Classifying space for quantum contextuality

Cihan Okay ${ }^{1}$

The University of British Columbia

$$
\text { July } 2019
$$

${ }^{1}$ joint with Daniel Sheinbaum arXiv:1905.07723

Outline

- Strong contextuality

1. Topology of contexts
2. Principal bundles
3. Homotopical approach ${ }^{2}$

- Contextuality

1. Empirical models
2. Twisted representations
3. Wigner function
4. Twisted K-theory
${ }^{2}$ Okay and Raussendorf, "arXiv:1905.03822".

Strong contextuality - Part I

- A context is a set of pairwise commuting observables.
- Given a collection of contexts we can construct a chain complex ${ }^{3}$ such that

$$
[\beta] \neq 0 \in H^{2}(\mathcal{C}) \Rightarrow \text { strongly contextual }
$$

i.e. there is no consistent way of assigning pre-determined measurement outcomes.

Contexts

Mermin square is interpreted as a torus

Universal construction?

- Given a set of contexts is there a space realization?
- We will give a construction for Pauli observables.

But the constructions can be done for more general observables.

Pauli observables

- \mathcal{H} : n-qudit Hilbert space (local dimension p)
- P_{n} denotes the n-qudit Pauli group

$$
T_{v}=\left\{\begin{array}{cc}
i^{v_{X} \cdot v_{Z}} Z\left(v_{Z}\right) X\left(v_{X}\right) & p=2 \\
\omega^{\left(v_{X} \cdot v_{Z}\right) / 2} Z\left(v_{Z}\right) X\left(v_{X}\right) & p>2
\end{array}\right.
$$

where $\omega=e^{2 \pi i / p}$ and

$$
v \in \overbrace{\underbrace{(\mathbb{Z} / p)^{n}}_{Z \text { part }} \times \underbrace{(\mathbb{Z} / p)^{n}}_{X \text { part }}}^{V: \text { phase space }}
$$

Isotropic subspaces

- Symplectic vector space (V, \mathfrak{b})

$$
\mathfrak{b}\left(v, v^{\prime}\right)=v_{X} \cdot v_{Z}^{\prime}-v_{X}^{\prime} \cdot v_{Z}
$$

- A subspace $I \subset V$ is isotropic if

$$
\left.\mathfrak{b}\right|_{I}=0
$$

i.e. $\mathfrak{b}\left(v, v^{\prime}\right)=0$ for all $v, v^{\prime} \in I$.

Contexts in the Pauli group

- For us contexts are specified by a collection of isotropic subspaces

$$
\mathcal{I}=\left\{I_{1}, I_{2}, I_{3}, \cdots\right\}
$$

$\mathcal{I}(V)$ denotes the set of all isotropic subspaces in V.

Ex. Mermin square

$$
\begin{aligned}
\left\{X_{1}, X_{2}, X X\right\} & \Rightarrow\{(0,0 ; 1,0),(0,0 ; 0,1),(0,0 ; 1,1)\} \\
\left\{Z_{2}, Z_{1}, Z Z\right\} & \Rightarrow\{(0,1 ; 0,0),(1,0 ; 0,0),(1,1 ; 0,0)\} \\
\{X Z, Z X, Y Y\} & \Rightarrow\{(0,1 ; 1,0),(1,0 ; 0,1),(1,1 ; 1,1)\}
\end{aligned}
$$

Contexts as simplices

Face maps

Degeneracies

Simplicial sets

- This construction is formalized using the language of simplicial sets.
- They can be thought of as "simplicial complexes with degeneracies".
- They are like "non-linear version of chain complexes".

Classifying space for contextuality

- $B_{\mathrm{cx}}(\mathcal{I})$ is the space constructed from n-simplices of the form

$$
\left(v_{1}, v_{2}, \cdots, v_{n}\right)
$$

where there exists a context $I \in \mathcal{I}$ such that

$$
\left\{v_{1}, v_{2}, \cdots, v_{n}\right\} \subset I
$$

- We write $B_{c x} V$ when $\mathcal{I}=\mathcal{I}(V)$.

Classifying space for contextuality

- $B_{c x}(\mathcal{I})$ is the space constructed from n-simplices of the form

$$
\left(v_{1}, v_{2}, \cdots, v_{n}\right)
$$

where there exists a context $I \in \mathcal{I}$ such that

$$
\left\{v_{1}, v_{2}, \cdots, v_{n}\right\} \subset 1 .
$$

Remark If we use all $\left(v_{1}, \cdots, v_{n}\right)$ we obtain the ordinary classifying space $B V$.

