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Outline of Talk

1. Universal Quantum Computing via Magic States

2. Quantum Contextuality

3. How 1 and 2 are related (esp. qudits)



Quantum Computing

|0〉

|1〉

0

1

Qubits (Quantum)(Classical) Bits

α|0〉+ β|1〉Probabilistic 0/1



Qubits vs Qudits (Relevant Later)

Let’s define a qudit to be a p-level quantum system (p =odd prime)





Qubit: α0|0〉+ α1|1〉

Qudit:

p−1∑

k=0

αk|k〉

p−1∑

k=0

|αk| = 1, αk ∈ C

Mixed/impure states: ρ =
∑

i

pi|ψi〉〈ψi|
(∑

i

pi = 1

)

Qudits. . .

X Are naturally occurring in many physical systems

× Are (probably) more difficult to experimentally prepare, control &

measure than qubits

X Have nice symmetries, advantageous for fault-tolerance

Qubits. . .

X Are what people actually want to use. . .
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Pauli Matrices:

X =

(
0 1

1 0

)
, Z =

(
1 0

0 −1

)
, Y = iXZ =

(
0 −i
i 0

)
.

Weyl-Heisenberg/Pauli Group:

a = [a1, a2, . . . , an], b = [b1, b2, . . . , bn] ∈ Fn2 Binary Vectors

D(a, b) = Xa1Zb1 ⊗Xa2Zb2 ⊗ · · · ⊗XanZbn

~�
Pauli Operators

WH2n = {iκD(a, b) | a, b ∈ Fn2 , κ ∈ Z4} Pauli/WH Group

The Clifford Group:

Cliff2n =
{
g ∈ U2n | gD(a, b)g† ∈WH2n ,∀D(a, b) ∈WH2n

}

It turns out that

gD(a, b)g† = ±D([a, b]Fg) where Fg is a 2n× 2n binary matrix

Cliff2n/WH2n h Sp(2n,F2)
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Classical Simulation

Rough Intuition: Simulating quantum theory is hard because

• States’ description exponentially long: |ψ〉 ∈ C2n

• Evolution governed by 2n × 2n Unitary Matrices.

Heisenberg Representation:
Describe a state by its stabilizer instead. . .

S(ψ) =

{
{sj ∈WH2n | sj |ψ〉 = |ψ〉, 1 ≤ j ≤ 2n}
{

[a, b]j ∈ F2n
2 | sj |ψ〉 = |ψ〉, 1 ≤ j ≤ 2n

}

Updating description after Clifford g is easy, |ψ〉 7→ g|ψ〉

[a, b] 7→ [a, b]Fg
Upshot:
Large class of states & operations efficiently/poly(n) simulable

Cliff2n
=〈 • ,Symmetry

group of 〉 6=UQC = 〈 • ,Symmetry
group of

,T =

(
1 0

0 eiπ/4

)〉



Classical Simulation

Rough Intuition: Simulating quantum theory is hard because

• States’ description exponentially long: |ψ〉 ∈ C2n

• Evolution governed by 2n × 2n Unitary Matrices.

Heisenberg Representation:
Describe a state by its stabilizer instead. . .

S(ψ) =

{
{sj ∈WH2n | sj |ψ〉 = |ψ〉, 1 ≤ j ≤ 2n}
{

[a, b]j ∈ F2n
2 | sj |ψ〉 = |ψ〉, 1 ≤ j ≤ 2n

}

Updating description after Clifford g is easy, |ψ〉 7→ g|ψ〉

[a, b] 7→ [a, b]Fg
Upshot:
Large class of states & operations efficiently/poly(n) simulable

Cliff2n
=〈 • ,Symmetry

group of 〉 6=UQC = 〈 • ,Symmetry
group of

,T =

(
1 0

0 eiπ/4

)〉



Classical Simulation

Rough Intuition: Simulating quantum theory is hard because

• States’ description exponentially long: |ψ〉 ∈ C2n

• Evolution governed by 2n × 2n Unitary Matrices.

