
Aspects of Descriptive Complexity

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

Contextuality as a Resource in Quantum Computation
Oxford, 5 July 2018

Descriptive Complexity

Descriptive Complexity is an attempt to study the complexity of problems
and classify them, not on the basis of how difficult it is to compute
solutions, but on the basis of how difficult it is to describe the problem.

This gives an alternative way to study complexity, independent of
particular machine models.

Based on definability in logic.

Anuj Dawar July 2019

Graph Properties

As an example, consider the following three decision problems on graphs.

1. Given a graph G = (V,E) does it contain a triangle?

2. Given a directed graph G = (V,E) and two of its vertices a, b ∈ V ,
does G contain a path from a to b?

3. Given a graph G = (V,E) is it 3-colourable? That is,

is there a function χ : V → {1, 2, 3} so that whenever (u, v) ∈ E,
χ(u) 6= χ(v).

Anuj Dawar July 2019

Graph Properties

1. Checking if G contains a triangle can be solved in polynomial time
and logarithmic space.

2. Checking if G contains a path from a to b can be done in polynomial
time.
Can it be done in logarithmic space?

Unlikely. It is NL-complete.

3. Checking if G is 3-colourable can be done in exponential time and
polynomial space.
Can it be done in polynomial time?

Unlikely. It is NP-complete.

Anuj Dawar July 2019

Logical Definability

In what kind of formal language can these decision problems be specified
or defined?

The graph G = (V,E) contains a triangle.

∃x, y, z ∈ V (x 6= y ∧ y 6= z ∧ x 6= z ∧ E(x, y) ∧ E(x, z) ∧ E(y, z))

The other two properties are provably not definable with only first-order
quantification over vertices.

Anuj Dawar July 2019

First-Order Logic

Consider first-order predicate logic.

A collection of variables x, y, . . ., and formulas:

x = y | E(x, y) | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | ∃xϕ | ∀xϕ

Any property of graphs that is expressible in first-order logic is in L.

The problem of deciding whether G |= ϕ for a first-order ϕ is in time
O(lnm) and O(m log n) space.

where, l is the length of ϕ and n the order of G and m is the nesting
depth of quantifiers in ϕ.

Anuj Dawar July 2019

Second-Order Quantifiers

3-Colourability and Reachability can be defined with quantification over
sets of vertices.

∃R ⊆ V ∃B ⊆ V ∃G ⊆ V
∀x(Rx ∨Bx ∨Gx)∧
∀x(¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧
∀x∀y(Exy → (¬(Rx ∧Ry)∧

¬(Bx ∧By)∧
¬(Gx ∧Gy)))

∀S ⊆ V (a ∈ S ∧ ∀x∀y((x ∈ S ∧ E(x, y))→ y ∈ S)→ b ∈ S)

Anuj Dawar July 2019

Existential Second-Order Logic

Second-order logic is obtained by adding to the defining rules of
first-order logic two further clauses:

atomic formulae – X(t1, . . . , ta), where X is a second-order vari-
able

second-order quantifiers – ∃Xϕ, ∀Xϕ

Existential Second-Order Logic (ESO) consists of formulas of the form

∃X1 · · · ∃Xkϕ

where ϕ is first-order

Anuj Dawar July 2019

Fagin’s Theorem

Theorem (Fagin 1974)
A class of graphs is definable by a formula of existential second-order
logic if, and only if, it is decidable by a nondeterminisitic machine
running in polynomial time.

ESO = NP

One direction is easy: Given G and ∃X1 . . . ∃Xkϕ.

a nondeterministic machine can guess an interpretation for
X1, . . . , Xk and then verify ϕ.

The other direction translates a non-deterministic Turing machine M
into a sentence ϕM which asserts, in a structure A the existence of
relations coding an acccepting run of M on an input coding A.

Anuj Dawar July 2019

A Logic for P?

Is there a logic, intermediate between first and second-order logic that
expresses exactly graph properties in P?

This is an open question, first posed by (Chandra and Harel, 1982) and
has been the motor of significant research in descriptive complexity.

Does P admit a syntactic characterisation?

Can the class P be “built up from below” by finitely many operations?

Anuj Dawar July 2019

Zoo of Complexity Classes

Scott Aaronson and others have compiled
an online zoo of complexity classes, which
has 535 entries and counting.

P—languages decidable by a deterministic Turing machine running in
polynomial time.
NP—languages decidable by a nondeterministic Turing machine running
in polynomial time.
coNP—languages whose complements are in NP.
BQP—quantum polynomial time.
AC0—languages decided by a uniform family of constant-depth,
polynomial-size Boolean circuits.

