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Constraint Satisfaction Problems (CSPs)

Domain of values and constraint language:

D = {b1, . . . , bq} where q ≥ 2,
Γ = {R1, R2, . . .} where Ri ⊆ Dri .

An instance over Γ:

∃X1 · · · ∃Xn(C1(t1) ∧ . . . ∧ Cm(tm))

where

each Xj is a D-valued variable; V = {X1, . . . , Xn}
each Cj ∈ Γ ∪ {=} is a constraint relation

each tj ∈ (V ∪D)rj is a constraint scope

The solution space:

f : V → D with f(tj) ∈ Cj for j = 1, . . . ,m.



Example 1:

System of linear equations over Z2:

X1 +X2 +X3 ≡ 0 (mod 2)
X2 +X4 +X5 ≡ 1 (mod 2)
X3 +X4 +X2 ≡ 1 (mod 2)

Here

D = {0, 1} and Γ = {R0, R1}

where

R0 = {(a, b, c) ∈ D3 : a+ b+ c ≡ 0 (mod 2)}
R1 = {(a, b, c) ∈ D3 : a+ b+ c ≡ 1 (mod 2)}



Example 2

Graph 3-colorability:

1

2

34

5

X1 6= X2

X2 6= X3

X3 6= X4 with Xi ∈ {•, •, •}
X4 6= X5

X5 6= X1

Here

D = {•, •, •} and Γ = {6=}.



CSP and Contextuality

Empirical models (example: the PR Box)

00 01 10 11

a b 1/2 0 0 1/2
a b′ 1/2 0 0 1/2
a′ b 1/2 0 0 1/2
a′ b′ 0 1/2 1/2 0

It is quantum realizable: T (uv|XY ) = 〈ψ|XY |ψ〉
It is not classically realizable: T (uv|XY ) 6= µ(XY = uv)

Following [Abramsky 2011] we use CSPs to:

1) express/witness necessary conditions for classical realizability
2) express/witness sufficient conditions for classical unrealizability
3) hence, provide proofs of non-locality and contextuality.



Possibilistic Empirical Models and CSPs

PR-Box (possibilistic):

00 01 10 11

a b 1 0 0 1
a b′ 1 0 0 1
a′ b 1 0 0 1
a′ b′ 0 1 1 0

∃a∃b∃a′∃b′(S1(ab) ∧ S1(ab′) ∧ S1(a′b) ∧ S2(a′b′))

D = {0, 1},
Γ = {S1, S2}
S1(XY ) = ¬(X ⊕ Y )
S2(XY ) = X ⊕ Y



Possibilistic Empirical Models and CSPs

Hardy (possibilistic):

00 01 10 11

a b 1 1 1 1
a b′ 0 1 1 1
a′ b 0 1 1 1
a′ b′ 1 1 1 0

∃a∃b∃a′∃b′(R1(ab) ∧R2(ab
′) ∧R2(a

′b) ∧R3(a
′b′))

D = {0, 1},
Γ = {R1, R2, R3}
R1(XY ) = 1
R2(XY ) = X ∨ Y
R3(XY ) = ¬X ∨ ¬Y .



Possibilistic Empirical Models and CSPs

GHZ (possibilistic):

000 001 010 011 100 101 110 111

a b c 1 0 0 1 0 1 1 0
a b′ c′ 0 1 1 0 1 0 0 1
a′ b c′ 0 1 1 0 1 0 0 1
a′ b′ c 0 1 1 0 1 0 0 1

∃abca′b′c′(T1(abc) ∧ T2(ab′c′) ∧ T2(a′bc′) ∧ T2(a′bc′) ∧ T2(a′b′c))

D = {0, 1},
Γ = {T1, T2}
T1(XY Z) = ¬(X ⊕ Y ⊕ Z)
T2(XY Z) = X ⊕ Y ⊕ Z



Possibilistic Empirical Models and CSPs
18 Vector Kochen-Specker:

1000 0100 0010 0001 0000 · · ·
a b c d 1 1 1 1 0 · · ·
a e f g 1 1 1 1 0 · · ·
h i c j 1 1 1 1 0 · · ·
h k g l 1 1 1 1 0 · · ·
b e m n 1 1 1 1 0 · · ·
i k n o 1 1 1 1 0 · · ·
p q d j 1 1 1 1 0 · · ·
p r f l 1 1 1 1 0 · · ·
q r m o 1 1 1 1 0 · · ·

∃ab · · · r(U(abcd) ∧ U(aefg) ∧ · · · ∧ U(qrmo))

D = {0, 1},
Γ = {U}
U(XY ZW ) = ONE-IN-FOUR(XY ZW )



STRUCTURE OF THE TALK

Part I Feder-Vardi Dichotomy Conjecture (now Theorem!)
Part II pp-definitions and closure operations
Part III Post’s Lattice and the 2-valued case
Part IV pp-interpretations and the q-valued case
Part V bounded width
Part VI quantum relaxations



Part I: Feder-Vardi Dichotomy Conjecture

CSP(Γ): Given an instance Φ over Γ, does Φ have a solution
satisfying all constraints?

