}$

where

$$\begin{array}{ll} R_0 &=& \{(a,b,c)\in D^3: a+b+c\equiv 0 \;({\rm mod}\; 2)\}\\ R_1 &=& \{(a,b,c)\in D^3: a+b+c\equiv 1 \;({\rm mod}\; 2)\} \end{array}$$

Example 2

Graph 3-colorability:

$$\begin{array}{l} X_1 \neq X_2 \\ X_2 \neq X_3 \\ X_3 \neq X_4 \\ X_4 \neq X_5 \\ X_5 \neq X_1 \end{array} \quad \text{with } X_i \in \{\bullet, \bullet, \bullet\} \end{array}$$

Here

$$D = \{\bullet, \bullet, \bullet\}$$
 and $\Gamma = \{\neq\}.$

CSP and Contextuality

Empirical models (example: the PR Box)

		00	01	10	11
\overline{a}	b	1/2	0	0	1/2
a	b'	1/2	0	0	1/2
a'	b	$1/2 \\ 1/2 \\ 1/2$	0	0	1/2
a'	b'	0	1/2	1/2	0

It is quantum realizable: $T(uv|XY) = \langle \psi | XY | \psi \rangle$ It is not classically realizable: $T(uv|XY) \neq \mu(XY = uv)$

Following [Abramsky 2011] we use CSPs to:

express/witness necessary conditions for classical realizability
 express/witness sufficient conditions for classical unrealizability
 hence, provide proofs of non-locality and contextuality.

PR-Box (possibilistic):

		00	01	10	11
a	b	1	0	0	1
a	b'	1	0	0	1
a'	b	1	0	0	1
a'	b'	0	1	0 0 0 1	0

 $\exists a \exists b \exists a' \exists b' (S_1(ab) \land S_1(ab') \land S_1(a'b) \land S_2(a'b'))$ $D = \{0, 1\},$ $\Gamma = \{S_1, S_2\}$ $S_1(XY) = \neg (X \oplus Y)$ $S_2(XY) = X \oplus Y$

Hardy (possibilistic):

		00	01	10	11
a	b	1	1	1	1
a	b'	0	1	1	1
a'	b	0	1	1	1
a'	b'	1	1	1 1 1 1	0

 $\exists a \exists b \exists a' \exists b' (R_1(ab) \land R_2(ab') \land R_2(a'b) \land R_3(a'b'))$

$$D = \{0, 1\},\$$

$$\Gamma = \{R_1, R_2, R_3\},\$$

$$R_1(XY) = 1,\$$

$$R_2(XY) = X \lor Y,\$$

$$R_3(XY) = \neg X \lor \neg Y.$$

GHZ (possibilistic):

					010					
a	b	c	1	0	0	1	0	1	1	0
a	b'	c'	0	1	1	0	1	0	0	1
a'	b	c'	0	1	0 1 1	0	1	0	0	1
a'	b'	c	0	1	1	0	1	0	0	1

 $\exists abca'b'c'(T_1(abc) \land T_2(ab'c') \land T_2(a'bc') \land T_2(a'bc') \land T_2(a'b'c))$

$$D = \{0, 1\},\$$

$$\Gamma = \{T_1, T_2\},\$$

$$T_1(XYZ) = \neg(X \oplus Y \oplus Z),\$$

$$T_2(XYZ) = X \oplus Y \oplus Z$$

18 Vector Kochen-Specker:

				1000	0100	0010	0001	0000	
\overline{a}	b	c	d	1	1	1	1	0	•••
a	e	f	g	1	1	1	1	0	•••
h	i	c	j	1	1	1	1	0	•••
h	k	g	l	1	1	1	1	0	• • •
b	e	m	n	1	1	1	1	0	
i	k	n	0	1	1	1	1	0	
p	q	d	j	1	1	1	1	0	
p	r	f	l	1	1	1	1	0	•••
q	r	m	0	1	1	1	1	0	

 $\exists ab \cdots r(U(abcd) \land U(aefg) \land \cdots \land U(qrmo))$

 $D = \{0, 1\},$ $\Gamma = \{U\}$ $U(XYZW) = \mathsf{ONE-IN-FOUR}(XYZW)$

STRUCTURE OF THE TALK

- Part I Feder-Vardi Dichotomy Conjecture (now Theorem!)
- Part II pp-definitions and closure operations
- Part III Post's Lattice and the 2-valued case
- Part IV pp-interpretations and the q-valued case
- Part V bounded width

Part VI quantum relaxations

Part I: Feder-Vardi Dichotomy Conjecture

 $\mathsf{CSP}(\Gamma)$: Given an instance Φ over Γ , does Φ have a solution satisfying all constraints?