Heisenberg Representation:
Describe a state by its stabilizer instead. . .

S(ψ) =

{
{sj ∈WH2n | sj |ψ〉 = |ψ〉, 1 ≤ j ≤ 2n}
{

[a, b]j ∈ F2n
2 | sj |ψ〉 = |ψ〉, 1 ≤ j ≤ 2n

}

Updating description after Clifford g is easy, |ψ〉 7→ g|ψ〉

[a, b] 7→ [a, b]Fg
Upshot:
Large class of states & operations efficiently/poly(n) simulable

Cliff2n
=〈 • ,Symmetry

group of 〉 6=UQC = 〈 • ,Symmetry
group of

,T =

(
1 0

0 eiπ/4

)〉



Classical Simulation

Rough Intuition: Simulating quantum theory is hard because

• States’ description exponentially long: |ψ〉 ∈ C2n

• Evolution governed by 2n × 2n Unitary Matrices.

Heisenberg Representation:
Describe a state by its stabilizer instead. . .

S(ψ) =

{
{sj ∈WH2n | sj |ψ〉 = |ψ〉, 1 ≤ j ≤ 2n}
{

[a, b]j ∈ F2n
2 | sj |ψ〉 = |ψ〉, 1 ≤ j ≤ 2n

}

Updating description after Clifford g is easy, |ψ〉 7→ g|ψ〉

[a, b] 7→ [a, b]Fg
Upshot:
Large class of states & operations efficiently/poly(n) simulable

Cliff2n
=〈 • ,Symmetry

group of 〉 6=UQC = 〈 • ,Symmetry
group of

,T =

(
1 0

0 eiπ/4

)〉



Fault-Tolerant Logic

Use Quantum Error-Correcting to protect a 2k-dim subspace

{
|ψ〉 ∈ C2n

∣∣∣ sj |ψ〉 = |ψ〉, 1 ≤ j ≤ 2n−k
}

Encode 1 logical qubit in 3: α|0L〉+ β|1L〉 α|000〉+ β|111〉



...

sj
...


 =




0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0




Unitary X⊗3 exchanges |000〉 ↔ |111〉
Has the logical effect |0L〉 ↔ |1L〉
In general UL ∈ “Normalizer of {sj} in U”

We would like code s.t. 〈UL〉 generates U2k (Universal)

Alas, Eastin-Knill theorem prevents this

Will show how to supplement Cliff2n with additional “ T ” gate

〈 • ,Symmetry
group of 〉 6=UQC = 〈 • ,Symmetry

group of
,T =

(
1 0

0 eiπ/4

)〉
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The Magic State model of Quantum Computing

How to supplement Cliff2n with additional “ T ” gate

〈 • ,Symmetry
group of 〉 6=UQC = 〈 • ,Symmetry

group of
,T =

(
1 0

0 eiπ/4

)〉

Use “Magic State Distillation”

to complete Univeral gate set

ρTρT
ρT ρT

|T 〉
|T 〉

|+〉

|0〉

|1〉

|H〉

1

T
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Universality vs. Simulability (Older Results for Qubits)
Stabilizer Circuits comprise

• Preparation of |0〉
• Applying Clifford (unitary) Gates

• Measuring in computational basis (and feed-forward of results)

ρTρT
ρT ρT

|T 〉
|T 〉

|0〉 X • •
FE





��
��	
�

|0〉 H ��������
FE





X/Z

|0〉 S H

|0〉 �������� Y
FE






...
...

1

Theorem (Gottesman-Knill)
Stabilizer Circuits ≤ Classical Circuits

Known:
Allowing multiple uses of suitable states ρ boosts stabilizers to universal QC

(via “Magic State Distillation”)

Suitable ρ?
If ρ is a mixture of stabilizer states ⇒ unsuitable
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Background Machinery for Qudits: Discrete Wigner Function

Continuous W.F.

• Continuous phase space

• [q̂, p̂] = i~

• Gaussian States

Discrete W.F.