Anuj Dawar July 2019

Some Inclusions among Classes

Note: P/poly and All are uncount-
able classes that necessarily con-
tain undecidable languages.

AC0 is properly included in L.

L is known to be properly included
in PSpace but none of the individ-
ual inclusions in between is known
to be proper.

Anuj Dawar July 2019

Enumerating Complexity Classes

Given a complexity class C, can we enumerate its members?

Fix an enumeration of Turing machines and write Li for the language
accepted by machine Mi.

Can we decide the set {i | Li ∈ C}?
No—Rice’s theorem.

Say that C is weakly indexed by a set I ⊆ N if:

• i ∈ I ⇒ Li ∈ C
• L ∈ C ⇒ ∃i ∈ I L = Li

Can we computably enumerate a weak index set for C?

Anuj Dawar July 2019

Syntactic Classes

Usually we want something more of a syntactic characterisation of C then
just a computably enumerable weak index set. We want the machines Mi

to “witness” that Li is in C.

For instance, fix an enumeration of pairs (M,p) where M is a
deterministic Turing machine and p is a polynomial.

Let I be the range of the function that takes (M,p) to the code of the
Turing machine that simulates M for p(n) steps on inputs of length n.

I is an effective syntax for P.

Anuj Dawar July 2019

Syntactic Classes

NP can similarly be indexed by pairs (M,p) where M is a
nondeterministic Turing machine and p is a polynomial.

What about NP ∩ coNP?
An index set is obtained by taking

(M,M ′, p) such that L(M) = L(M ′)
↑

undecidable condition

So we say P and NP are syntactic classes, while NP ∩ coNP is a semantic
class.

Anuj Dawar July 2019

Graph Problems

Consider decision problems where the input is a graph: Connectedness,
3-Colouring, Hamiltonicity.

We can encode graphs as strings over {0, 1} by, for instance,
enumerating the adjacency matrix.

There are up to n! distinct encodings of a given n vertex graph G.

For x, y ∈ {0, 1}∗ write x ∼ y to indicate that they are encodings of the
same graph.
And, for a language L, we say it is ∼-invariant if

x ∈ L and x ∼ y ⇒ y ∈ L.

Anuj Dawar July 2019

Invariant Complexity Classes

Let inv-NP and inv-P be the classes of all languages that are in NP and
P respectively and are ∼-invariant.

inv-NP is indexed by the set of pairs (M,p) where M is a
nondeterminsitic Turing machine, p is a polynomial and the language
accepted by M when clocked by p is ∼-invariant.

The invariance condition is undecidable.

Fagin’s theorem tells us that, nonetheless, inv-NP has an effective syntax.
It is indexed by machines obtained from existential second-order
sentences.

Whether inv-P has an effective syntax is the open question.

Anuj Dawar July 2019

BQP

BQP is the complexity class of problems solvable by quantum polynomial
time algorithms.

Formally, a language L is in BQP if there is a quantum Turing machine
M , running in polynomial time such that

• if x ∈ L then M accepts x with probability > 2
3 ; and

• if x 6∈ L then M accepts x with probability < 1
3 .

Say that a machine M is well-formed for BQP if, for every string x, it is
the case that the probability of M accepting is either < 1

3 or > 2
3 .

Anuj Dawar July 2019

Index set for BQP

We can obtain an index set for BQP by enumerating all pairs

(M,p)

where M is a quantum Turing machine and p is a polynomial such that,
M clocked by p is well-formed for BQP.

The well-formedness condition is undecidable.

BQP is a semantic class, at least by definition.

Anuj Dawar July 2019

inv-BQP

Is there an effective syntax for inv-BQP?

There are two undecidable conditions in the definition of the class:
well-formedness and ∼-invariance.

The second condition might not be an obstacle if there is a
polynomial-time quantum algorithm that can produce a ∼-canonical
representation of a graph with high probability.

The first is a serious obstacle, and getting a logic for BQP would require
a radically different characterization that was extensionally the same as
BQP.

Anuj Dawar July 2019

Fixed-Point Logic with Counting

FPC—Fixed-Point with Counting is an extension of first-order logic with
a recursion operator and a mechanism for counting.

FPC was first proposed by Immerman as a possible logic for P.

It was shown by (Cai, Fürer, Immerman 1992) that there are graph
properties in P not in FPC.

FPC captures a large and natural fragment of P and is worthy of study in
its own right.

Many powerful polynomial-time algorithms can be expressed in
FPC and at the same time, we can prove unconditional lower
bounds on it.

Anuj Dawar July 2019

Counting Quantifiers

Ck is the logic obtained from first-order logic by allowing:

• counting quantifiers: ∃ixϕ; and

• only the variables x1,xk.