Feder-Vardi Dichotomy Conjecture (1993):

For every constraint language Γ,
CSP(Γ) is either in P or NP-complete.

A very short history:

– True for Γ ∈ Two-valued by Schaefer 1978
– True for Γ ∈ Three-valued by Bulatov 2006
– True for Γ ∈ Graphs by Hell-Nesetril 1990
– True for Γ ∈ Smooth-digraphs by Barto-Kozik-Niven 2009
– ...
– True. by Zhuk 2017, Bulatov 2017.



Part II: pp-definitions and closure operations

Primitive positive definitions (pp-definitions):

(X1, . . . , Xr) ∈ R ⇐⇒ ∃Y1 · · · ∃Ys(C1(t1) ∧ · · · ∧ Cm(tm))

where

each Xi and Yi ranges over D; V = {Xi}ri=1 and W = {Yi}si=1

each ti ∈ (V ∪W ∪D)ri

each Ci ∈ Γ ∪ {=}

We say:

R is pp-definable in Γ.



Example 1 of pp-definition

Example 1:

– D = {0, 1},
– Γ = 3-LIN := both 3-ary parity equations = {R0, R1}
– pp-definition of 4-ary parity equations in Γ:

X1 ⊕X2 ⊕X3 ⊕X4 = a
⇐⇒

∃Y (X1 ⊕X2 ⊕ Y = 0 ∧ Y ⊕X3 ⊕X4 = a)



Example 2 of pp-definition

Example 2:

– D = {0, 1},
– Γ = ONE-IN-THREE := {R1/3} where R1/3 := {001, 010, 100},
– pp-definition of OR2 in Γ:

X1 ∨X2

⇐⇒
∃Y1∃Y2∃Y3(R1/3(X1, Y1, 0) ∧R1/3(X2, Y2, 0) ∧R1/3(Y1, Y2, Y3)).



Gadget pp-based reductions

Fact:

If R is pp-definable in Γ,
then CSP(Γ ∪ {R}) ≤L

m CSP(Γ).

Proof:

Locally replace each R-constraint by its pp-definition. QED



Closure operation (a.k.a. polymorphism)

R ⊆ Dr is invariant under f : Dk → D if

whenever

(a1,1, · · · , a1,r) ∈ R
...

. . .
...

(ak,1, · · · , ak,r) ∈ R

also

(f(a1,1, . . . , ak,1), · · · , f(a1,r, . . . , ak,r)) ∈ R



Example 0 of closure operation

– arbitrary D,
– arbitrary R ⊆ Dr,
– R is invariant under all projections

projk,i : {0, 1}k → {0, 1}
(a1, . . . , ak) 7→ ai

Whenever

(a1,1, . . . , a1,r) ∈ R
(a2,1, . . . , a2,r) ∈ R

...
(ak,1, . . . , ak,r) ∈ R

(obviously) also

(ai,1, . . . , ai,r) ∈ R



Example 1 of closure operation

– D = {0, 1},
– R = OR2 = {01, 10, 11},
– R is invariant under any odd-arity majority

maj2k+1 : {0, 1}2k+1 → {0, 1}
(a1, . . . , a2k+1) 7→ majority(a1, . . . , a2k+1)

Whenever

(a1, b1) ∈ OR2

(a2, b2) ∈ OR2
...

(a2k+1, b2k+1) ∈ OR2

also

(a, b) ∈ OR2



Example 2 of closure operation

– D = {0, 1},
– R0 = “X1 ⊕X2 ⊕X3 = 0” and R1 = ”X1 ⊕X2 ⊕X3 = 1”,
– both R0 and R1 are invariant under any odd-arity parity

xor2k+1 : {0, 1}2k+1 → {0, 1}
(a1, . . . , a2k+1) 7→ a1 ⊕ · · · ⊕ a2k+1

Whenever

a1 ⊕ b1 ⊕ c1 = d
a2 ⊕ b2 ⊕ c2 = d

...
a2k+1 ⊕ b2k+1 ⊕ c2k+1 = d

also

a⊕ b⊕ c = d



Closure operations and pp-definability

Pol(R): set of all idempotent closure operations of R
Inv(f): set of all relations that are invariant under f

Pol(R1, R2, . . .) :=
⋂

i Pol(Ri)
Inv(f1, f2, . . .) :=

⋂
i Inv(fi)

Theorem [Geiger 1968, Bodnarchuk et al. 1969]:

R is pp-definable in Γ
if and only if

R is in Inv(Pol(Γ)).



Example 1 application of Geiger’s Theorem

Corollary:

OR2 is not pp-definable in 3-LIN.

Proof:

OR2 is not invariant under xor3:

(0, 1) ∈ OR2

(1, 0) ∈ OR2

(1, 1) ∈ OR2

—————————
(0, 0) 6∈ OR2.



Example 2 application of Geiger’s Theorem

Corollary:

If Pol(Γ) = “all the projections”,
then Inv(Pol(Γ)) = “all the relations”.