• Discrete phase space

• |〈B1
a|B2

b 〉| = 1√
d

• Stabilizer States

Preliminaries

Key References I

D. Gross,
“Hudson’s theorem for finite-dimensional quantum systems”

J. Math. Phys. 47, number 12, 122107, (2006).

1 / 14

Preliminaries

Key References X

K. S. Gibbons, M. J. Hoffman, and W. K. Wootters,
“Discrete phase space based on finite fields”

Phys. Rev. A. 70, 062101, (2004).

10 / 14



Universality vs. Simulability (More Recent Results for Qudits)

|0〉 X • •
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��
��	
�

|0〉 H ��������
FE





X/Z

|0〉 S H

|0〉 �������� Y
FE






...
...

1

Theorem (Veitch et al., Mari & Eisert)
Positive Ancillas & Stabilizer Circuits ≤ Classical Circuits

How about adding in suitable ρ for MSD?
If ρ is positively represented in Gross DWF ⇒ unsuitable

Wigner Negativity is a necessary resource for UQC
All the “magic ingredient” is in Magic ancillas

Sufficiency is somewhat open (MSD routines)
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Contextuality enters the scene. . .

O
utside +ve subtheory

Subtheory
QM + restrictions on allowed states and operations

DWF Subtheory
Positively represented states and Ops inc Pauli Mmts

This closed subtheory of QM contains

• Superposition

• Entanglement

• Post-mmt collapse

• Teleportation

Preliminaries

Key References II

V. Veitch, C. Ferrie, D. Gross and J. Emerson,
“Negative quasi-probability as a resource for quantum computation”

New Journal of Physics 14,11 pp. 113011, (2012).

2 / 14

But

all of the above have classical interpretation in terms of LHV.

Contextuality is the only inherently QM feature missing.
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Quantum contextuality (Kochen-Specker proofs)

• Spectral decomposition says:

observable A =
∑

a

λaΠa where Πa is a projector onto λa eigenspace.

• Consider B,C such that





[A,B] = 0 . . . compatible

[A,C] = 0 . . . compatible

[B,C] 6= 0 . . . incompatible

* Commuting/compatible observables can be jointly/sequentially

measured without mutual disturbance: ABAAB → λaλbλaλaλb etc

* Free to measure A then decide whether to measure B or C.

• Born rule says Prob(a|ψ) = ||Πa|ψ〉||2
• Natural(?) to have a mental model whereby quantum state |ψ〉

possesses a value v(A) ∈ {λa} revealed by measurement of A

(irrespective of context)



Quantum contextuality (Kochen-Specker proofs)

If we pursue this idea that v(A) exists ahead of measurement then

• v(A+B) = v(A) + v(B)

• v(AB) = v(A)v(B)

• v(I) = 1

• NCHV: Any measurement M = {Π1,Π2, . . . ,Πk} satisfying
∑

i

Πi = I

exactly one of {Π1,Π2, . . . ,Πk} is true: v(Πi) = 1 and v(Πj 6=i) = 0



Quantum contextuality (Kochen-Specker proofs)

• Find an arrangement of cards such that both (i) and (ii) hold

(i) the number of black suits in each row is odd

(ii) the number of black suits in each column is even

• This is not satisfiable
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Quantum contextuality (Kochen-Specker proofs)

X ⊗ Y Y ⊗X Z ⊗ Z
Y ⊗ Z Z ⊗ Y X ⊗X
Z ⊗X X ⊗ Z Y ⊗ Y

Quantum version of Card Arrangement

• Arrange 9 Pauli/stabilizer observables,

all of which have outcomes ±1 (think black/red)

• Ensure that triples in the same row or same column mutually commute

( Ordering of measurements within triple is irrelevant)

• This arrangement of observables apparently satisfies both (i) and (ii)

(i) the number of +1 outcomes in each row is odd

(ii) the number of +1 outcomes in each column is even

• Quantum analogue is satisfiable. . . what’s the difference?
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• This arrangement of observables apparently satisfies both (i) and (ii)

(i) the number of +1 outcomes in each row is odd

(ii) the number of +1 outcomes in each column is even

• Quantum analogue is satisfiable

. . . what’s the difference?
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• Contextuality tells us how NOT to think about quantum mechanics

• Measurement is not merely revealing a pre-existing value

Measurement is not like turning over a card!