Every formula of Ck is equivalent to a formula of first-order logic, albeit
one with more variables.

We write A ≡k B to denote that no sentence of Ck distinguishes A from
B.

This family of equivalence relations (also known as k-dimensional
Weisfeiler-Leman equivalences) has many different natural formulations
in combinatorics, algebra, logic and linear optimization among others.

Anuj Dawar July 2019

FPC and Ck

For every sentence ϕ of FPC, there is a k such that if A ≡k B, then

A |= ϕ if, and only if, B |= ϕ.

Essentially, FPC can be understood as those problems decided by
polynomial-time algorithms that are inviariant under ≡k for some k.

3SAT, XOR-Sat, Hamiltonicity, 3-Colourability are not ≡k-invariant for
any constant k.
The same is true of solving systems of equations over any finite field.

Anuj Dawar July 2019

Counting Width

For any class of structures C, we define its counting width νC : N→ N so
that

νC(n) is the least k such that C restricted to structures with at
most n elements is closed under ≡k.

Every class in FPC has counting width bounded by a constant.

3SAT, XOR-Sat, Hamiltonicity, 3-Colourability all have counting width
Ω(n).

Anuj Dawar July 2019

Constraint Satisfaction Problems

Fix A and B, two relational structures in the same relational vocabulary τ .

A homomorphism from A to B is a map h : A→ B so that for any tuple
a and any relation R,

RA(a) ⇒ RB(h(a)).

For a structure B: CSP(B) = {A | A −→ B}

3SAT, XOR-Sat, 3-Colourability all can be naturally formulated as CSP.

Anuj Dawar July 2019

Local Consistency Methods

Deciding, given A and B, whether A→ B is NP-complete.
In some cases, we can test instead for local consistency.

A B

Anuj Dawar July 2019

Local Consistency Methods

Deciding, given A and B, whether A→ B is NP-complete.
In some cases, we can test instead for local consistency

A B

For a k-element subset.

Anuj Dawar July 2019

Local Consistency Methods

Deciding, given A and B, whether A→ B is NP-complete.
In some cases, we can test instead for local consistency

A B

The extension property.

Anuj Dawar July 2019

Local Consistency Methods

Deciding, given A and B, whether A→ B is NP-complete.
In some cases, we can test instead for local consistency

A B

The extension property.

Anuj Dawar July 2019

Local Consistency Methods

Deciding, given A and B, whether A→ B is NP-complete.
In some cases, we can test instead for local consistency

A B

The extension property.

Anuj Dawar July 2019

The Pebbling Co-Monad

In (Abramsky, D., Wang, 17) we give a construction of a graded
co-monad Tk.

This gives rise to a co-Kleisli category in which the morphisms are exactly
the k-local consistency tests.

TkA −→ B if, and only if, A k−→ B.

Isomorphism in this category is exactly ≡k.

That is, A ≡k B if, and only if, TkA ∼= TkB.

Anuj Dawar July 2019

Lower Bounds from Counting Width

A CSP has counting width either O(1) or Ω(n).
The former if, and only if, it is definable in Datalog.

(Atserias, Bulatov, D. ’09); (Barto-Kozik ’14)

For a CSP of unbounded counting width, the corresponding maximization
problem is intractable. (Thapper, Z̆ivný ’16); (D.,Wang ’15)

3SAT, XOR-Sat, Vertex Cover cannot be approximated by any class of
bounded counting width. (Atserias, D. ’18)

An Ω(n) lower bound on the counting width of a class implies
exponential lower bounds on the size of symmetric circuits and symmetric
linear programs deciding it. (Anderson, D. 2017)

(Atserias, D., Ochremiak ’19)

Anuj Dawar July 2019

Symmetric Linear Programs

Fix X = {xij | i, j ∈ [n]} for a fixed n.
Consider a class C of graphs.
We identify a graph on n vertices with a function G : X → {0, 1}.

We say that a polytope Q ⊆ RX × RY recognizes C if its projection on
RX includes C|n and excludes its complement.

Say Q ⊆ RX × RY is symmetric if for every π ∈ SV , there is a σ ∈ SY
such that

Q(π,σ) = Q

Here, we extend the action of π to V × V , and hence to RX .

Anuj Dawar July 2019

Symmetric Linear Programs

Theorem (Atserias, D., Ochremiak ’19)

If a family of symmetric polytopes of size s = O(2n
1−ε

), ε > 0 recognizes
C, then C has counting width at most log s

logn .

In particular, classes of counting width Ω(n) are not recognized by any
subexponential size symmetric linear programs.

Anuj Dawar July 2019

