## CONSTRAINT SATISFACTION PROBLEMS INCLUDING QUANTUM RELAXATIONS

## A TUTORIAL

Albert Atserias
Universitat Politècnica de Catalunya Barcelona

## CONSTRAINT SATISFACTION PROBLEMS INCLUDING QUANTUM RELAXATIONS <br> ALGORITHMIC HIERARCHIES A TUTORIAL

Albert Atserias
Universitat Politècnica de Catalunya Barcelona

## Constraint Satisfaction Problems (CSPs)

Domain of values and constraint language:

$$
\begin{aligned}
& D=\left\{b_{1}, \ldots, b_{q}\right\} \text { where } q \geq 2 \\
& \Gamma=\left\{R_{1}, R_{2}, \ldots\right\} \text { where } R_{i} \subseteq D^{r_{i}} .
\end{aligned}
$$

An instance over $\Gamma$ :

$$
\exists X_{1} \cdots \exists X_{n}\left(C_{1}\left(t_{1}\right) \wedge \ldots \wedge C_{m}\left(t_{m}\right)\right)
$$

where each $X_{j}$ is a $D$-valued variable; $V=\left\{X_{1}, \ldots, X_{n}\right\}$
each $C_{j} \in \Gamma \cup\{=\}$ is a constraint relation
each $t_{j} \in(V \cup D)^{r_{j}}$ is a constraint scope

The solution space:

$$
f: V \rightarrow D \quad \text { with } \quad f\left(t_{j}\right) \in C_{j} \quad \text { for } j=1, \ldots, m
$$

## Example 1:

System of linear equations over $\mathbb{Z}_{2}$ :

$$
\begin{aligned}
X_{1}+X_{2}+X_{3} & \equiv 0(\bmod 2) \\
X_{2}+X_{4}+X_{5} & \equiv 1(\bmod 2) \\
X_{3}+X_{4}+X_{2} & \equiv 1(\bmod 2)
\end{aligned}
$$

Here

$$
D=\{0,1\} \text { and } \Gamma=\left\{R_{0}, R_{1}\right\}
$$

where

$$
\begin{aligned}
& R_{0}=\left\{(a, b, c) \in D^{3}: a+b+c \equiv 0(\bmod 2)\right\} \\
& R_{1}=\left\{(a, b, c) \in D^{3}: a+b+c \equiv 1(\bmod 2)\right\}
\end{aligned}
$$

## Example 2

Graph 3-colorability:


$$
\begin{aligned}
& X_{1} \neq X_{2} \\
& X_{2} \neq X_{3} \\
& X_{3} \neq X_{4} \quad \text { with } X_{i} \in\{\bullet, \bullet, \bullet\} \\
& X_{4} \neq X_{5} \\
& X_{5} \neq X_{1}
\end{aligned}
$$

Here

$$
D=\{\bullet, \bullet, \bullet\} \text { and } \Gamma=\{\neq\} .
$$

## CSP and Contextuality

Empirical models (example: the PR Box)

|  |  | 00 | 01 | 10 | 11 |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $a$ | $b$ | $1 / 2$ | 0 | 0 | $1 / 2$ |
| $a$ | $b^{\prime}$ | $1 / 2$ | 0 | 0 | $1 / 2$ |
| $a^{\prime}$ | $b$ | $1 / 2$ | 0 | 0 | $1 / 2$ |
| $a^{\prime}$ | $b^{\prime}$ | 0 | $1 / 2$ | $1 / 2$ | 0 |

It is quantum realizable: $\quad T(u v \mid X Y)=\langle\psi| X Y|\psi\rangle$
It is not classically realizable: $T(u v \mid X Y) \neq \mu(X Y=u v)$

Following [Abramsky 2011] we use CSPs to:

1) express/witness necessary conditions for classical realizability
2) express/witness sufficient conditions for classical unrealizability
3) hence, provide proofs of non-locality and contextuality.

