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Strong contextuality - Part I

I A context is a set of pairwise commuting observables.

I Given a collection of contexts we can construct a chain

complex3 such that

[β] 6= 0 ∈ H2(C)⇒ strongly contextual

i.e. there is no consistent way of assigning pre-determined

measurement outcomes.

3“Topological proofs of contextuality in quantum mechanics”.



Contexts
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Universal construction?

I Given a set of contexts is there a space realization?

I We will give a construction for Pauli observables.

But the constructions can be done for more general

observables.



Pauli observables

I H: n-qudit Hilbert space (local dimension p)

I Pn denotes the n-qudit Pauli group

Tv =

 ivX ·vZ Z (vZ )X (vX ) p = 2

ω(vX ·vZ )/2 Z (vZ )X (vX ) p > 2

where ω = e2πi/p and

v ∈
V : phase space︷ ︸︸ ︷

(Z/p)n︸ ︷︷ ︸
Z part

× (Z/p)n︸ ︷︷ ︸
X part



Isotropic subspaces

I Symplectic vector space (V , b)

b(v , v ′) = vX · v ′Z − v ′X · vZ

I A subspace I ⊂ V is isotropic if

b|I = 0

i.e. b(v , v ′) = 0 for all v , v ′ ∈ I .



Contexts in the Pauli group

I For us contexts are specified by a collection of isotropic

subspaces

I = {I1, I2, I3, · · ·}

I(V ) denotes the set of all isotropic subspaces in V .

Ex. Mermin square

{X1,X2,XX} ⇒ {(0, 0; 1, 0), (0, 0; 0, 1), (0, 0; 1, 1)}

{Z2,Z1,ZZ} ⇒ {(0, 1; 0, 0), (1, 0; 0, 0), (1, 1; 0, 0)}

{XZ ,ZX ,YY } ⇒ {(0, 1; 1, 0), (1, 0; 0, 1), (1, 1; 1, 1)}

· · · · · ·



Contexts as simplices



Face maps



Degeneracies



Simplicial sets

I This construction is formalized using the language of

simplicial sets.

I They can be thought of as ”simplicial complexes with

degeneracies”.

I They are like ”non-linear version of chain complexes”.



Classifying space for contextuality

I Bcx(I) is the space constructed from n-simplices of the form

(v1, v2, · · · , vn)

where there exists a context I ∈ I such that

{v1, v2, · · · , vn} ⊂ I .

I We write BcxV when I = I(V ).



Classifying space for contextuality

I Bcx(I) is the space constructed from n-simplices of the form

(v1, v2, · · · , vn)

where there exists a context I ∈ I such that

{v1, v2, · · · , vn} ⊂ I .

Remark If we use all (v1, · · · , vn) we obtain the ordinary classifying

space BV .



Chain complex

I The chain complex C (BcxI), which we denote by C (I), is

given by

· · · → C (I)n → · · · → C (I)3 → C (I)2 → C (I)1 → C (I)0︸ ︷︷ ︸
Studied previously

An element in degree n has the form

∑
(v1,··· ,vn)

αv1,··· ,vn [v1, · · · , vn]

where (v1, · · · , vn) runs over the n-simplices of BcxI and the

coefficients αv1,··· ,vn ∈ Z/p.

4“Topological proofs of contextuality in quantum mechanics”.



Factorization

I C (I)

Bcx(I)



Any benefits?

I BcxI classifies principal bundles whose transition functions are

specified by the contexts5.

I We will see that probabilities can be included into the picture.

5Adem and Gómez, “A classifying space for commutativity in Lie groups”.



Contexts as transition functions



Contexts as transition functions



Contexts as transition functions



Contexts as transition functions

PrinV
cx(X ) = [X ,BcxV ]



Mermin’s square

I Let T denote the torus realizing Mermin’s square

f : T → BcxV

all vertices are collapsed to a single vertex

f ∗ : H2(BcxV )→ H2(T )

[β] 7→ [βMer] 6= 0

I The corresponding principal bundle over T is non-trivial!



Formula for β

Theorem

The class [β] ∈ H2(BcxV ) satisfies

[β] =

 0 p > 2

q2 +
∑n

i=1 δxi ∪ δzi p = 2

where the 1-cochains are defined by

q(v) = vX · vZ

δxi (v) = (vX )i

δzi (v) = (vZ )i



Vanishing of β (p = 2)

I Let f : X → BcxV be a map.

I If H1(X ,Z/2) = 0 then f ∗[β] = 0.

For example:

1. X is simply connected, π1(X ) = 1

2. More generally, |π1X | is odd.



Homotopical approach7

Theorem

Let X be a space realizing a collection of contexts6 such that

(|π1X |, d) = 1

then we don’t have strong contextuality.

6unitary matrices (Ta)d = I
7Okay and Raussendorf, “Homotopical approach to quantum contextuality”.



Contextuality - Part II

I We use the sheaf-theoretic framework8.

I In this framework contextuality is defined using empirical

models:

(ρ : quantum state) 7→ (eρ : probability distribution)

8Abramsky and Brandenburger, “The sheaf-theoretic structure of

non-locality and contextuality”.



Formulation

I Sheaf of events

E : Iop → Set

where E(I ) is the set of functions I → Z/p (outcomes).

I Distributions over outcomes

DE : Iop → Set

where D = DR≥0
is the distribution monad.



Formulation

I Let us denote the set of compatible families9 by

lim
←

DE ⊂
∏
I∈I

DE(I )

i.e. family of distributions {e|I} satisfying no-signaling

(e|I )|I ′ = e|I ′ I ′ ⊂ I .

