Continuous-variable non-locality and contextuality

arXiv:1905.0826

Rui Soares Barbosa ${ }^{1}$, Tom Douce ${ }^{2}$, Elham Kashefi ${ }^{2,3}$, Shane Mansfield ${ }^{2}$, Pierre-Emmanuel Emeriau ${ }^{2}$

July 6, 2019
${ }^{1}$ Department of Computer Science, University of Oxford
${ }^{2}$ Laboratoire d'Informatique de Paris 6, CNRS and Sorbonne Université
${ }^{3}$ School of Informatics, University of Edinburgh

Table of contents

1. Motivations
2. Framework
3. A Fine-Abramsky-Brandenburger theorem in CV
4. Quantifying contextuality

Motivations

Motivations

- CV quantum systems promising candidates for implementing quantum informational tasks.

Motivations

- CV quantum systems promising candidates for implementing quantum informational tasks.
- Quantum mechanics infinite dimensional.

Motivations

- CV quantum systems promising candidates for implementing quantum informational tasks.
- Quantum mechanics infinite dimensional.
- "Now, it may happen that the two wave functions, ψ_{k} and ϕ_{r}, are eigenfunctions of two non-commuting operators corresponding to some physical quantities P and Q, respectively. [...] Let us suppose that the two systems are two particles, and that

$$
\psi\left(x_{1}, x_{2}\right)=\int_{-\infty}^{\infty} e^{\frac{2 \pi i}{h}\left(x_{1}-x_{2}+x_{0}\right) p} \mathrm{~d} p
$$

[...] Since we have here the case of a continuous spectrum [...]".

Motivations

"Now, it may happen that the two wave functions, ψ_{k} and ϕ_{r}, are eigenfunctions of two non-commuting operators corresponding to some physical quantities P and Q, respectively. [...] Let us suppose that the two systems are two particles, and that

$$
\psi\left(x_{1}, x_{2}\right)=\int_{-\infty}^{\infty} e^{\frac{2 \pi i}{h}\left(x_{1}-x_{2}+x_{0}\right) p} d p
$$

[...] Since we have here the case of a continuous spectrum [...]". [Einstein35]

Framework

Framework

A typical bipartite experiment

Operational depiction

Framework

Measurement scenario

Measurement scenario

A measurement scenario is a triple $\langle X, \mathcal{M}, \mathbf{O}\rangle$ where:

- X a finite set of measurements - e.g.

$$
X=\left\{a, a^{\prime}, b, b^{\prime}\right\}
$$

Measurement scenario

A measurement scenario is a triple $\langle X, \mathcal{M}, \mathbf{O}\rangle$ where:

- X a finite set of measurements - e.g.

$$
X=\left\{a, a^{\prime}, b, b^{\prime}\right\}
$$

- \mathcal{M} the (maximal) contexts e.g.
a

$$
\mathcal{M}=\left\{\{a, b\},\left\{a, b^{\prime}\right\},\left\{a^{\prime}, b\right\},\left\{a^{\prime}, b^{\prime}\right\}\right\}
$$

Measurement scenario

A measurement scenario is a triple $\langle X, \mathcal{M}, \mathbf{O}\rangle$ where:

- X a finite set of measurements - e.g.

$$
X=\left\{a, a^{\prime}, b, b^{\prime}\right\}
$$

- \mathcal{M} the (maximal) contexts e.g.

$$
\mathcal{M}=\left\{\{a, b\},\left\{a, b^{\prime}\right\},\left\{a^{\prime}, b\right\},\left\{a^{\prime}, b^{\prime}\right\}\right\}
$$

- $\mathbf{O}=\left(\mathbf{O}_{x}\right)_{x \in x}$ a measurable set of outcomes \mathbf{O}_{x} - e.g.

$$
\boldsymbol{O}=\{0,1\}
$$

Measurement scenario

A measurement scenario is a triple $\langle X, \mathcal{M}, \mathbf{O}\rangle$ where:

- X a finite set of measurements - e.g.

$$
X=\left\{a, a^{\prime}, b, b^{\prime}\right\}
$$

- \mathcal{M} the (maximal) contexts e.g.

$$
\mathcal{M}=\left\{\{a, b\},\left\{a, b^{\prime}\right\},\left\{a^{\prime}, b\right\},\left\{a^{\prime}, b^{\prime}\right\}\right\}
$$

- $\mathbf{O}=\left(\mathbf{O}_{x}\right)_{x \in x}$ a measurable set of outcomes \mathbf{O}_{x} - e.g.

$$
O=\mathbb{R} \text { or } O=[0,1]
$$

Framework

Empirical models

Empirical models

Definition - empirical model

An empirical model e on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$ is a family $e=\left\{e_{C}\right\}_{C \in \mathcal{M}}$ where e_{C} is a probability measure on O_{C} which satisfies the compatibility condition:

$$
e_{C}\left|c \cap C^{\prime}=e_{C^{\prime}}\right| C \cap C^{\prime}
$$

Empirical models

Definition - empirical model

An empirical model e on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$ is a family $e=\left\{e_{C}\right\}_{C \in \mathcal{M}}$ where e_{C} is a probability measure on O_{C} which satisfies the compatibility condition:

$$
e_{C}\left|c \cap C^{\prime}=e_{C^{\prime}}\right| c \cap C^{\prime}
$$

	b		b^{\prime}	
	0	1	0	1
0	1/2	0	0	1/2
a		1/2	1/2	0
0	0	1/2	0	1/2
a^{\prime}				
1	$1 / 2$	0	1/2	0

Empirical models

Definition - empirical model

An empirical model e on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$ is a family $e=\left\{e_{C}\right\}_{C \in \mathcal{M}}$ where e_{C} is a probability measure on O_{C} which satisfies the compatibility condition:

$$
e_{C}\left|C \cap C^{\prime}=e_{C^{\prime}}\right| C \cap C^{\prime}
$$

Definition - extendability

An empirical model e is said to be extendable (or noncontextual) if there exists a probability measure μ on O_{X} such that $\forall C \in \mathcal{M} .\left.\mu\right|_{C}=e_{C}$.

Framework
CV hidden variable models

Hidden variable models

Definition - hidden variable model

A hidden variable model on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$ consists of:

- A measurable space $\boldsymbol{\Lambda}=\left\langle\Lambda, \mathcal{F}_{\Lambda}\right\rangle$ of hidden variables.

Hidden variable models

Definition - hidden variable model

A hidden variable model on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$ consists of:

- A measurable space $\boldsymbol{\Lambda}=\left\langle\Lambda, \mathcal{F}_{\Lambda}\right\rangle$ of hidden variables.
- A probability measure p on $\boldsymbol{\Lambda}$.

Hidden variable models

Definition - hidden variable model

A hidden variable model on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$ consists of:

- A measurable space $\boldsymbol{\Lambda}=\left\langle\Lambda, \mathcal{F}_{\Lambda}\right\rangle$ of hidden variables.
- A probability measure p on $\boldsymbol{\Lambda}$.
- For each maximal context $C \in \mathcal{M}$, a probability kernel $k_{C}: \Lambda \longrightarrow \mathbf{O}_{C}$, satisfying the following compatibility condition:

$$
\forall \lambda \in \Lambda . \quad k_{C}(\lambda,-)\left|c \cap C^{\prime}=k_{C^{\prime}}(\lambda,-)\right| C \cap C^{\prime}
$$

Hidden variable models

Let $\langle\boldsymbol{\Lambda}, p, k\rangle$ a hidden variable on $\langle X, \mathcal{M}, \mathbf{O}\rangle$. Then empirical model:

$$
e_{C}(B)=\int_{\Lambda} k_{C}(-, B) \mathrm{d} p=\int_{\lambda \in \Lambda} k_{C}(\lambda, B) \mathrm{d} p(\lambda)
$$