Chain complex

- The chain complex $C\left(B_{\mathrm{cx}} \mathcal{I}\right)$, which we denote by $C(\mathcal{I})$, is given by

$$
\cdots \rightarrow C(\mathcal{I})_{n} \rightarrow \cdots \rightarrow \underbrace{C(\mathcal{I})_{3} \rightarrow C(\mathcal{I})_{2} \rightarrow C(\mathcal{I})_{1} \rightarrow C(\mathcal{I})_{0}}_{\text {Studied previously }}
$$

An element in degree n has the form

$$
\sum_{\left(v_{1}, \cdots, v_{n}\right)} \alpha_{v_{1}, \cdots, v_{n}}\left[v_{1}, \cdots, v_{n}\right]
$$

where $\left(v_{1}, \cdots, v_{n}\right)$ runs over the n-simplices of $B_{c x} \mathcal{I}$ and the coefficients $\alpha_{v_{1}, \cdots, v_{n}} \in \mathbb{Z} / p$.

4"Topological proofs of contextuality in quantum mechanics".

Factorization

Any benefits?

- $B_{c x} \mathcal{I}$ classifies principal bundles whose transition functions are specified by the contexts ${ }^{5}$.
- We will see that probabilities can be included into the picture.
${ }^{5}$ Adem and Gómez, "A classifying space for commutativity in Lie groups".

Contexts as transition functions

$$
\operatorname{Prin}_{c x}^{V}(X)=\left[X, B_{c x} V\right]
$$

Mermin's square

- Let T denote the torus realizing Mermin's square

$$
f: T \rightarrow B_{c x} V
$$

all vertices are collapsed to a single vertex

$$
\begin{aligned}
f^{*}: H^{2}\left(B_{\mathrm{cx}} V\right) & \rightarrow H^{2}(T) \\
{[\beta] } & \mapsto\left[\beta_{\mathrm{Mer}}\right] \neq 0
\end{aligned}
$$

- The corresponding principal bundle over T is non-trivial!

Formula for β

Theorem

The class $[\beta] \in H^{2}\left(B_{c x} V\right)$ satisfies

$$
[\beta]=\left\{\begin{array}{cc}
0 & p>2 \\
\mathfrak{q}^{2}+\sum_{i=1}^{n} \delta_{x_{i}} \cup \delta_{z_{i}} & p=2
\end{array}\right.
$$

where the 1-cochains are defined by

$$
\begin{aligned}
\mathfrak{q}(v) & =v_{X} \cdot v_{Z} \\
\delta_{x_{i}}(v) & =\left(v_{X}\right)_{i} \\
\delta_{z_{i}}(v) & =\left(v_{Z}\right)_{i}
\end{aligned}
$$

Vanishing of $\beta(p=2)$

- Let $f: X \rightarrow B_{\mathrm{cx}} V$ be a map.
- If $H^{1}(X, \mathbb{Z} / 2)=0$ then $f^{*}[\beta]=0$.

For example:

1. X is simply connected, $\pi_{1}(X)=1$
2. More generally, $\left|\pi_{1} X\right|$ is odd.

Homotopical approach ${ }^{7}$

Theorem

Let X be a space realizing a collection of contexts ${ }^{6}$ such that

$$
\left(\left|\pi_{1} X\right|, d\right)=1
$$

then we don't have strong contextuality.
${ }^{6}$ unitary matrices $\left(T_{a}\right)^{d}=1$
${ }^{7}$ Okay and Raussendorf, "Homotopical approach to quantum contextuality".

Contextuality - Part II

- We use the sheaf-theoretic framework ${ }^{8}$.
- In this framework contextuality is defined using empirical models:
($\rho:$ quantum state $) \mapsto\left(e_{\rho}:\right.$ probability distribution $)$
${ }^{8}$ Abramsky and Brandenburger, "The sheaf-theoretic structure of non-locality and contextuality".

Formulation

- Sheaf of events

$$
\mathcal{E}: \mathcal{I}^{\mathrm{op}} \rightarrow \text { Set }
$$

where $\mathcal{E}(I)$ is the set of functions $I \rightarrow \mathbb{Z} / p$ (outcomes).

- Distributions over outcomes

$$
D \mathcal{E}: \mathcal{I}^{\mathrm{op}} \rightarrow \text { Set }
$$

where $D=D_{\mathbb{R}_{\geq 0}}$ is the distribution monad.

Formulation

- Let us denote the set of compatible families ${ }^{9}$ by

$$
\lim _{\leftarrow} D \mathcal{E} \subset \prod_{I \in \mathcal{I}} D \mathcal{E}(I)
$$

i.e. family of distributions $\left\{\left.e\right|_{\mid}\right\}$satisfying no-signaling

$$
\left.\left(\left.e\right|_{I}\right)\right|_{I^{\prime}}=\left.e\right|_{I^{\prime}} \quad I^{\prime} \subset I .
$$

[^0]
Empirical model

We will think of an empirical model of a state as a function

$$
\begin{aligned}
& e: \operatorname{Den}(\mathcal{H}) \rightarrow \lim _{\overleftarrow{\mathcal{I}}} D \mathcal{E} \\
& \rho \mapsto e_{\rho}
\end{aligned}
$$

defined by the formula

$$
e_{\rho} \mid \iota(s)=\operatorname{Tr}\left(\rho P_{s}\right)
$$

where P_{s} is the projection to the common eigenspace of the outcome $s: I \rightarrow \mathbb{Z} / p$.

