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Constraint Satisfaction Problems (CSPs)

Domain of values and constraint language:

D ={by,...,by} where ¢ > 2,
= {Rl,RQ, .. } where Rz g D",

An instance over I':

where
each X is a D-valued variable; V = {X1,..., X,,}
each Cj e ' U {=} is a constraint relation
each t; € (VU D)™ is a constraint scope

The solution space:

f:V—=D with f(t;)eC; forj=1,...,m.



Example 1:

System of linear equations over Zo:

X1+X2+X3 = O(mod 2)

Xo+ X4+ X5 = 1(mod?2)

X3+X4—|—X2 = 1 (mod 2)
Here

D = {0, 1} and I' = {Ro,Rl}
where

Ry = {(a,b,c)eD?:a+b+c=0(mod2)}
R, = {(a,bc)eD?:a+b+c=1(mod2)}



Example 2

Graph 3-colorability:

Here

X1 # Xo
Xo # X3
X3 # Xy
X4 # X5
X5 # X1

D = {o,

with X; € {e, 0,0}

,o} and ' = {#}.



CSP and Contextuality

Empirical models (example: the PR Box)

00 01 10 11
a b[1/2 0 0 1/2
a U |1/2 0 0 1/2
a b|1/2 0 0 1/2
a V|0 1/2 1/2 0

It is quantum realizable: T(uw|XY) = (Y| XY|)
It is not classically realizable: T'(uv|XY) # u(XY = uv)

Following [Abramsky 2011] we use CSPs to:
1) express/witness necessary conditions for classical realizability

2) express/witness sufficient conditions for classical unrealizability
3) hence, provide proofs of non-locality and contextuality.



Possibilistic Empirical Models and CSPs

PR-Box (possibilistic):

|00 01 10 11

a b |1 0 0 1
a V|1 0 0 1
ad b1 0 0 1
a V|0 1 1 0

Ja3bIa'3b' (S1(ab) A S1(ab’) A S1(a’b) A So(a't'))

D ={0,1},

T ={S,5,}
S1(XY)=~(XaY)
Sy (XY)=XBY



Possibilistic Empirical Models and CSPs

Hardy (possibilistic):

|00 01 10 11

e b1 1 1 1
a V|0 1 1 1
a b0 1 1 1
ad b|1 1 1 0

Ja3b3a’W' (R1(ab) A Ro(ab’) A Ra(a’b) A R3(a'b'))

D ={0,1},

I'= {Rla R?) R3}
Ri(XY) =1
Ro(XY)= X VY
Ry(XY) = =X VY.



Possibilistic Empirical Models and CSPs
GHZ (possibilistic):

[ 000 001 010 011 100 101 110 111
a b c 1 0 0 1 0 1 1 0
a bV |0 1 1 0 1 0 0 1
@ b 0 1 1 o0 1 0 0 1
a v c¢| 0 1 1 0 1 0 0 1

Jabea't'd (T1 (abe) A To(ab' ) A Ta(a’bc’) A Ta(a'bc’) A To(a'V c))

D = {0,1},

I ={Ty, Ty}
TW(XYZ)=~(X®Y ® Z)
T(XYZ)=XBY & Z



Possibilistic Empirical Models and CSPs
18 Vector Kochen-Specker:

1000 0100 0010 0001 0000

(@)
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Jdab---r(U(abed) AU (aefg) A--- AU(qgrmo))
D ={0,1},
I'={U}
U(XY ZW) = ONE-IN-FOUR(XY ZW)
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Part |: Feder-Vardi Dichotomy Conjecture

CSP(I"): Given an instance ® over I, does ® have a solution
satisfying all constraints?

Feder-Vardi Dichotomy Conjecture (1993):

For every constraint language T,
CSP(I) is either in P or NP-complete.

A very short history:

— True for I' € Two-valued by Schaefer 1978
— True for I' € Three-valued by Bulatov 2006
— True for I' € Graphs by Hell-Nesetril 1990

— True for ' € Smooth-digraphs by Barto-Kozik-Niven 2009

— True. by Zhuk 2017, Bulatov 2017.