Hidden variable models

Definition - determinism

A hidden variable model $\langle\boldsymbol{\Lambda}, p, k\rangle$ is said to be deterministic if $k_{C}(\lambda,-): \mathcal{F}_{C} \longrightarrow[0,1]$ is a Dirac measure for every $\lambda \in \Lambda$ and for every maximal context $C \in \mathcal{M}$; in other words, there is an assignment $o \in O_{C}$ such that $k_{C}(\lambda,-)=\delta_{\mathbf{0}}$.

Hidden variable models

Definition - determinism

A hidden variable model $\langle\boldsymbol{\Lambda}, p, k\rangle$ is said to be deterministic if $k_{C}(\lambda,-): \mathcal{F}_{C} \longrightarrow[0,1]$ is a Dirac measure for every $\lambda \in \Lambda$ and for every maximal context $C \in \mathcal{M}$; in other words, there is an assignment $o \in O_{C}$ such that $k_{C}(\lambda,-)=\delta_{\mathbf{0}}$.

Definition - factorisability

A hidden-variable model $\langle\boldsymbol{\Lambda}, p, k\rangle$ is said to be factorisable if $k_{C}(\lambda,-): \mathcal{F}_{C} \longrightarrow[0,1]$ factorises as a product measure for every $\lambda \in \Lambda$ and for every maximal context $C \in \mathcal{M}$. That is, for any family of measurable sets $\left(B_{x} \in \mathcal{F}_{x}\right)_{x \in C}$,

$$
k_{C}\left(\lambda, \prod_{x \in C} B_{x}\right)=\left.\prod_{x \in C} k_{C}\right|_{\{x\}}\left(\lambda, B_{x}\right)
$$

where $\left.k_{C}\right|_{\{x\}}(\lambda,-)$ is the marginal of the probability measure $k_{C}(\lambda,-)$ on $\mathbf{O}_{C}=$ $\prod_{x \in C} \mathbf{O}_{x}$ to the space $\mathbf{O}_{\{x\}}=\mathbf{O}_{x}$.

A Fine-Abramsky-Brandenburger theorem in CV

A FAB theorem in CV [Abramsky11]

Theorem

Let e be an empirical model on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$. The following are equivalent:
(1) e is extendable;

$$
\exists \mu \text { on } \mathbf{O}_{X} \text { s.t. } \forall C \in \mathcal{M} .\left.\mu\right|_{C}=e_{C}
$$

A FAB theorem in CV [Abramsky11]

Theorem

Let e be an empirical model on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$. The following are equivalent:
(1) e is extendable;
(2) e admits a realisation by a deterministic hidden-variable model; $\exists \mathbf{o} \in O_{C}$ an assignment s.t. $k_{C}(\lambda,-)=\delta_{\mathbf{o}}$

A FAB theorem in CV [Abramsky11]

Theorem

Let e be an empirical model on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$.
The following are equivalent:
(1) e is extendable;
(2) e admits a realisation by a deterministic hidden-variable model;
(3) e admits a realisation by a factorisable hidden-variable model. $k_{C}\left(\lambda, \prod_{x \in C} B_{x}\right)=\left.\prod_{x \in C} k_{C}\right|_{\{x\}}\left(\lambda, B_{x}\right)$ for a family of measurable sets $\left(B_{x} \in \mathcal{F}_{x}\right)_{x \in C}$.

A FAB theorem in CV [Abramsky11]

Theorem

Let e be an empirical model on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$. The following are equivalent:
(1) e is extendable;
(2) e admits a realisation by a deterministic hidden-variable model;
(3) e admits a realisation by a factorisable hidden-variable model.
Q. What does it tell us?