Contextuality

Let $\Sigma(\mathcal{I})$ denote the union of the contexts in \mathcal{I}.
There is a function

$$
\theta: D \mathcal{E}(\Sigma) \rightarrow \lim _{\overleftarrow{\mathcal{I}}} D \mathcal{E}
$$

sending d to the collection $\left\{\left.d\right|_{I}\right\}$.
A state ρ is contextual if

$$
e_{\rho} \notin \operatorname{im}(\theta)
$$

Sheaf of value assignments

- Observe that

$$
\left.e_{\rho}\right|_{l}(s)=\operatorname{Tr}\left(\rho P_{s}\right)=0
$$

if s does not satisfy
$d s\left(v, v^{\prime}\right)=s(v)-s\left(v+v^{\prime}\right)+s\left(v^{\prime}\right)=\beta\left(v, v^{\prime}\right)$.

- Define

$$
\mathcal{E}_{\beta}(I)=\{s: I \rightarrow \mathbb{Z} / p \mid d s=\beta\}
$$

which can be regarded as a functor

$$
\mathcal{E}_{\beta}: \mathcal{I}^{\circ \mathrm{p}} \rightarrow \text { Set }
$$

Empirical model - revised

We will think of an empirical model of a state as a function

$$
\begin{gathered}
e: \operatorname{Den}(\mathcal{H}) \rightarrow \lim _{\overleftarrow{\mathcal{I}}} D \mathcal{E}_{\beta} \\
\rho \mapsto e_{\rho}
\end{gathered}
$$

Twisted representations

- Let $s \in \mathcal{E}_{\beta}(I)$ then we can define a twisted representation $\chi_{s}: I \rightarrow U(1)$ by the formula

$$
\chi_{s}(v)=\omega^{s(v)}=e^{2 \pi i s(v) / p} .
$$

- We will write $R_{\beta}(I)$ for the \mathbb{Z}-linear combinations of twisted representations ${ }^{10}$

$$
\sum_{s \in \mathcal{E}_{\beta}(I)} \alpha_{s}\left[\chi_{s}\right]
$$

${ }^{10}$ Grothendieck group of twisted representations

Twisted representation functor

- We obtain a functor

$$
R_{\beta}: \mathcal{I}^{\text {op }} \rightarrow \text { Set }
$$

where given $I^{\prime} \subset I$ we use the restriction of representations

$$
\begin{aligned}
\text { res }_{I, I^{\prime}}: R_{\beta}(I) & \rightarrow R_{\beta}\left(I^{\prime}\right) \\
{\left[\chi_{s}\right] } & \mapsto\left[\chi_{s} \mid I^{\prime}\right]
\end{aligned}
$$

Extending coefficients

- The set of distributions $D \mathcal{E}_{\beta}(I)$ can be seen as sitting inside the \mathbb{R}-vector space $\mathbb{R} \otimes R_{\beta}(I)$:

$$
e \mapsto \sum_{s} e(s)\left[\chi_{s}\right]
$$

- Moreover this gives a natural transformation

$$
D \mathcal{E}_{\beta} \rightarrow \mathbb{R} \otimes R_{\beta}
$$

Empirical model - revised

We will think of an empirical model of a state as a function

$$
e: \operatorname{Den}(\mathcal{H}) \rightarrow \lim _{\overleftarrow{\mathcal{I}}} \mathbb{R} \otimes R_{\beta}
$$

the element $\left.e_{\rho}\right|_{\prime}$ is thought of as

$$
\underbrace{\sum_{s} e_{\rho} \mid I(s)\left[\chi_{s}\right]}
$$

probabilistic combination of twisted representations

What is the benefit?

- We can use the character map

$$
\mathrm{ch}: R_{\alpha}(G) \rightarrow \mathrm{Cl}_{\alpha}(G)
$$

where $\mathrm{Cl}_{\alpha}(G)$ is the \mathbb{C}-vector space of α-class functions i.e.
functions $f: G \rightarrow \mathbb{C}$ satisfying

$$
f\left(h g h^{-1}\right)=\frac{\alpha\left(h, h^{-1}\right)}{\alpha\left(h, g h^{-1}\right) \alpha\left(g, h^{-1}\right)} f(g)
$$

for all $g, h \in G$.