Part |l: pp-definitions and closure operations

Primitive positive definitions (pp-definitions):

where

each X; and Y] ranges over D; V = {X;}/_, and W = {Y;};_;
each t; € (VUWUD)"
each C; e TU{=}

We say:

R is pp-definable in T'.



Example 1 of pp-definition

Example 1:

- D =1{0,1},
— I' = 3-LIN := both 3-ary parity equations = { Ry, R1}
— pp-definition of 4-ary parity equations in I':

X160 Xo®d XsbXy=0a
<
WX B Xo®BY =0AY & X3 B Xy = a)



Example 2 of pp-definition

Example 2:

-D= {07 1}1
—I' = ONE-IN-THREE := { R, /3} where R, 3 := {001,010, 100},
— pp-definition of ORy in I":

X1V Xy
—
FY13Y23Y3(Ry /3(X1, Y1,0) A Ry y3(Xa, Y2,0) A Ryy3(Y1, Y2, Y3)).



Gadget pp-based reductions

Fact:
If R is pp-definable in T,
then CSP(I" U {R}) <L CSP(T).
Proof:

Locally replace each R-constraint by its pp-definition. QED



Closure operation (a.k.a. polymorphism)

R C D" is invariant under f : D* — D if

whenever

(a11,--+, a1,) € R
(ag1,- -+, ag,) € R
also

(f(al,l, e ,ak’l), cee ,f(al,r, e ,ak’r)) < R



Example O of closure operation

— arbitrary D,
— arbitrary R C DT,
— R is invariant under all projections

projy, ; : {0, 1}* — {0,1}
(al,...,ak) — a;

Whenever
(a1,1,...,a1,) €R
(0271, .. ,a/277-) €ER
(akJ, - ,akm) €R
(obviously) also

(a’i,la s 7ai,7“) €R



Example 1 of closure operation

- D ={0,1},
- R =ORy = {01,10,11},
— R is invariant under any odd-arity majority

maj2k+1 : {07 1}2k+1 — {07 1}

(a1,...,ask+1) — majority(ay, ..., ask+1)
Whenever
(a1,b1) € ORy
(ag2,b2) € ORy
(agk+1, b2k+.1) € OR»
also

(a, b) € OR2



Example 2 of closure operation

- D ={0,1},
—Ry="X19XoPpX3=0"and R ="X19 X X3=1",
— both Ry and R; are invariant under any odd-arity parity

XO0I2k 41 {0, 1}2k+1 — {0, 1}

(a1,...,a0641) = a1 & - - B aggy1
Whenever
a1 by der=d
a2 B by Pca=d
agk+1 O 52k+1.@ Copr1 =d
also

adbdc=d



Closure operations and pp-definability

Pol(R): set of all idempotent closure operations of R
Inv(f): set of all relations that are invariant under f

Pol(R1, Ry, ...) := ; Pol(R;)
Inv(f1, fa,...) = ; Inv(f;)

Theorem [Geiger 1968, Bodnarchuk et al. 1969]:

R is pp-definable in I’
if and only if
R is in Inv(Pol(I")).



Example 1 application of Geiger's Theorem

Corollary:

OR; is not pp-definable in 3-LIN.

Proof:

OR5 is not invariant under xors:

(0, 1) € OR»
(1,0) € ORo
(1, 1) € OR2

(0,0) ¢ ORy.



Example 2 application of Geiger's Theorem

Corollary:

If Pol(T") = “all the projections”,
then Inv(Pol(T")) = “all the relations”.



Reductions

Theorem [Jeavons|:
If Pol(T") C Pol(T),
then CSP(I") <L CSP(T).
Corollary:

If Pol(I") = “all the projections”,
then CSP(T") is NP-complete.



Part Ill: Post's Lattice and the 2-valued case

Theorem [Post 1941]

There are countably many sets Inv(Pol(T")) with D = {0, 1}.
Moreover, they make a lattice under set inclusion.
And we know who they are.