A FAB theorem in CV [Abramsky11]

Theorem

Let e be an empirical model on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$. The following are equivalent:
(1) e is extendable;
(2) e admits a realisation by a deterministic hidden-variable model;
(3) e admits a realisation by a factorisable hidden-variable model.
Q. What does it tell us?
A. Nonlocality special case of contextuality. Captured by notion of extendability.

Quantifying contextuality

Noncontextual fraction

What fraction of the empirical model e admits a deterministic hidden-variable model? [Abramsky11] [Abramsky17]

Noncontextual fraction

What fraction of the empirical model e admits a deterministic hidden-variable model? [Abramsky11] [Abramsky17]

$$
e=\lambda e_{N C}+(1-\lambda) e^{\prime}
$$

Noncontextual fraction

What fraction of the empirical model e admits a deterministic hidden-variable model? [Abramsky11] [Abramsky17]

$$
e=\lambda e_{N C}+(1-\lambda) e^{\prime}
$$

Noncontextual fraction

What fraction of the empirical model e admits a deterministic hidden-variable model? [Abramsky11] [Abramsky17]

$$
e=\lambda e_{N C}+(1-\lambda) e^{\prime}
$$

Definition - noncontextual fraction

$\operatorname{NCF}(e)=\sup \left\{\mu\left(O_{X}\right)\left|\mu \in \mathbb{M}\left(\mathbf{O}_{X}\right), \forall C \in \mathcal{M} . \mu\right| c \leq e_{C}\right\} \in[0,1]$

Quantifying contextuality

Linear programming problems

Linear programming

Primal

$$
(\mathrm{P}) \begin{cases}\text { Find } & \mu \in \mathbb{M}_{ \pm}\left(\mathbf{O}_{X}\right) \\ \text { maximising } & \mu\left(O_{x}\right) \\ \text { subject to } & \left.\forall C \in \mathcal{M} \cdot \mu\right|_{c} \leq e_{C} \\ \text { and } & \mu \geq 0\end{cases}
$$

Dual

$$
\text { (D) } \begin{cases}\text { Find } & \left(f_{C}\right)_{C \in \mathcal{M}} \in \prod_{C \in \mathcal{M}} C_{0}\left(O_{C}, \mathbb{R}\right) \\ \text { minimising } & \sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} d e_{C} \\ \text { subject to } & \sum_{C \in \mathcal{M}} f_{C} \circ \rho_{C}^{x} \geq \mathbf{1} \text { on } O_{X} \\ \text { and } & \forall C \in \mathcal{M} . f_{C} \geq 0 \text { on } O_{C}\end{cases}
$$

Quantifying contextuality

Bell inequalities

Generalised Bell inequalities

New dual program

$$
\text { (B) } \begin{cases}\text { Find } & \left(\beta_{C}\right)_{C \in \mathcal{M}} \in \prod_{C \in \mathcal{M}} C_{0}\left(O_{C}, \mathbb{R}\right) \\ \text { maximising } & \sum_{C \in \mathcal{M}} \int_{O_{C}} \beta_{C} \mathrm{~d} e_{C} \\ \text { subject to } & \sum_{C \in \mathcal{M}} \beta_{C} \circ^{\circ} \rho_{C}^{X} \leq 0 \text { on } O_{X} \\ \text { and } & \forall C \in \mathcal{M} \cdot \beta_{C} \leq|\mathcal{M}|^{-1} \mathbf{1} \text { on } O_{C} .\end{cases}
$$

Generalised Bell inequalities

New dual program

$$
\text { (B) } \begin{cases}\text { Find } & \left(\beta_{C}\right)_{C \in \mathcal{M}} \in \prod_{C \in \mathcal{M}} C_{0}\left(O_{C}, \mathbb{R}\right) \\ \text { maximising } & \sum_{C \in \mathcal{M}} \int_{O_{C}} \beta_{C} \mathrm{~d} e_{C} \\ \text { subject to } & \sum_{C \in \mathcal{M}} \beta_{C} \circ \rho_{C}^{X} \leq 0 \text { on } O_{X} \\ \text { and } & \forall C \in \mathcal{M} . \beta_{C} \leq|\mathcal{M}|^{-1} 1 \text { on } O_{C} .\end{cases}
$$

Quantifying contextuality

A hierarchy of Semi-Definite Programming problems

A hierarchy of SDPs [Lasserre09] [Henrion14]

Idea \rightarrow relaxation of the problem:

- Measure \rightarrow moments of the measure and truncated sequence.