Space of compatible families

Theorem

There is an isomorphism of \mathbb{R}-vector spaces

$$
\phi_{p}: \mathbb{R} \otimes R(V) \stackrel{\cong}{\leftrightarrows} \lim _{\overleftarrow{\mathcal{I}}(\mathrm{V})} \mathbb{R} \otimes R_{\beta}
$$

$p=2$ vs $p>2$

- Definition of ϕ_{p} depends on whether $p=2$ or $p>2$.

1. When $p>2$ since $[\beta]=0$ we can forget about the twisting

$$
\phi_{p}: \mathbb{R} \otimes R(V) \longrightarrow \lim _{\leftarrow} \mathbb{R} \otimes R
$$

is induced by restriction along $I \subset V$.
2. For $p=2$ we have to pass through the character map

$$
\phi_{2}: \mathbb{R} \otimes R(V) \cong \mathbb{R}^{V} \longrightarrow \lim _{\leftarrow} \mathbb{R}^{-} \cong \lim _{\leftarrow} \mathbb{R} \otimes R_{\beta}
$$

where $\mathbb{R}^{-}: / \mapsto \mathbb{R}^{\prime}$.

Lifting empirical models

Lifting empirical models

$R(V)$ consists of \mathbb{Z}-linear combinations of $\left[b_{v}\right]$ where

$$
b_{v}: V \rightarrow U(1), \quad b_{v}(u)=\omega^{\mathfrak{b}(u, v)}
$$

Lifting empirical models

$$
\begin{gathered}
\operatorname{Den}(\mathcal{H}) \cdots ? \\
\rho \longrightarrow \mathbb{R} \otimes R(V) \\
\rho \longrightarrow \sum_{v}\left(?_{v}\right)\left[b_{v}\right]
\end{gathered}
$$

Wigner function

Theorem

Let $W_{\rho}: V \rightarrow \mathbb{R}$ denote the Wigner function of ρ.
Then the diagram commutes

where W is defined by

$$
\left[W_{\rho}\right]=\sum_{v \in V} W_{\rho}(v)\left[b_{v}\right]
$$

Application - $p>2$ case

- $W_{\rho} \geq 0$ if and only if ρ is non-contextual ${ }^{11}$.

$$
\begin{aligned}
& \overbrace{D \mathcal{E}_{\beta}(V)}^{\text {prob. comb. }} \stackrel{\theta}{\longrightarrow} \lim _{\leftarrow} \mathbb{R} \otimes R_{\beta} \\
& \underset{\mathbb{R} \otimes R(V)}{ } \quad .
\end{aligned}
$$

1. If $W_{\rho} \geq 0$ then $\theta\left(W_{\rho}\right)=e_{\rho}$.
2. If $\theta(d)=e_{\rho}$ then $d \mapsto W_{\rho}$.
${ }^{11}$ Delfosse et al., "Equivalence between contextuality and negativity of the Wigner function for qudits"; Howard et al., "Contextuality supplies the magic for quantum computation".

Question

- Is there a topological interpretation for the target?

$$
e: \operatorname{Den}(\mathcal{H}) \rightarrow \lim _{\overleftarrow{\mathcal{I}}} \mathbb{R} \otimes R_{\beta}
$$

Twisted K-group

- $K^{\beta}(X)$ is the Grothendieck group of twisted vector bundles over X.

When $[\beta]=0$ it is the ordinary K-group $K(X)$.

- Atiyah-Segal completion

$$
R_{\beta}(I) \rightarrow K^{\beta}(B I)
$$

twisted K-group can be obtained from $R_{\beta}(I)$ algebraically.

Twisted K-group

Theorem

There is a commutative diagram of \mathbb{R}-vector spaces

$$
\begin{array}{cl}
\mathbb{R} \otimes K(B V) & \cong \\
\uparrow & \mathbb{R} \otimes K^{\beta}\left(B_{c x} V\right) \\
\mathbb{R} \otimes R(V) \xrightarrow{〔} & \lim _{\leftarrow} \mathbb{R} \otimes R_{\beta}
\end{array}
$$

Empirical model - final revision

We can think of an empirical model of a state as a function

$$
e: \operatorname{Den}(\mathcal{H}) \rightarrow \mathbb{R} \otimes K^{\beta}\left(B_{c x} V\right)
$$

the element e_{ρ} corresponds to a class $\left[e_{\rho}\right]$ in the twisted K-group.

Questions

- Homotopy type of $B_{c x} V$ is well-understood ${ }^{12}$.

Further applications to contextuality?

- Can we physically interpret principal bundles whose transition functions are given by contexts?
- Twisted K-theory is graded, can we interpret elements of $K^{\beta+1}\left(B_{c x} V\right)$?
${ }^{12}$ O., "Spherical posets from commuting elements".

[^0]: ${ }^{9}$ also known as an inverse limit