Feder-Vardi Dichotomy Conjecture (1993):

For every constraint language Γ , $\mathsf{CSP}(\Gamma)$ is either in P or NP-complete.

A very short history:

- True for $\Gamma \in \mathsf{Two-valued}$ by
- True for $\Gamma \in \mathsf{Three-valued}$
- True for $\Gamma \in \text{Graphs}$ by
- by Schaefer 1978
- by Bulatov 2006
 - by Hell-Nesetril 1990
- True for $\Gamma \in \mathsf{Smooth}\text{-digraphs}$ by Barto-Kozik-Niven 2009

- ...

- True.

by Zhuk 2017, Bulatov 2017.

Part II: pp-definitions and closure operations

Primitive positive definitions (pp-definitions):

```
(X_1,\ldots,X_r) \in R \iff \exists Y_1 \cdots \exists Y_s (C_1(t_1) \land \cdots \land C_m(t_m))
```

where

each X_i and Y_i ranges over D; $V = \{X_i\}_{i=1}^r$ and $W = \{Y_i\}_{i=1}^s$ each $t_i \in (V \cup W \cup D)^{r_i}$ each $C_i \in \Gamma \cup \{=\}$

We say:

R is pp-definable in Γ .

Example 1 of pp-definition

Example 1:

$$-D = \{0, 1\},\$$

- Γ = 3-LIN := both 3-ary parity equations = { R_0, R_1 }
- pp-definition of 4-ary parity equations in $\Gamma :$

$$X_1 \oplus X_2 \oplus X_3 \oplus X_4 = a$$
$$\longleftrightarrow$$
$$\exists Y (X_1 \oplus X_2 \oplus Y = 0 \land Y \oplus X_3 \oplus X_4 = a)$$

Example 2 of pp-definition

Example 2:

$$-D = \{0, 1\},$$

- Γ = ONE-IN-THREE := { $R_{1/3}$ } where $R_{1/3}$:= {001, 010, 100},
- pp-definition of OR_2 in $\Gamma:$

$$\exists Y_1 \exists Y_2 \exists Y_3 (R_{1/3}(X_1, Y_1, 0) \land R_{1/3}(X_2, Y_2, 0) \land R_{1/3}(Y_1, Y_2, Y_3)).$$

Gadget pp-based reductions

Fact:

If R is pp-definable in Γ , then $\operatorname{CSP}(\Gamma \cup \{R\}) \leq_m^{\operatorname{L}} \operatorname{CSP}(\Gamma)$.

Proof:

Locally replace each R-constraint by its pp-definition. QED

Closure operation (a.k.a. polymorphism)

 $R \subseteq D^r$ is invariant under $f: D^k \to D$ if

whenever

$$(a_{1,1}, \cdots, a_{1,r}) \in R$$

$$\vdots \quad \ddots \quad \vdots$$

$$(a_{k,1}, \cdots, a_{k,r}) \in R$$

also

$$(f(a_{1,1},\ldots,a_{k,1}),\cdots,f(a_{1,r},\ldots,a_{k,r})) \in R$$

Example 0 of closure operation

- arbitrary D,
- arbitrary $R \subseteq D^r$,
- \boldsymbol{R} is invariant under all projections

$$\begin{array}{c} \operatorname{proj}_{k,i} : \{0,1\}^k \to \{0,1\} \\ (a_1,\ldots,a_k) \mapsto a_i \end{array}$$

Whenever

$$(a_{1,1},\ldots,a_{1,r}) \in R$$
$$(a_{2,1},\ldots,a_{2,r}) \in R$$
$$\vdots$$
$$(a_{k,1},\ldots,a_{k,r}) \in R$$

