Classifying space for quantum contextuality

Cihan Okay¹

The University of British Columbia

July 2019

¹joint with Daniel Sheinbaum arXiv:1905.07723

Outline

Strong contextuality

- 1. Topology of contexts
- 2. Principal bundles
- 3. Homotopical approach²

Contextuality

- 1. Empirical models
- 2. Twisted representations
- 3. Wigner function
- 4. Twisted K-theory

²Okay and Raussendorf, "arXiv:1905.03822".

Strong contextuality - Part I

A context is a set of pairwise commuting observables.

 Given a collection of contexts we can construct a chain complex³ such that

$$[\beta] \neq 0 \in H^2(\mathcal{C}) \Rightarrow$$
 strongly contextual

i.e. there is no consistent way of assigning pre-determined measurement outcomes.

³ "Topological proofs of contextuality in quantum mechanics".

Contexts

Mermin square is interpreted as a torus

 Z_2

Ş

Universal construction?

Given a set of contexts is there a space realization?

We will give a construction for Pauli observables.
 But the constructions can be done for more general observables.

Pauli observables

• \mathcal{H} : *n*-qudit Hilbert space (local dimension *p*)

P_n denotes the *n*-qudit Pauli group

$$T_{v} = \begin{cases} i^{v_{X} \cdot v_{Z}} Z(v_{Z}) X(v_{X}) & p = 2\\ \omega^{(v_{X} \cdot v_{Z})/2} Z(v_{Z}) X(v_{X}) & p > 2 \end{cases}$$

where $\omega = e^{2\pi i/p}$ and

Isotropic subspaces

$$\mathfrak{b}(\mathbf{v},\mathbf{v}')=\mathbf{v}_X\cdot\mathbf{v}_Z'-\mathbf{v}_X'\cdot\mathbf{v}_Z$$

$$\mathfrak{b}|_I = 0$$

i.e. $\mathfrak{b}(v, v') = 0$ for all $v, v' \in I$.

Contexts in the Pauli group

 For us contexts are specified by a collection of isotropic subspaces

$$\mathcal{I} = \{I_1, I_2, I_3, \cdots\}$$

 $\mathcal{I}(V)$ denotes the set of all isotropic subspaces in V.

Ex. Mermin square

 $\{X_1, X_2, XX\} \Rightarrow \{(0, 0; 1, 0), (0, 0; 0, 1), (0, 0; 1, 1)\}$ $\{Z_2, Z_1, ZZ\} \Rightarrow \{(0, 1; 0, 0), (1, 0; 0, 0), (1, 1; 0, 0)\}$ $\{XZ, ZX, YY\} \Rightarrow \{(0, 1; 1, 0), (1, 0; 0, 1), (1, 1; 1, 1)\}$

Contexts as simplices

Face maps

Degeneracies

 This construction is formalized using the language of simplicial sets.

They can be thought of as "simplicial complexes with degeneracies".

They are like "non-linear version of chain complexes".

Classifying space for contextuality

▶ $B_{cx}(\mathcal{I})$ is the space constructed from *n*-simplices of the form

 (v_1, v_2, \cdots, v_n)

where there exists a context $I \in \mathcal{I}$ such that

$$\{v_1, v_2, \cdots, v_n\} \subset I.$$

• We write $B_{cx}V$ when $\mathcal{I} = \mathcal{I}(V)$.

Classifying space for contextuality

▶ $B_{cx}(\mathcal{I})$ is the space constructed from *n*-simplices of the form

$$(v_1, v_2, \cdots, v_n)$$

where there exists a context $I \in \mathcal{I}$ such that

$$\{v_1, v_2, \cdots, v_n\} \subset I.$$

Remark If we use all (v_1, \dots, v_n) we obtain the ordinary classifying space BV.

Chain complex

The chain complex C(B_{cx}I), which we denote by C(I), is given by

$$\cdots \to C(\mathcal{I})_n \to \cdots \to \underbrace{C(\mathcal{I})_3 \to C(\mathcal{I})_2 \to C(\mathcal{I})_1 \to C(\mathcal{I})_0}_{\text{Studied previously}}$$

An element in degree n has the form

$$\sum_{(v_1,\cdots,v_n)} \alpha_{v_1,\cdots,v_n} [v_1,\cdots,v_n]$$

where (v_1, \dots, v_n) runs over the *n*-simplices of $B_{cx}\mathcal{I}$ and the coefficients $\alpha_{v_1,\dots,v_n} \in \mathbb{Z}/p$.

⁴ "Topological proofs of contextuality in quantum mechanics".

Factorization

Any benefits?

 B_{cx} I classifies principal bundles whose transition functions are specified by the contexts⁵.

▶ We will see that probabilities can be included into the picture.

 $^{^5\}mbox{Adem}$ and Gómez, "A classifying space for commutativity in Lie groups".

$$\mathsf{Prin}^V_{\mathsf{cx}}(X) = [X, B_{\mathsf{cx}}V]$$

Mermin's square

Let T denote the torus realizing Mermin's square

$$f: T \to B_{cx}V$$

all vertices are collapsed to a single vertex

$$f^*: H^2(B_{\mathsf{cx}}V) o H^2(T)$$

 $[eta] \mapsto [eta_{\mathsf{Mer}}]
eq 0$

▶ The corresponding principal bundle over *T* is non-trivial!