A hierarchy of SDPs [Lasserre09] [Henrion14]

Idea \rightarrow relaxation of the problem:

- Measure \rightarrow moments of the measure and truncated sequence.
- Continuous functions \rightarrow SOS polynomials and fixed degree.

A hierarchy of SDPs

Primal

$$
\text { (P) } \begin{cases}\sup _{\mu \in \mathbb{M}_{ \pm}\left(\mathbf{o}_{X}\right)} \mu\left(O_{X}\right) & \longrightarrow y_{0} \\ \text { s.t. } \forall C \in \mathcal{M} \cdot \mu \mid c \leq e_{C} & \longrightarrow M_{k}\left(\mathbf{y}^{e, C}-\mathbf{y}_{\mid C}\right) \succeq 0 \\ \mu \succeq 0 & \longrightarrow M_{k}(\mathbf{y}) \succeq 0\end{cases}
$$

Dual

(D) $\left\{\begin{array}{l}\inf _{\substack{\left(f_{c}\right) \in \Pi C_{0}\left(O_{C}, \mathbb{R}\right)}} \sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{dec} \longrightarrow \inf _{\substack{\left(f_{c}\right) \subset \Sigma^{2} \mathbb{R}[x]_{k} \\\left(\sigma_{j}\right) \subset \Sigma^{2} \mathbb{R}[x]}} \sum_{C \in \mathcal{M}} \int_{O_{C}} f_{c} \mathrm{~d} e_{C} \\ \text { s.t. } \sum_{C \in \mathcal{M}} f_{C} \circ \rho_{C}^{X} \geq \mathbf{1} \text { on } O_{X} \quad \longrightarrow \sum_{C \in \mathcal{M}} f_{C}-\mathbf{1}=\sigma_{0}+\sum_{j=1}^{m} \sigma_{j} P_{j} \\ \forall C \in \mathcal{M} . f_{C} \geq 0 \text { on } O_{C}\end{array}\right.$

A hierarchy of SDPs

Primal

$$
\left(\mathrm{SP}_{k}\right) \begin{cases}\sup _{\mathbf{y} \in \mathbb{R}^{s(k)}} y_{0}\left(=\mu\left(O_{X}\right)\right) \\ \text { s.t. } & \forall C \in \mathcal{M} \cdot M_{k}\left(\mathbf{y}^{e, C}-\mathbf{y}_{\mid C}\right) \succeq 0 \\ & M_{k}(\mathbf{y}) \succeq 0 \\ & \forall j \in\{1, \ldots, m\} . M_{k-r_{j}}\left(P_{j} \mathbf{y}\right) \succeq 0\end{cases}
$$

Dual

$$
\left(\mathrm{SD}_{k}\right)\left\{\begin{array}{l}
\inf _{\substack{\left(f_{c}\right) \subset \Sigma^{2} \mathbb{R}[x]_{k} \\
\left(\sigma_{j}\right) \subset \Sigma^{2} \mathbb{R}[x]_{k-r_{j}}}} \sum_{C \in \mathcal{M}} \int_{O_{C}} f_{c} \mathrm{~d} e_{C} \\
\text { s.t. } \sum_{C \in \mathcal{M}} f_{C}-\mathbf{1}=\sigma_{0}+\sum_{j=1}^{m} \sigma_{j} P_{j}
\end{array}\right.
$$