Post's lattice of closed sets of Boolean relations

o
7 SN

e,
@//A..o?@o%.@..o.@@?/ §




Example 1 of application of Post's Lattice

Theorem [Schaefer 1978]:
Let T have |D| = 2.
Then CSP(T) is in P if

every R € I is 0-valid (closed under 0),
every R € I' is 1-valid (closed under 1),
every R € I' is bijunctive (closed under majs),

every R € I is Horn (closed under andy),
every R € I is dual-Horn  (closed under ors),
every R € I is affine (closed under xors).

Else CSP(I") is NP-complete.

Corollary:

ONE-IN-THREE-SAT is NP-complete

or
or
or
or
or



Part IV: pp-interpretations and the g-valued case

A pp-interpretation of (D', T”) in (D,T) is:

— a partial surjective map h: DF — D’ s.t.

— Dom(h) is pp-definable in T,

- h=Y(R) is pp-definable in T,

- h=Y(=) is pp-definable in T,

— h=({b}) is pp-definable in T" for every b € D.

Theorem [Bulatov-Jeavons-Krokhin 2005]:

If (D',T") is pp-interpretable in (D, T),
then CSP(I") <L CSP(T).



Part V : Bounded width

Game-theoretic formulation:
Let ' be a constraint language with | D| values.
Let @ be an instance over I" with |V variables.
Fix an integer k, 1 <k < |V|.



Local Consistency

Definition:

A CSP instance ® is called k-locally-consistent if
Duplicator has a winning strategy in the existential k-pebble game.

Observations:

1) |V|-locally-consistent = satisfiable
2) k + 1-locally-consistent = k-locally-consistent
3) k-local-consistency is decidable in time O(|D|*|V|¥)

Two more observations:

4) k-local-consistency = ar’fty—consistency [a la Abramsky et al]

5) but not at all vice-versa: the gap can be arbitrarily large.




Local Consistency

Algorithmic formulation:

N

o

Start with H = {h : V — D | |Dom(h)| < k}.
Remove each h from H that falsifies some constraint.
Remove each h from H such that
a. 39 C h with g € H, or
b. |Dom(h)| < k and 3z € V with hU {x — b} ¢ H for all b € D.
Repeat step 3 until H stabilizes.
If H = (), assert that ® is unsatisfiable.
If H # (), say that ® is k-locally-consistent.



Local Consistency

Equational formulation:

Variables:

A 0-1 variable X}, for each h: V — D w/ Dom(h) < k.

Equations (over the Boolean algebra ({0,1}, <, A, V)):
X,=0 if h falsifies some constraint
X < X, ifgCh
X < \/bED XhU{be} if \Dom(h)] <kandz eV

)
Xp=1.



Schaeffer's Theorem revisited

Theorem
Let I' have |D| = 2.
Then CSP(T) is in P if

every R € T is 0-valid (bounded width),
every R € I' is 1-valid (bounded width
every R € I' is bijunctive (bounded width
every R € I' is Horn (bounded width),
every R € T' is dual-Horn  (bounded width),

)
).
)
)

every R € I' is affine (NO bounded width).

Else CSP(I") is NP-complete (NO bounded width).

or
or
or
or
or



Construction of k-locally-consistent instances
Tseitin construction [T68]:

G is an undirected graph.
o0 :V(G) — {0,1} is a 0-1 labelling of the nodes of G.

There is a variable at every edge.
There is an equation at every node:

= XY Z=0(u)

Observations:

1) each variable appears in exactly two equations
2) if [o~1(1)] is odd, then the system is unsatisfiable.



Construction of k-locally-consistent instances

Theorem [A05]

If treewidth(G) > k and @ is a Tseitin instance based on G,
then @ is Q(k)-locally-consistent.

Proof: Play the Robber-Cops game. QED



Other tractability criteria

1. ® has bounded treewidth (bounded width)

2. core(®) has bounded treewidth (= bounded width)
3. two occurrences and I' = ONE-IN-THREE

4. two occurrences and I is a A-matroid