Formula for β

Theorem

The class $[\beta] \in H^2(B_{cx}V)$ satisfies

$$[\beta] = \begin{cases} 0 \quad p > 2\\ \mathfrak{q}^2 + \sum_{i=1}^n \delta_{x_i} \cup \delta_{z_i} \quad p = 2 \end{cases}$$

where the 1-cochains are defined by

$$q(v) = v_X \cdot v_Z$$
$$\delta_{x_i}(v) = (v_X)_i$$
$$\delta_{z_i}(v) = (v_Z)_i$$

Vanishing of β (p = 2)

• Let
$$f: X \to B_{cx}V$$
 be a map.

• If
$$H^1(X, \mathbb{Z}/2) = 0$$
 then $f^*[\beta] = 0$.

For example:

- 1. X is simply connected, $\pi_1(X) = 1$
- 2. More generally, $|\pi_1 X|$ is odd.

Homotopical approach⁷

Theorem

Let X be a space realizing a collection of contexts⁶ such that

 $(|\pi_1 X|,d) = 1$

then we don't have strong contextuality.

⁷Okay and Raussendorf, "Homotopical approach to quantum contextuality".

⁶unitary matrices $(T_a)^d = I$

Contextuality - Part II

▶ We use the sheaf-theoretic framework⁸.

In this framework contextuality is defined using empirical models:

 $(\rho : \text{quantum state}) \mapsto (e_{\rho} : \text{probability distribution})$

⁸Abramsky and Brandenburger, "The sheaf-theoretic structure of non-locality and contextuality".

Formulation

Sheaf of events

$$\mathcal{E}:\mathcal{I}^{\mathsf{op}}\to \textbf{Set}$$

where $\mathcal{E}(I)$ is the set of functions $I \to \mathbb{Z}/p$ (outcomes).

Distributions over outcomes

$$D\mathcal{E}: \mathcal{I}^{\mathsf{op}} \to \mathbf{Set}$$

where $D = D_{\mathbb{R}_{>0}}$ is the distribution monad.

Formulation

Let us denote the set of compatible families⁹ by

$$\lim_{\leftarrow} D\mathcal{E} \subset \prod_{I \in \mathcal{I}} D\mathcal{E}(I)$$

i.e. family of distributions $\{e|_I\}$ satisfying no-signaling

$$(e|_I)|_{I'}=e|_{I'} \quad I'\subset I.$$

⁹also known as an inverse limit

Empirical model

We will think of an empirical model of a state as a function

$$e: \mathsf{Den}(\mathcal{H})
ightarrow \lim_{\stackrel{\leftarrow}{\mathcal{I}}} D\mathcal{E}$$
 $ho \mapsto e_{
ho}$

defined by the formula

$$e_{\rho}|_{I}(s) = \operatorname{Tr}(\rho P_{s})$$

where P_s is the projection to the common eigenspace of the outcome $s: I \to \mathbb{Z}/p$.

Contextuality

Let $\Sigma(\mathcal{I})$ denote the union of the contexts in $\mathcal{I}.$ There is a function

$$\theta: D\mathcal{E}(\Sigma) \to \lim_{\stackrel{\leftarrow}{\mathcal{I}}} D\mathcal{E}$$

sending *d* to the collection $\{d|_I\}$.

A state ρ is contextual if

 $e_{\rho} \notin \operatorname{im}(\theta)$

Sheaf of value assignments

Observe that

$$e_{\rho}|_{I}(s) = \operatorname{Tr}(\rho P_{s}) = 0$$

if s does <u>not</u> satisfy $ds(v, v') = s(v) - s(v + v') + s(v') = \beta(v, v').$

$$\mathcal{E}_{\beta}(I) = \{s : I \to \mathbb{Z}/p | ds = \beta\}$$

which can be regarded as a functor

$$\mathcal{E}_{eta}:\mathcal{I}^{\mathsf{op}} o \mathbf{Set}$$

Empirical model - revised

We will think of an empirical model of a state as a function

$$e: \mathsf{Den}(\mathcal{H}) o \lim_{\stackrel{\leftarrow}{\mathcal{I}}} D\mathcal{E}_eta$$

 $\rho \mapsto e_{\rho}$

Twisted representations

• Let $s \in \mathcal{E}_{\beta}(I)$ then we can define a twisted representation $\chi_s: I \to U(1)$ by the formula

$$\chi_s(v) = \omega^{s(v)} = e^{2\pi i s(v)/p}.$$

We will write R_β(I) for the ℤ-linear combinations of twisted representations¹⁰

$$\sum_{\boldsymbol{s}\in\mathcal{E}_{\beta}(\boldsymbol{I})}\alpha_{\boldsymbol{s}}\left[\chi_{\boldsymbol{s}}\right]$$