## Possibilistic Empirical Models and CSPs

PR-Box (possibilistic):

|  |  | 00 | 01 | 10 | 11 |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $a$ | $b$ | 1 | 0 | 0 | 1 |
| $a$ | $b^{\prime}$ | 1 | 0 | 0 | 1 |
| $a^{\prime}$ | $b$ | 1 | 0 | 0 | 1 |
| $a^{\prime}$ | $b^{\prime}$ | 0 | 1 | 1 | 0 |

$$
\exists a \exists b \exists a^{\prime} \exists b^{\prime}\left(S_{1}(a b) \wedge S_{1}\left(a b^{\prime}\right) \wedge S_{1}\left(a^{\prime} b\right) \wedge S_{2}\left(a^{\prime} b^{\prime}\right)\right)
$$

$$
\begin{aligned}
& D=\{0,1\} \\
& \Gamma=\left\{S_{1}, S_{2}\right\} \\
& S_{1}(X Y)=\neg(X \oplus Y) \\
& S_{2}(X Y)=X \oplus Y
\end{aligned}
$$

## Possibilistic Empirical Models and CSPs

Hardy (possibilistic):

$$
\begin{aligned}
& \exists a \exists b \exists a^{\prime} \exists b^{\prime}\left(R_{1}(a b) \wedge R_{2}\left(a b^{\prime}\right) \wedge R_{2}\left(a^{\prime} b\right) \wedge R_{3}\left(a^{\prime} b^{\prime}\right)\right) \\
& D=\{0,1\} \text {, } \\
& \Gamma=\left\{R_{1}, R_{2}, R_{3}\right\} \\
& R_{1}(X Y)=1 \\
& R_{2}(X Y)=X \vee Y \\
& R_{3}(X Y)=\neg X \vee \neg Y \text {. }
\end{aligned}
$$

## Possibilistic Empirical Models and CSPs

## GHZ (possibilistic):

|  |  |  | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ | $b$ | $c$ | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
| $a$ | $b^{\prime}$ | $c^{\prime}$ | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| $a^{\prime}$ | $b$ | $c^{\prime}$ | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| $a^{\prime}$ | $b^{\prime}$ | $c$ | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |

$\exists a b c a^{\prime} b^{\prime} c^{\prime}\left(T_{1}(a b c) \wedge T_{2}\left(a b^{\prime} c^{\prime}\right) \wedge T_{2}\left(a^{\prime} b c^{\prime}\right) \wedge T_{2}\left(a^{\prime} b c^{\prime}\right) \wedge T_{2}\left(a^{\prime} b^{\prime} c\right)\right)$

$$
\begin{aligned}
& D=\{0,1\} \\
& \Gamma=\left\{T_{1}, T_{2}\right\} \\
& T_{1}(X Y Z)=\neg(X \oplus Y \oplus Z) \\
& T_{2}(X Y Z)=X \oplus Y \oplus Z
\end{aligned}
$$

## Possibilistic Empirical Models and CSPs

## 18 Vector Kochen-Specker:

|  |  |  |  | 1000 | 0100 | 0010 | 0001 | 0000 | $\cdots$ |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ | $b$ | $c$ | $d$ | 1 | 1 | 1 | 1 | 0 | $\cdots$ |
| $a$ | $e$ | $f$ | $g$ | 1 | 1 | 1 | 1 | 0 | $\cdots$ |
| $h$ | $i$ | $c$ | $j$ | 1 | 1 | 1 | 1 | 0 | $\cdots$ |
| $h$ | $k$ | $g$ | $l$ | 1 | 1 | 1 | 1 | 0 | $\cdots$ |
| $b$ | $e$ | $m$ | $n$ | 1 | 1 | 1 | 1 | 0 | $\cdots$ |
| $i$ | $k$ | $n$ | $o$ | 1 | 1 | 1 | 1 | 0 | $\cdots$ |
| $p$ | $q$ | $d$ | $j$ | 1 | 1 | 1 | 1 | 0 | $\cdots$ |
| $p$ | $r$ | $f$ | $l$ | 1 | 1 | 1 | 1 | 0 | $\cdots$ |
| $q$ | $r$ | $m$ | $o$ | 1 | 1 | 1 | 1 | 0 | $\cdots$ |

$$
\exists a b \cdots r(U(a b c d) \wedge U(\operatorname{aefg}) \wedge \cdots \wedge U(q r m o))
$$