• If we insist that measurement results are pre-existing, we must take into

account the whole context of the experiment . . . i.e., vB(A) 6= vC(A)

• Can think of contextuality as a generalization of Bell non-locality

(i.e., non-locality is a special case where commuting observables are

spatially separated)
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Quantum Contextuality (state-dependent)
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Π4

• {Πi} corresponds to a set of yes/no propositions

• In QM represent Πi by projectors with λ(Πi) ∈ {1, 0}
• Commuting rank-1 Πi ↔ mutually exclusive propositions

• Construct orthogonality/exclusivity graph Γ

• Define sum-of-projectors operator ΣΓ =
∑

Π∈Γ

Π

CSW results:

〈ΣΓ〉NCHV
max = α(Γ),

〈ΣΓ〉QM
max ≤ ϑ(Γ), 〈ΣΓ〉GPT

max = α∗(Γ)

Pentagon: α(Γ) = 2,

ϑ(Γ) =
√

5 ≈ 2.24, α∗(Γ) = 2.5

CHSH graph: α(Γ) 7→ 2, ϑ(Γ) 7→ 2
√

2, α∗(Γ) 7→ 4

Preliminaries

Key References VII
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“Simple Test for Hidden Variables in Spin-1 Systems”

Phys. Rev. Lett. 101, 020403, (2008).

7 / 14



Quantum Contextuality (state-dependent)

Π0

Π1

Π2

Π3

Π4

(
1
0√

cosπ/5

)

(
cos 4π/5
sin 4π/5√
cosπ/5

)

(
cos 2π/5
− sin 2π/5√

cosπ/5

)

(
cos 2π/5
sin 2π/5√
cosπ/5

)

(
cos 4π/5
− sin 4π/5√

cosπ/5

)

• {Πi} corresponds to a set of yes/no propositions

• In QM represent Πi by projectors with λ(Πi) ∈ {1, 0}
• Commuting rank-1 Πi ↔ mutually exclusive propositions

• Construct orthogonality/exclusivity graph Γ

• Define sum-of-projectors operator ΣΓ =
∑

Π∈Γ

Π

CSW results:

〈ΣΓ〉NCHV
max = α(Γ), 〈ΣΓ〉QM

max ≤ ϑ(Γ),

〈ΣΓ〉GPT
max = α∗(Γ)

Pentagon: α(Γ) = 2, ϑ(Γ) =
√

5 ≈ 2.24,

α∗(Γ) = 2.5

CHSH graph: α(Γ) 7→ 2, ϑ(Γ) 7→ 2
√

2, α∗(Γ) 7→ 4

Preliminaries

Key References VII

A. Klyachko, M. Can, S. Binicioğlu, A. Shumovsky
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Quantum Contextuality (state-dependent)

Recap:
Given a set of observables, we can

construct a non-contextuality

inequality that identifies certain

states as contextual

(with respect to this set of

observables)

Inequalities are of the form :

ρ is contextual if it violates Tr(ρΣΓ) ≤ α(Γ)

Relevance to magic states:
For stabilizer measurements, previous work has established that ρ ∈ PSIM

never exhibits contextuality

Our result:
All ρ 6∈ PSIM exhibit contextuality with respect to stabilizer measurements

Contextuality and the possibility of speed-up coincide exactly
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Contextuality for quantum computation

The largest subtheory of QM describable in terms of noncontextual

hidden variables is the stabilizer subtheory.

Any combination of the following is allowed:

• Preparation of |0〉 (Pauli eigenstates)

• Applying Clifford (unitary) Gates

• Measuring in computational basis (and feed-forward of results)

We can simulate such a circuit efficiently using a classical computer!