Reductions

Theorem [Jeavons]:

If Pol(Γ) ⊆ Pol(Γ′),
then CSP(Γ′) ≤L

m CSP(Γ).

Corollary:

If Pol(Γ) = “all the projections”,
then CSP(Γ) is NP-complete.



Part III: Post’s Lattice and the 2-valued case

Theorem [Post 1941]

There are countably many sets Inv(Pol(Γ)) with D = {0, 1}.
Moreover, they make a lattice under set inclusion.

And we know who they are.



Post’s lattice of closed sets of Boolean relations



Example 1 of application of Post’s Lattice

Theorem [Schaefer 1978]:
Let Γ have |D| = 2.
Then CSP(Γ) is in P if

every R ∈ Γ is 0-valid (closed under 0), or
every R ∈ Γ is 1-valid (closed under 1), or
every R ∈ Γ is bijunctive (closed under maj3), or
every R ∈ Γ is Horn (closed under and2), or
every R ∈ Γ is dual-Horn (closed under or2), or
every R ∈ Γ is affine (closed under xor3).

Else CSP(Γ) is NP-complete.

Corollary:

ONE-IN-THREE-SAT is NP-complete



Part IV: pp-interpretations and the q-valued case

A pp-interpretation of (D′,Γ′) in (D,Γ) is:

– a partial surjective map h : Dk → D′ s.t.
– Dom(h) is pp-definable in Γ,
– h−1(R) is pp-definable in Γ,
– h−1(=) is pp-definable in Γ,
– h−1({b}) is pp-definable in Γ for every b ∈ D.

Theorem [Bulatov-Jeavons-Krokhin 2005]:

If (D′,Γ′) is pp-interpretable in (D,Γ),
then CSP(Γ′) ≤L

m CSP(Γ).



Part V : Bounded width
Game-theoretic formulation:
Let Γ be a constraint language with |D| values.
Let Φ be an instance over Γ with |V | variables.
Fix an integer k, 1 ≤ k ≤ |V |.

Φ Γ



Local Consistency

Definition:

A CSP instance Φ is called k-locally-consistent if
Duplicator has a winning strategy in the existential k-pebble game.

Observations:

1) |V |-locally-consistent = satisfiable
2) k + 1-locally-consistent ⇒ k-locally-consistent
3) k-local-consistency is decidable in time O(|D|k|V |k)

Two more observations:

4) k-local-consistency ⇒ k
arity -consistency [à la Abramsky et al]

5) but not at all vice-versa: the gap can be arbitrarily large.



Local Consistency

Algorithmic formulation:

1. Start with H = {h : V → D | |Dom(h)| ≤ k}.
2. Remove each h from H that falsifies some constraint.
3. Remove each h from H such that

a. ∃g ⊆ h with g 6∈ H, or
b. |Dom(h)| < k and ∃x ∈ V with h ∪ {x 7→ b} 6∈ H for all b ∈ D.

4. Repeat step 3 until H stabilizes.
5. If H = ∅, assert that Φ is unsatisfiable.
6. If H 6= ∅, say that Φ is k-locally-consistent.



Local Consistency

Equational formulation:

Variables:

A 0-1 variable Xh for each h : V → D w/ Dom(h) ≤ k.

Equations (over the Boolean algebra ({0, 1},≤,∧,∨)):

Xh = 0 if h falsifies some constraint
Xh ≤ Xg if g ⊆ h
Xh ≤

∨
b∈DXh∪{x7→b} if |Dom(h)| < k and x ∈ V

X∅
?
= 1.



Schaeffer’s Theorem revisited

Theorem
Let Γ have |D| = 2.
Then CSP(Γ) is in P if

every R ∈ Γ is 0-valid (bounded width), or
every R ∈ Γ is 1-valid (bounded width), or
every R ∈ Γ is bijunctive (bounded width), or
every R ∈ Γ is Horn (bounded width), or
every R ∈ Γ is dual-Horn (bounded width), or
every R ∈ Γ is affine (NO bounded width).

Else CSP(Γ) is NP-complete (NO bounded width).



Construction of k-locally-consistent instances
Tseitin construction [T68]:

G is an undirected graph.
σ : V (G)→ {0, 1} is a 0-1 labelling of the nodes of G.

There is a variable at every edge.
There is an equation at every node:

X Y

Z

u =⇒ X ⊕ Y ⊕ Z = σ(u)

Observations:

1) each variable appears in exactly two equations
2) if |σ−1(1)| is odd, then the system is unsatisfiable.



Construction of k-locally-consistent instances

Theorem [A05]

If treewidth(G) ≥ k and Φ is a Tseitin instance based on G,
then Φ is Ω(k)-locally-consistent.

Proof: Play the Robber-Cops game. QED



Other tractability criteria

1. Φ has bounded treewidth (bounded width)
2. core(Φ) has bounded treewidth (≡ bounded width)
3. two occurrences and Γ = ONE-IN-THREE
4. two occurrences and Γ is a ∆-matroid
5. ...