(obviously) also

 $(a_{i,1},\ldots,a_{i,r})\in R$

Example 1 of closure operation

$$-D = \{0, 1\},\-R = OR_2 = \{01, 10, 11\},\$$

– \boldsymbol{R} is invariant under any odd-arity majority

$$\begin{aligned} \text{maj}_{2k+1} &: \{0,1\}^{2k+1} \to \{0,1\} \\ (a_1,\ldots,a_{2k+1}) &\mapsto \text{majority}(a_1,\ldots,a_{2k+1}) \end{aligned}$$

Whenever

$$(a_1, b_1) \in OR_2$$
$$(a_2, b_2) \in OR_2$$
$$\vdots$$
$$(a_{2k+1}, b_{2k+1}) \in OR_2$$

also

 $(a,b) \in OR_2$

Example 2 of closure operation

$$D = \{0, 1\},\$$

 $-R_0 = "X_1 \oplus X_2 \oplus X_3 = 0"$ and $R_1 = "X_1 \oplus X_2 \oplus X_3 = 1",\$
 $-$ both R_0 and R_1 are invariant under any odd-arity parity

$$\operatorname{xor}_{2k+1} : \{0,1\}^{2k+1} \to \{0,1\} \\ (a_1,\ldots,a_{2k+1}) \mapsto a_1 \oplus \cdots \oplus a_{2k+1}$$

Whenever

$$a_1 \oplus b_1 \oplus c_1 = d$$

$$a_2 \oplus b_2 \oplus c_2 = d$$

$$\vdots$$

$$a_{2k+1} \oplus b_{2k+1} \oplus c_{2k+1} = d$$

also

$$a \oplus b \oplus c = d$$

Closure operations and pp-definability

Pol(R): set of all idempotent closure operations of RInv(f): set of all relations that are invariant under f

 $\operatorname{Pol}(R_1, R_2, \ldots) := \bigcap_i \operatorname{Pol}(R_i)$ $\operatorname{Inv}(f_1, f_2, \ldots) := \bigcap_i \operatorname{Inv}(f_i)$

Theorem [Geiger 1968, Bodnarchuk et al. 1969]:

R is pp-definable in Γ if and only if R is in $Inv(Pol(\Gamma))$. Example 1 application of Geiger's Theorem

Corollary:

 OR_2 is not pp-definable in 3-LIN.

Proof:

 OR_2 is not invariant under xor₃:

 $(0, 1) \in OR_2$ $(1, 0) \in OR_2$ $(1, 1) \in OR_2$

 $(0,0) \notin OR_2.$

Example 2 application of Geiger's Theorem

Corollary:

If $Pol(\Gamma) =$ "all the projections", then $Inv(Pol(\Gamma)) =$ "all the relations".

Reductions

Theorem [Jeavons]:

If $\operatorname{Pol}(\Gamma) \subseteq \operatorname{Pol}(\Gamma')$, then $\operatorname{CSP}(\Gamma') \leq_m^{\operatorname{L}} \operatorname{CSP}(\Gamma)$.

Corollary:

If $Pol(\Gamma)$ = "all the projections", then $CSP(\Gamma)$ is NP-complete. Part III: Post's Lattice and the 2-valued case

Theorem [Post 1941]

There are countably many sets $Inv(Pol(\Gamma))$ with $D = \{0, 1\}$. Moreover, they make a lattice under set inclusion. And we know who they are.

Post's lattice of closed sets of Boolean relations

Example 1 of application of Post's Lattice

Theorem [Schaefer 1978]: Let Γ have |D| = 2. Then $CSP(\Gamma)$ is in P if

every $R\in \Gamma$ is $ extsf{0-valid}$	(closed under 0),	or
every $R\in \Gamma$ is 1-valid	(closed under 1),	or
every $R\in \Gamma$ is bijunctive	(closed under maj ₃),	or
every $R\in \Gamma$ is Horn	(closed under and $_2$),	or
every $R\in \Gamma$ is dual-Horn	(closed under or_2),	or
every $R \in \Gamma$ is affine	(closed under xor_3).	

Else $CSP(\Gamma)$ is NP-complete.

Corollary:

ONE-IN-THREE-SAT is NP-complete

Part IV: pp-interpretations and the q-valued case

A pp-interpretation of (D',Γ') in (D,Γ) is:

- a partial surjective map
$$h: D^k \to D'$$
 s.t.
- $Dom(h)$ is pp-definable in Γ ,
- $h^{-1}(R)$ is pp-definable in Γ ,
- $h^{-1}(=)$ is pp-definable in Γ ,
- $h^{-1}(\{b\})$ is pp-definable in Γ for every $b \in D$.