A hierarchy of SDPs

Theorem

The optimal values of the hierarchy of semidefinite programs $\left(S D_{k}\right)$ provide monotonically decreasing upper bounds on the optimal solution of the linear program (D) that converge to its value $\operatorname{NCF}(e)$. That is,

$$
\inf \left(\mathrm{SD}_{k}\right) \downarrow \inf (\mathrm{D})=\operatorname{NCF}(e) \quad \text { as } k \rightarrow \infty
$$

A hierarchy of SDPs

Theorem

The optimal values of the hierarchy of semidefinite programs $\left(S D_{k}\right)$ provide monotonically decreasing upper bounds on the optimal solution of the linear program (D) that converge to its value $\operatorname{NCF}(e)$. That is,

$$
\inf \left(\mathrm{SD}_{k}\right) \downarrow \inf (\mathrm{D})=\operatorname{NCF}(e) \quad \text { as } k \rightarrow \infty
$$

Also holds for the primal $\left(\mathrm{SP}_{k}\right)$:

$$
\begin{aligned}
& \operatorname{NCF}(e)=\sup (P) \underset{\substack{\text { strong } \\
\text { duality }}}{\overline{\operatorname{Nan}}(\mathrm{D}) \leq \inf \left(\mathrm{SD}_{k}\right)} \\
& \sup (\mathrm{P}) \leq \sup \left(\mathrm{SP}_{k}\right) \leq \inf \left(\mathrm{SD}_{k}\right)
\end{aligned}
$$

Outlook:

- Numerical implementation and applications to real CV experiments.

Outlook:

- Numerical implementation and applications to real CV experiments.
- Continuous set of measurements.

Outlook:

- Numerical implementation and applications to real CV experiments.
- Continuous set of measurements.
- Relate CV to advantages for quantum computation.

Thank you!

References i

围 S. Abramsky and A. Brandenburger, "The sheaf-theoretic structure of non-locality and contextuality", New Journal of Physics, 13(11), 113036 (2011).
R. Abramsky, R. S. Barbosa, and S. Mansfield, "Contextual fraction as a measure of contextuality", Physical Review Letters, 119(5), 050504 (2017).
R. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?", Physical Review, 47(10), 777 (1935).
D. Henrion and M. Korda, "Convex computation of the region of attraction of polynomial control systems", IEEE Transactions on Automatic Control, 59(2), 297-312 (2014).

囯 J.-B. Lasserre, Moments, positive polynomials and their applications, volume 1 of Series on Optmization and Its Applications, Imperial College Press (2009).

Elements of measure theory

Some elements of measure theory

- Measurable space: pair $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle$ e.g. $\langle X, \mathcal{P}(X)\rangle,\langle\mathbb{R}, \mathcal{B}(\mathbb{R})\rangle$

Some elements of measure theory

- Measurable space: pair $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle$ e.g. $\langle X, \mathcal{P}(X)\rangle,\langle\mathbb{R}, \mathcal{B}(\mathbb{R})\rangle$
- A measurable function f between measurable spaces $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle$ and $\mathbf{Y}=\left\langle Y, \mathcal{F}_{Y}\right\rangle$ is a function $f: X \rightarrow Y$ s.t. for any $E \in \mathcal{F}_{Y}, f^{-1}(E) \in \mathcal{F}_{X}$.

Some elements of measure theory

- Measurable space: pair $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle \quad$ e.g. $\langle X, \mathcal{P}(X)\rangle,\langle\mathbb{R}, \mathcal{B}(\mathbb{R})\rangle$
- A measurable function f between measurable spaces $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle$ and $\mathbf{Y}=\left\langle Y, \mathcal{F}_{Y}\right\rangle$ is a function $f: X \rightarrow Y$ s.t. for any $E \in \mathcal{F}_{Y}, f^{-1}(E) \in \mathcal{F}_{X}$.
- A measure on a measurable space $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle$ is a function $\mu: \mathcal{F}_{X} \rightarrow \overline{\mathbb{R}}$. Set of measures: $\mathbb{M}(\mathbf{X})$ (signed $\mathbb{M}_{ \pm}(\mathbf{X})$) - probability measures: $\mathbb{P}(\mathbf{X})$. Allow to integrate well-behaved measurable functions: $\int_{\mathrm{X}} f \mathrm{~d} \mu$.