$D=\{0,1\}$,
$\Gamma=\{U\}$
$U(X Y Z W)=$ ONE-IN-FOUR $(X Y Z W)$

## STRUCTURE OF THE TALK

| Part I | Feder-Vardi Dichotomy Conjecture (now Theorem!) |
| :--- | :--- |
| Part II | pp-definitions and closure operations |
| Part III | Post's Lattice and the 2-valued case |
| Part IV | pp-interpretations and the $q$-valued case |
| Part V | bounded width |

## Part I: Feder-Vardi Dichotomy Conjecture

$\operatorname{CSP}(\Gamma)$ : Given an instance $\Phi$ over $\Gamma$, does $\Phi$ have a solution satisfying all constraints?

## Feder-Vardi Dichotomy Conjecture (1993):

For every constraint language $\Gamma$, $\operatorname{CSP}(\Gamma)$ is either in P or NP-complete.

A very short history:

- True for $\Gamma \in$ Two-valued by Schaefer 1978
- True for $\Gamma \in$ Three-valued by Bulatov 2006
- True for $\Gamma \in$ Graphs by Hell-Nesetril 1990
- True for $\Gamma \in$ Smooth-digraphs by Barto-Kozik-Niven 2009
- ...
- True.
by Zhuk 2017, Bulatov 2017.


## Part II: pp-definitions and closure operations

Primitive positive definitions (pp-definitions):

$$
\left(X_{1}, \ldots, X_{r}\right) \in R \Longleftrightarrow \exists Y_{1} \cdots \exists Y_{s}\left(C_{1}\left(t_{1}\right) \wedge \cdots \wedge C_{m}\left(t_{m}\right)\right)
$$

where

$$
\begin{aligned}
& \text { each } X_{i} \text { and } Y_{i} \text { ranges over } D ; V=\left\{X_{i}\right\}_{i=1}^{r} \text { and } W=\left\{Y_{i}\right\}_{i=1}^{s} \\
& \text { each } t_{i} \in(V \cup W \cup D)^{r_{i}} \\
& \text { each } C_{i} \in \Gamma \cup\{=\}
\end{aligned}
$$

We say:
$R$ is pp-definable in $\Gamma$.

## Example 1 of pp-definition

Example 1:

- $D=\{0,1\}$,
$-\Gamma=3$-LIN $:=$ both 3 -ary parity equations $=\left\{R_{0}, R_{1}\right\}$
- pp-definition of 4-ary parity equations in $\Gamma$ :

$$
\begin{gathered}
X_{1} \oplus X_{2} \oplus X_{3} \oplus X_{4}=a \\
\Longleftrightarrow \\
\exists Y\left(X_{1} \oplus X_{2} \oplus Y=0 \wedge Y \oplus X_{3} \oplus X_{4}=a\right)
\end{gathered}
$$

## Example 2 of pp-definition

Example 2:

- $D=\{0,1\}$,
- $\Gamma=$ ONE-IN-THREE $:=\left\{R_{1 / 3}\right\}$ where $R_{1 / 3}:=\{001,010,100\}$,
- pp-definition of $\mathrm{OR}_{2}$ in $\Gamma$ :

$$
X_{1} \vee X_{2}
$$

$\exists Y_{1} \exists Y_{2} \exists Y_{3}\left(R_{1 / 3}\left(X_{1}, Y_{1}, 0\right) \wedge R_{1 / 3}\left(X_{2}, Y_{2}, 0\right) \wedge R_{1 / 3}\left(Y_{1}, Y_{2}, Y_{3}\right)\right)$.

## Gadget pp-based reductions

Fact:

> If $R$ is pp-definable in $\Gamma$, then $\operatorname{CSP}(\Gamma \cup\{R\}) \leq_{m}^{\mathrm{L}} \operatorname{CSP}(\Gamma)$.