Theorem [Bulatov-Jeavons-Krokhin 2005]:

If (D', Γ') is pp-interpretable in (D, Γ) , then $\operatorname{CSP}(\Gamma') \leq_m^{\operatorname{L}} \operatorname{CSP}(\Gamma)$.

Part V : Bounded width

Game-theoretic formulation:

Let Γ be a constraint language with |D| values. Let Φ be an instance over Γ with |V| variables. Fix an integer k, $1 \le k \le |V|$.

Local Consistency

Definition:

A CSP instance Φ is called *k*-locally-consistent if Duplicator has a winning strategy in the existential *k*-pebble game.

Observations:

- 1) |V|-locally-consistent = satisfiable
- 2) k + 1-locally-consistent $\Rightarrow k$ -locally-consistent
- 3) k-local-consistency is decidable in time $O(|D|^k|V|^k)$

Two more observations:

4) k-local-consistency $\Rightarrow \frac{k}{\text{arity}}$ -consistency [à la Abramsky et al] 5) but not at all vice-versa: the gap can be arbitrarily large.

Local Consistency

Algorithmic formulation:

- 1. Start with $H = \{h : V \to D \mid |\text{Dom}(h)| \le k\}.$
- 2. Remove each h from H that falsifies some constraint.
- 3. Remove each h from H such that

a. $\exists g \subseteq h$ with $g \notin H$, or

b. |Dom(h)| < k and $\exists x \in V$ with $h \cup \{x \mapsto b\} \notin H$ for all $b \in D$.

- 4. Repeat step 3 until H stabilizes.
- 5. If $H = \emptyset$, assert that Φ is unsatisfiable.
- 6. If $H \neq \emptyset$, say that Φ is k-locally-consistent.

Local Consistency

Equational formulation:

Variables:

A 0-1 variable X_h for each $h: V \to D \text{ w} / \text{Dom}(h) \leq k$.

Equations (over the Boolean algebra $(\{0,1\},\leq,\wedge,\vee)$):

$$\begin{array}{ll} X_h = 0 & \qquad \text{if } h \text{ falsifies some constraint} \\ X_h \leq X_g & \qquad \text{if } g \subseteq h \\ X_h \leq \bigvee_{b \in D} X_{h \cup \{x \mapsto b\}} & \qquad \text{if } |\text{Dom}(h)| < k \text{ and } x \in V \\ X_{\emptyset} \stackrel{?}{=} 1. \end{array}$$

Schaeffer's Theorem revisited

Theorem

Let Γ have |D| = 2. Then $CSP(\Gamma)$ is in P if

every $R\in \Gamma$ is $ extsf{0-valid}$	(bounded width),
every $R\in \Gamma$ is 1-valid	(bounded width),
every $R\in \Gamma$ is bijunctive	(bounded width),
every $R\in \Gamma$ is Horn	(bounded width),
every $R \in \Gamma$ is dual-Horn	(bounded width),
every $R\in \Gamma$ is affine	(NO bounded width).

or or or or or

Else $CSP(\Gamma)$ is NP-complete (NO bounded width).

Construction of *k*-locally-consistent instances **Tseitin construction** [T68]:

G is an undirected graph. $\sigma: V(G) \to \{0,1\} \text{ is a } 0\text{-}1 \text{ labelling of the nodes of } G.$

There is a variable at every edge. There is an equation at every node:

Observations:

1) each variable appears in exactly two equations 2) if $|\sigma^{-1}(1)|$ is odd, then the system is unsatisfiable.

Construction of k-locally-consistent instances

Theorem [A05]

If treewidth $(G) \ge k$ and Φ is a Tseitin instance based on G, then Φ is $\Omega(k)$ -locally-consistent.

Proof: Play the Robber-Cops game. QED

Other tractability criteria

- 1. Φ has bounded treewidth (bounded width)
- 2. $core(\Phi)$ has bounded treewidth (\equiv **bounded width**)
- 3. two occurrences and $\Gamma = \mathsf{ONE}\mathsf{-IN}\mathsf{-THREE}$
- 4. two occurrences and Γ is a $\Delta\text{-matroid}$

5. ...