9also known as an inverse limit



Empirical model

We will think of an empirical model of a state as a function

e : Den(H)→ lim
←
I

DE

ρ 7→ eρ

defined by the formula

eρ|I (s) = Tr(ρPs)

where Ps is the projection to the common eigenspace of the

outcome s : I → Z/p.



Contextuality

Let Σ(I) denote the union of the contexts in I.

There is a function

θ : DE(Σ)→ lim
←
I

DE

sending d to the collection {d |I}.

A state ρ is contextual if

eρ /∈ im(θ)



Sheaf of value assignments

I Observe that

eρ|I (s) = Tr(ρPs) = 0

if s does not satisfy

ds(v , v ′) = s(v)− s(v + v ′) + s(v ′) = β(v , v ′).

I Define

Eβ(I ) = {s : I → Z/p| ds = β}

which can be regarded as a functor

Eβ : Iop → Set



Empirical model - revised

We will think of an empirical model of a state as a function

e : Den(H)→ lim
←
I

DEβ

ρ 7→ eρ



Twisted representations

I Let s ∈ Eβ(I ) then we can define a twisted representation

χs : I → U(1) by the formula

χs(v) = ωs(v) = e2πis(v)/p.

I We will write Rβ(I ) for the Z-linear combinations of twisted

representations10 ∑
s∈Eβ(I )

αs [χs ]

10Grothendieck group of twisted representations



Twisted representation functor

I We obtain a functor

Rβ : Iop → Set

where given I ′ ⊂ I we use the restriction of representations

resI ,I ′ : Rβ(I )→ Rβ(I ′)

[χs ] 7→ [χs |I ′ ]



Extending coefficients

I The set of distributions DEβ(I ) can be seen as sitting inside

the R-vector space R⊗ Rβ(I ):

e 7→
∑
s

e(s) [χs ]

I Moreover this gives a natural transformation

DEβ → R⊗ Rβ



Empirical model - revised

We will think of an empirical model of a state as a function

e : Den(H)→ lim
←
I

R⊗ Rβ

the element eρ|I is thought of as

∑
s

eρ|I (s) [χs ]︸ ︷︷ ︸
probabilistic combination of twisted representations



What is the benefit?

I We can use the character map

ch : Rα(G )→ Clα(G )

where Clα(G ) is the C-vector space of α-class functions i.e.

functions f : G → C satisfying

f (hgh−1) =
α(h, h−1)

α(h, gh−1)α(g , h−1)
f (g)

for all g , h ∈ G .



Space of compatible families

Theorem

There is an isomorphism of R-vector spaces

φp : R⊗ R(V )
∼=−→ lim

←
I(V )

R⊗ Rβ



p = 2 vs p > 2

I Definition of φp depends on whether p = 2 or p > 2.

1. When p > 2 since [β] = 0 we can forget about the twisting

φp : R⊗ R(V ) −→ lim
←

R⊗ R

is induced by restriction along I ⊂ V .

2. For p = 2 we have to pass through the character map

φ2 : R⊗ R(V ) ∼= RV −→ lim
←

R− ∼= lim
←

R⊗ Rβ

where R− : I 7→ RI .



Lifting empirical models

Den(H) R⊗ R(V )

lim
←

R⊗ Rβ

?

e
∼=



Lifting empirical models

Den(H) R⊗ R(V )

lim
←

R⊗ Rβ

?

e
∼=

R(V ) consists of Z-linear combinations of [bv ] where

bv : V → U(1), bv (u) = ωb(u,v)



Lifting empirical models

Den(H) R⊗ R(V )

ρ
∑

v (?v ) [bv ]

?



Wigner function

Theorem

Let Wρ : V → R denote the Wigner function of ρ.

Then the diagram commutes

Den(H) R⊗ R(V )

lim
←

R⊗ Rβ

W

e
φp

where W is defined by

[Wρ] =
∑
v∈V

Wρ(v) [bv ]



Application - p > 2 case

I Wρ ≥ 0 if and only if ρ is non-contextual11.

prob. comb.︷ ︸︸ ︷
DEβ(V ) lim

←
R⊗ Rβ

R⊗ R(V )

θ

∼=

1. If Wρ ≥ 0 then θ(Wρ) = eρ.

2. If θ(d) = eρ then d 7→Wρ.

11Delfosse et al., “Equivalence between contextuality and negativity of the

Wigner function for qudits”; Howard et al., “Contextuality supplies the magic

for quantum computation”.



Question

I Is there a topological interpretation for the target?

e : Den(H)→ lim
←
I

R⊗ Rβ



Twisted K -group

I Kβ(X ) is the Grothendieck group of twisted vector bundles

over X .

When [β] = 0 it is the ordinary K -group K (X ).

I Atiyah-Segal completion

Rβ(I )→ Kβ(BI )

twisted K -group can be obtained from Rβ(I ) algebraically.



Twisted K -group

Theorem

There is a commutative diagram of R-vector spaces

R⊗ K (BV ) R⊗ Kβ(BcxV )

R⊗ R(V ) lim
←

R⊗ Rβ

∼=

∼=



Empirical model - final revision

We can think of an empirical model of a state as a function

e : Den(H)→ R⊗ Kβ(BcxV )

the element eρ corresponds to a class [eρ] in the twisted K -group.



Questions

I Homotopy type of BcxV is well-understood12.

Further applications to contextuality?

I Can we physically interpret principal bundles whose transition

functions are given by contexts?

I Twisted K -theory is graded, can we interpret elements of

Kβ+1(BcxV )?

12O., “Spherical posets from commuting elements”.