However: Adding access to a supply

of magic states (not Pauli eigenstates)

enables the full quantum power

|0〉 X • •
FE





��
��	
�

|0〉 H ��������
FE





X/Z

|0〉 S H

|0〉 �������� Y
FE






...
...

1

• All of the “Magic Ingredient” is in the magic states

• Characterize UQC-enabling ancillas  fundamental insights?

i.e., what quantum phenomena drive UQC?



Contextuality for quantum computation

• Conceptually satisfying answer (esp. for qudits) is that

quantum contextuality is necessary for speed-up

• The ancillas that are useless/simulable are exactly those that can never

exhibit contextuality (wrt Pauli mmts)

• Contextuality is necessary & possibly sufficient property of ancillas

Useless &
Noncontextual

Contextual
& Useful(?)

Noncontextuality
Inequality

Figure 1: Slice through state space of

Magic ancilla (wrt. stab. mmts)
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If we add noncontextual ancillas

to Clifford circuit we never see

1. Violation of NCI

2. Quantum Speed-up

(simulable)
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If we add contextual ancillas to

Clifford circuit we do see

1. Violation of NCI (always)

2. Quantum Speed-up

(sometimes,always?)



Proof Sketch (using qutrits)
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2. Such a single-qudit construction might have worked, but doesn’t

Tr
(
Σ~rρ

)
≤ α(Γ~r)︸ ︷︷ ︸ vs. Tr

[
A~rρ

]
≥ 0︸ ︷︷ ︸

Noncontextuality
inequality

Boundary
of PSIM

Tr
(
Σ~rρ

)
≤ α(Γ~r)︸ ︷︷ ︸ ⇐⇒ Tr

[
A~rρ

]
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Noncontextuality
inequality

Parallel to
Boundary of PSIM

3. What does work, however, is a two-qudit construction:
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inequality

Boundary
of PSIM

Tr
(
Σ~rρ

)
≤ α(Γ~r)︸ ︷︷ ︸ ⇐⇒ Tr

[
A~rρ

]
≥ −1︸ ︷︷ ︸

Noncontextuality
inequality

Parallel to
Boundary of PSIM

3. What does work, however, is a two-qudit construction:
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}⊗{ π0
1

π2
1 π1

1

} ∪
All entangled

two-qudit projectors
All entangled

two-qudit stabilizers



Statement of Results

The independence number of the exclusivity graph is α(Γ~r) = p3 for all

A~r ∈ ASIM and all p ≥ 2 so that, relative to our construction, exactly

the states ρ /∈ PSIM are those that exhibit contextuality.

For qudits of odd prime dimension there does not exist any construction

using stabilizer measurements that characterizes any ρ ∈ PSIM as

contextual, so that the conditions for contextuality and the possibility

of quantum speed-up via magic state distillation coincide exactly.

Furthermore

〈Σ~r〉2−quditmax = ϑ(Γ~r) = α∗(Γ~r) = p3 + 1, (p > 2)

which means maximally contextual states saturate the bound on

contextuality associated with post-quantum generalized probabilistic

theories.



What’s the deal with qubits? (State-independence)

PSTAB = PSIM =
X ⊗ Y Y ⊗X Z ⊗ Z
Y ⊗ Z Z ⊗ Y X ⊗X
Z ⊗X X ⊗ Z Y ⊗ Y

Generalized Pauli: X|j〉 = |j + 1〉, Z|j〉 = ωj |j〉 (ω = e
2πi
p )

Weyl-Heisenberg Group:

{
{iλXxZz|x, z ∈ Z2, λ ∈ Z4} p = 2

{ωλXxZz|x, z, λ ∈ Zp} p > 2

“All primes are odd except 2, which is the oddest of all”



Improvements

Nicer/More-general proof of “−”DWF ⇐⇒ contextuality
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Generalizes DWF↔Simulation connection for qubits and qudits
Phase space simulation method for quantum computation with magic states

on qubits

R. Raussendorf, J. Bermejo-Vega, E. Tyhurst, C. Okay, M. Zurel

arXiv preprint arXiv:1905.05374