## Proof:

Locally replace each $R$-constraint by its pp-definition. QED

## Closure operation (a.k.a. polymorphism)

$R \subseteq D^{r}$ is invariant under $f: D^{k} \rightarrow D$ if
whenever

$$
\begin{aligned}
& \left(a_{1,1}, \cdots, a_{1, r}\right) \in R \\
& \left(a_{k, 1}, \cdots, a_{k, r}\right) \in R
\end{aligned}
$$

also

$$
\left(f\left(a_{1,1}, \ldots, a_{k, 1}\right), \cdots, f\left(a_{1, r}, \ldots, a_{k, r}\right)\right) \in R
$$

## Example 0 of closure operation

- arbitrary $D$,
- arbitrary $R \subseteq D^{r}$,
- $R$ is invariant under all projections

$$
\begin{aligned}
\operatorname{proj}_{k, i}:\{0,1\}^{k} & \rightarrow\{0,1\} \\
\left(a_{1}, \ldots, a_{k}\right) & \mapsto a_{i}
\end{aligned}
$$

Whenever

$$
\begin{gathered}
\left(a_{1,1}, \ldots, a_{1, r}\right) \in R \\
\left(a_{2,1}, \ldots, a_{2, r}\right) \in R \\
\vdots \\
\left(a_{k, 1}, \ldots, a_{k, r}\right) \in R
\end{gathered}
$$

(obviously) also

$$
\left(a_{i, 1}, \ldots, a_{i, r}\right) \in R
$$

## Example 1 of closure operation

- $D=\{0,1\}$,
$-R=\mathrm{OR}_{2}=\{01,10,11\}$,
- $R$ is invariant under any odd-arity majority

$$
\begin{aligned}
\operatorname{maj}_{2 k+1} & :\{0,1\}^{2 k+1} \rightarrow\{0,1\} \\
\left(a_{1}, \ldots, a_{2 k+1}\right) & \mapsto \text { majority }\left(a_{1}, \ldots, a_{2 k+1}\right)
\end{aligned}
$$

Whenever

$$
\begin{gathered}
\left(a_{1}, b_{1}\right) \in \mathrm{OR}_{2} \\
\left(a_{2}, b_{2}\right) \in \mathrm{OR}_{2} \\
\vdots \\
\left(a_{2 k+1}, b_{2 k+1}\right) \in \mathrm{OR}_{2}
\end{gathered}
$$

also

$$
(a, b) \in \mathrm{OR}_{2}
$$

## Example 2 of closure operation

- $D=\{0,1\}$,
- $R_{0}=" X_{1} \oplus X_{2} \oplus X_{3}=0$ " and $R_{1}=" X_{1} \oplus X_{2} \oplus X_{3}=1$ ",
- both $R_{0}$ and $R_{1}$ are invariant under any odd-arity parity

$$
\begin{gathered}
\operatorname{xor}_{2 k+1}:\{0,1\}^{2 k+1} \rightarrow\{0,1\} \\
\left(a_{1}, \ldots, a_{2 k+1}\right) \mapsto a_{1} \oplus \cdots \oplus a_{2 k+1}
\end{gathered}
$$

Whenever

$$
\begin{gathered}
a_{1} \oplus b_{1} \oplus c_{1}=d \\
a_{2} \oplus b_{2} \oplus c_{2}=d \\
\vdots \\
a_{2 k+1} \oplus b_{2 k+1} \oplus c_{2 k+1}=d
\end{gathered}
$$

also

$$
a \oplus b \oplus c=d
$$

## Closure operations and pp-definability

$\operatorname{Pol}(R)$ : set of all idempotent closure operations of $R$ $\operatorname{Inv}(f)$ : set of all relations that are invariant under $f$
$\operatorname{Pol}\left(R_{1}, R_{2}, \ldots\right):=\bigcap_{i} \operatorname{Pol}\left(R_{i}\right)$
$\operatorname{Inv}\left(f_{1}, f_{2}, \ldots\right):=\bigcap_{i} \operatorname{Inv}\left(f_{i}\right)$
Theorem [Geiger 1968, Bodnarchuk et al. 1969]:
$R$ is pp-definable in $\Gamma$
if and only if
$R$ is in $\operatorname{Inv}(\operatorname{Pol}(\Gamma))$.