Some elements of measure theory

- Measurable space: pair $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle \quad$ e.g. $\langle X, \mathcal{P}(X)\rangle,\langle\mathbb{R}, \mathcal{B}(\mathbb{R})\rangle$
- A measurable function f between measurable spaces $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle$ and $\mathbf{Y}=\left\langle Y, \mathcal{F}_{Y}\right\rangle$ is a function $f: X \rightarrow Y$ s.t. for any $E \in \mathcal{F}_{Y}, f^{-1}(E) \in \mathcal{F}_{X}$.
- A measure on a measurable space $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle$ is a function $\mu: \mathcal{F}_{X} \rightarrow \overline{\mathbb{R}}$. Set of measures: $\mathbb{M}(\mathbf{X})$ (signed $\mathbb{M}_{ \pm}(\mathbf{X})$) - probability measures: $\mathbb{P}(\mathbf{X})$. Allow to integrate well-behaved measurable functions: $\int_{\mathbf{X}} f \mathrm{~d} \mu$.
- Push-forward: a measurable function $f: \mathbf{X} \rightarrow \mathbf{Y}$ carries any measure μ on \mathbf{X} to a measure $f_{*} \mu$ on \mathbf{Y} s.t. $f_{*} \mu(E)=\mu\left(f^{-1}(E)\right)$ for E measurable in \mathbf{Y}. Important use: marginal measure.

Some elements of measure theory

- Measurable space: pair $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle$ e.g. $\langle X, \mathcal{P}(X)\rangle,\langle\mathbb{R}, \mathcal{B}(\mathbb{R})\rangle$
- A measurable function f between measurable spaces $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle$ and $\mathbf{Y}=\left\langle Y, \mathcal{F}_{Y}\right\rangle$ is a function $f: X \rightarrow Y$ s.t. for any $E \in \mathcal{F}_{Y}, f^{-1}(E) \in \mathcal{F}_{X}$.
- A measure on a measurable space $\mathbf{X}=\left\langle X, \mathcal{F}_{X}\right\rangle$ is a function $\mu: \mathcal{F}_{X} \rightarrow \overline{\mathbb{R}}$. Set of measures: $\mathbb{M}(\mathbf{X})$ (signed $\mathbb{M}_{ \pm}(\mathbf{X})$) - probability measures: $\mathbb{P}(\mathbf{X})$. Allow to integrate well-behaved measurable functions: $\int_{\mathbf{X}} f \mathrm{~d} \mu$.
- Push-forward: a measurable function $f: \mathbf{X} \rightarrow \mathbf{Y}$ carries any measure μ on \mathbf{X} to a measure $f_{*} \mu$ on \mathbf{Y} s.t. $f_{*} \mu(E)=\mu\left(f^{-1}(E)\right)$ for E measurable in \mathbf{Y}. Important use: marginal measure. $\pi_{i}: \mathbf{X}_{1} \times \mathbf{X}_{2} \rightarrow \mathbf{X}_{i}$ then $\mu \mid \mathbf{x}_{i}=\pi_{i *} \mu$ and for E measurable in $\mathbf{X}_{1}, \mu \mid \mathbf{x}_{1}(E)=\mu\left(\pi_{1}^{-1}(E)\right)=\mu\left(E \times X_{2}\right)$.