¹⁰Grothendieck group of twisted representations

Twisted representation functor

We obtain a functor

 $R_{\beta}: \mathcal{I}^{\mathsf{op}} \to \mathbf{Set}$

where given $I' \subset I$ we use the restriction of representations

$$\operatorname{res}_{I,I'}: R_{\beta}(I) \to R_{\beta}(I')$$

 $[\chi_s] \mapsto [\chi_s|_{I'}]$

Extending coefficients

The set of distributions DE_β(I) can be seen as sitting inside the ℝ-vector space ℝ ⊗ R_β(I):

$$e\mapsto\sum_{s}e(s)\left[\chi_{s}
ight]$$

Moreover this gives a natural transformation

$$D\mathcal{E}_{\beta} o \mathbb{R} \otimes R_{\beta}$$

Empirical model - revised

We will think of an empirical model of a state as a function

$$e: \mathsf{Den}(\mathcal{H}) o \lim_{\stackrel{\leftarrow}{\mathcal{I}}} \mathbb{R} \otimes R_{eta}$$

the element $e_{\rho}|_{I}$ is thought of as

What is the benefit?

We can use the character map

$$\mathsf{ch}: \mathsf{R}_lpha(\mathsf{G}) o \mathsf{Cl}_lpha(\mathsf{G})$$

where $Cl_{\alpha}(G)$ is the \mathbb{C} -vector space of α -class functions i.e. functions $f : G \to \mathbb{C}$ satisfying

$$f(hgh^{-1}) = \frac{\alpha(h, h^{-1})}{\alpha(h, gh^{-1})\alpha(g, h^{-1})}f(g)$$

for all $g, h \in G$.

Space of compatible families

Theorem

There is an isomorphism of \mathbb{R} -vector spaces

$$\phi_{p}: \mathbb{R} \otimes R(V) \stackrel{\cong}{\longrightarrow} \lim_{\substack{\leftarrow \\ \mathcal{I}(V)}} \mathbb{R} \otimes R_{\beta}$$

p = 2 vs p > 2

• Definition of ϕ_p depends on whether p = 2 or p > 2.

1. When p > 2 since $[\beta] = 0$ we can forget about the twisting

$$\phi_p: \mathbb{R} \otimes R(V) \longrightarrow \lim_{\leftarrow} \mathbb{R} \otimes R$$

is induced by restriction along $I \subset V$.

2. For p = 2 we have to pass through the character map

$$\phi_2: \mathbb{R} \otimes R(V) \cong \mathbb{R}^V \longrightarrow \lim_{\leftarrow} \mathbb{R}^- \cong \lim_{\leftarrow} \mathbb{R} \otimes R_{\beta}$$

where \mathbb{R}^- : $I \mapsto \mathbb{R}^I$.

Lifting empirical models

Lifting empirical models

R(V) consists of \mathbb{Z} -linear combinations of $[b_v]$ where

$$b_{\mathsf{v}}: \mathsf{V} o U(1), \quad b_{\mathsf{v}}(u) = \omega^{\mathfrak{b}(u, \mathsf{v})}$$

Lifting empirical models

$\mathsf{Den}(\mathcal{H}) \xrightarrow{?} \mathbb{R} \otimes R(V)$

$$\rho \longrightarrow \sum_{v} (?_{v}) [b_{v}]$$

Wigner function

Theorem

Let $W_{\rho}: V \to \mathbb{R}$ denote the Wigner function of ρ .

Then the diagram commutes

where W is defined by

$$[W_
ho] = \sum_{v \in V} W_
ho(v) [b_v]$$

Application - p > 2 case

• $W_{\rho} \ge 0$ if and only if ρ is non-contextual¹¹.

1. If
$$W_{\rho} \ge 0$$
 then $\theta(W_{\rho}) = e_{\rho}$
2. If $\theta(d) = e_{\rho}$ then $d \mapsto W_{\rho}$.

¹¹Delfosse et al., "Equivalence between contextuality and negativity of the Wigner function for qudits"; Howard et al., "Contextuality supplies the magic for quantum computation".

Is there a topological interpretation for the target?

$$e: \mathsf{Den}(\mathcal{H}) o \lim_{\stackrel{\leftarrow}{\mathcal{I}}} \mathbb{R} \otimes R_{eta}$$

Twisted K-group

K^β(X) is the Grothendieck group of twisted vector bundles over X.
 When [β] = 0 it is the ordinary K-group K(X).

Atiyah-Segal completion

$$R_{\beta}(I) \rightarrow K^{\beta}(BI)$$

twisted K-group can be obtained from $R_{\beta}(I)$ algebraically.

Twisted K-group

Theorem

There is a commutative diagram of $\mathbb R\text{-vector spaces}$

Empirical model - final revision

We can think of an empirical model of a state as a function

$$e: \mathsf{Den}(\mathcal{H}) \to \mathbb{R} \otimes K^{\beta}(B_{\mathsf{cx}}V)$$

the element e_{ρ} corresponds to a class $[e_{\rho}]$ in the twisted K-group.

Questions

Homotopy type of B_{cx} V is well-understood¹².
 Further applications to contextuality?

Can we physically interpret principal bundles whose transition functions are given by contexts?

Twisted K-theory is graded, can we interpret elements of K^{β+1}(B_{cx}V)?

¹²O., "Spherical posets from commuting elements".