## Example 1 application of Geiger's Theorem

## Corollary:

$\mathrm{OR}_{2}$ is not pp-definable in 3-LIN.

Proof:
$\mathrm{OR}_{2}$ is not invariant under xor $_{3}$ :

$$
\begin{aligned}
& (0,1) \in \mathrm{OR}_{2} \\
& (1,0) \in \mathrm{OR}_{2} \\
& (1,1) \in \mathrm{OR}_{2}
\end{aligned}
$$

$(0,0) \notin \mathrm{OR}_{2}$.

## Example 2 application of Geiger's Theorem

Corollary:
If $\operatorname{Pol}(\Gamma)=$ "all the projections",
then $\operatorname{Inv}(\operatorname{Pol}(\Gamma))=$ "all the relations".

## Reductions

Theorem [Jeavons]:

> If $\operatorname{Pol}(\Gamma) \subseteq \operatorname{Pol}\left(\Gamma^{\prime}\right)$, then $\operatorname{CSP}\left(\Gamma^{\prime}\right) \leq_{m}^{\mathrm{L}} \operatorname{CSP}(\Gamma)$.

## Corollary:

If $\operatorname{Pol}(\Gamma)=$ "all the projections", then $\operatorname{CSP}(\Gamma)$ is NP-complete.

## Part III: Post's Lattice and the 2-valued case

Theorem [Post 1941]
There are countably many sets $\operatorname{Inv}(\operatorname{Pol}(\Gamma))$ with $D=\{0,1\}$.
Moreover, they make a lattice under set inclusion.
And we know who they are.

## Post's lattice of closed sets of Boolean relations



## Example 1 of application of Post's Lattice

Theorem [Schaefer 1978]:
Let $\Gamma$ have $|D|=2$.
Then $\operatorname{CSP}(\Gamma)$ is in P if

| every $R \in \Gamma$ is 0 -valid | (closed under 0 ), | or |
| :--- | :--- | :--- |
| every $R \in \Gamma$ is 1 -valid | (closed under 1 ), | or |
| every $R \in \Gamma$ is bijunctive | (closed under maj $_{3}$ ), | or |
| every $R \in \Gamma$ is Horn | (closed under and 2 ), | or |
| every $R \in \Gamma$ is dual-Horn | (closed under or $2_{2}$ ), | or |
| every $R \in \Gamma$ is affine | (closed under xor ${ }_{3}$ ). |  |

Else $\operatorname{CSP}(\Gamma)$ is NP-complete.
Corollary:
ONE-IN-THREE-SAT is NP-complete

## Part IV: pp-interpretations and the $q$-valued case

A pp-interpretation of $\left(D^{\prime}, \Gamma^{\prime}\right)$ in $(D, \Gamma)$ is:

- a partial surjective map $h: D^{k} \rightarrow D^{\prime}$ s.t.
$-\operatorname{Dom}(h)$ is pp-definable in $\Gamma$,
$-h^{-1}(R)$ is pp-definable in $\Gamma$,
$-h^{-1}(=)$ is pp-definable in $\Gamma$,
$-h^{-1}(\{b\})$ is pp-definable in $\Gamma$ for every $b \in D$.

Theorem [Bulatov-Jeavons-Krokhin 2005]:

$$
\begin{aligned}
& \text { If }\left(D^{\prime}, \Gamma^{\prime}\right) \text { is pp-interpretable in }(D, \Gamma) \text {, } \\
& \text { then } \operatorname{CSP}\left(\Gamma^{\prime}\right) \leq_{m}^{\mathrm{L}} \operatorname{CSP}(\Gamma) .
\end{aligned}
$$

## Part V: Bounded width

Game-theoretic formulation:
Let $\Gamma$ be a constraint language with $|D|$ values.
Let $\Phi$ be an instance over $\Gamma$ with $|V|$ variables.
Fix an integer $k, 1 \leq k \leq|V|$.


$\Gamma$

## Local Consistency

## Definition:

A CSP instance $\Phi$ is called $k$-locally-consistent if
Duplicator has a winning strategy in the existential $k$-pebble game.

Observations:

1) $|V|$-locally-consistent $=$ satisfiable
2) $k+1$-locally-consistent $\Rightarrow k$-locally-consistent
3) $k$-local-consistency is decidable in time $O\left(|D|^{k}|V|^{k}\right)$

## Two more observations:

4) $k$-local-consistency $\Rightarrow \frac{k}{\text { arity }}$-consistency [à la Abramsky et al]
5) but not at all vice-versa: the gap can be arbitrarily large.

## Local Consistency

## Algorithmic formulation:

1. Start with $H=\{h: V \rightarrow D| | \operatorname{Dom}(h) \mid \leq k\}$.
2. Remove each $h$ from $H$ that falsifies some constraint.
3. Remove each $h$ from $H$ such that
a. $\exists g \subseteq h$ with $g \notin H$, or
b. $|\operatorname{Dom}(h)|<k$ and $\exists x \in V$ with $h \cup\{x \mapsto b\} \notin H$ for all $b \in D$.
4. Repeat step 3 until $H$ stabilizes.
5. If $H=\emptyset$, assert that $\Phi$ is unsatisfiable.
6. If $H \neq \emptyset$, say that $\Phi$ is $k$-locally-consistent.

## Local Consistency

## Equational formulation:

Variables:

$$
\text { A 0-1 variable } X_{h} \text { for each } h: V \rightarrow D \mathrm{w} / \operatorname{Dom}(h) \leq k .
$$

Equations (over the Boolean algebra $(\{0,1\}, \leq, \wedge, \vee)$ ):

$$
\begin{aligned}
& X_{h}=0 \\
& X_{h} \leq X_{g} \\
& X_{h} \leq \bigvee_{b \in D} X_{h \cup\{x \mapsto b\}}
\end{aligned}
$$

$$
\text { if } h \text { falsifies some constraint }
$$

$$
\text { if } g \subseteq h
$$

$$
\text { if }|\operatorname{Dom}(h)|<k \text { and } x \in V
$$

$$
X_{\emptyset} \stackrel{?}{=} 1
$$

## Schaeffer's Theorem revisited

Theorem<br>Let $\Gamma$ have $|D|=2$.<br>Then $\operatorname{CSP}(\Gamma)$ is in P if

| every $R \in \Gamma$ is 0 -valid | (bounded width), | or |
| :--- | :--- | :--- |
| every $R \in \Gamma$ is 1 -valid | (bounded width), | or |
| every $R \in \Gamma$ is bijunctive | (bounded width), | or |
| every $R \in \Gamma$ is Horn | (bounded width), | or |
| every $R \in \Gamma$ is dual-Horn | (bounded width), | or |
| every $R \in \Gamma$ is affine | (NO bounded width). |  |

Else $\operatorname{CSP}(\Gamma)$ is NP-complete (NO bounded width).

## Construction of $k$-locally-consistent instances

## Tseitin construction [T68]:

$G$ is an undirected graph.
$\sigma: V(G) \rightarrow\{0,1\}$ is a $0-1$ labelling of the nodes of $G$.

There is a variable at every edge.
There is an equation at every node:


$$
\Longrightarrow X \oplus Y \oplus Z=\sigma(u)
$$

Observations:

1) each variable appears in exactly two equations
2) if $\left|\sigma^{-1}(1)\right|$ is odd, then the system is unsatisfiable.

## Construction of $k$-locally-consistent instances

Theorem [A05]
If treewidth $(G) \geq k$ and $\Phi$ is a Tseitin instance based on $G$, then $\Phi$ is $\Omega(k)$-locally-consistent.

Proof: Play the Robber-Cops game. QED

## Other tractability criteria

1. $\Phi$ has bounded treewidth (bounded width)
2. core $(\Phi)$ has bounded treewidth ( $\equiv$ bounded width)
3. two occurrences and $\Gamma=$ ONE-IN-THREE
4. two occurrences and $\Gamma$ is a $\Delta$-matroid
5. ...