Derivation of the LP duality

LP duality

Primal

$$
\begin{gathered}
(\mathrm{P}) \begin{cases}\text { Find } & \mu \in \mathbb{M}_{ \pm}\left(\mathbf{O}_{X}\right) \\
\text { maximising } & \mu\left(O_{X}\right) \\
\text { subject to } & \forall C \in \mathcal{M}, \mu \mid C \leq e_{C} \\
\text { and } & \mu \geq 0 .\end{cases} \\
\mathcal{L}\left(\mu,\left(f_{C}\right)\right):=\underbrace{\mu\left(O_{X}\right)}_{\text {objective }}+\underbrace{\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\mu \mid C\right)}_{\text {constraints }}
\end{gathered}
$$

LP duality

Primal

$$
\begin{gathered}
(\mathrm{P}) \begin{cases}\text { Find } & \mu \in \mathbb{M}_{ \pm}\left(\mathbf{O}_{X}\right) \\
\text { maximising } & \mu\left(O_{X}\right) \\
\text { subject to } & \forall C \in \mathcal{M} . \mu \mid C \leq e_{C} \\
\text { and } & \mu \geq 0 .\end{cases} \\
\mathcal{L}\left(\mu,\left(f_{C}\right)\right):=\underbrace{\mu\left(O_{X}\right)}_{\text {objective }}+\underbrace{\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\left.\mu\right|_{C}\right)}_{\text {constraints }} \\
\sup _{\mu}^{\inf _{\left(f_{C}\right)} \mathcal{L}\left(\mu,\left(f_{C}\right)\right)}
\end{gathered}
$$

LP duality

$$
\begin{aligned}
\mathcal{L}\left(\mu,\left(f_{C}\right)\right): & =\underbrace{\mu\left(O_{X}\right)}_{\text {objective }}+\underbrace{\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\left.\mu\right|_{C}\right)}_{\text {constraints }} \\
\mathcal{L}\left(\mu,\left(f_{C}\right)\right) & =\mu\left(O_{X}\right)+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\mu \mid c\right)
\end{aligned}
$$

LP duality

$$
\begin{aligned}
\mathcal{L}\left(\mu,\left(f_{C}\right)\right):=\underbrace{\mu\left(O_{X}\right)}_{\text {objective }}+\underbrace{\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\left.\mu\right|_{C}\right)}_{\text {constraints }} \\
\mathcal{L}\left(\mu,\left(f_{C}\right)\right)=\mu\left(O_{X}\right)+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\mu \mid c\right) \\
=\int_{O_{X}} 1 \mathrm{~d} \mu+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} e_{C}-\left.\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} \mu\right|_{C}
\end{aligned}
$$

LP duality

$$
\begin{aligned}
\mathcal{L}\left(\mu,\left(f_{C}\right)\right):=\underbrace{\mu\left(O_{X}\right)}_{\text {objective }}+\underbrace{\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\left.\mu\right|_{C}\right)}_{\text {constraints }} \\
\begin{aligned}
\mathcal{L}\left(\mu,\left(f_{C}\right)\right) & =\mu\left(O_{X}\right)+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\left.\mu\right|_{C}\right) \\
& =\int_{O_{X}} \mathbf{1} \mathrm{~d} \mu+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} e_{C}-\left.\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} \mu\right|_{C} \\
& =\int_{O_{X}} \mathbf{1 d} \mu+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} e_{C}-\sum_{C \in \mathcal{M}} \int_{O_{X}} f_{C} \circ \rho_{C}^{X} \mathrm{~d} \mu
\end{aligned}
\end{aligned}
$$

LP duality

$$
\begin{aligned}
& \mathcal{L}\left(\mu,\left(f_{C}\right)\right):=\underbrace{\mu\left(O_{X}\right)}_{\text {objective }}+\underbrace{\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\left.\mu\right|_{C}\right)}_{\text {constraints }} \\
& \mathcal{L}\left(\mu,\left(f_{C}\right)\right)=\mu\left(O_{X}\right)+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\mu \mid C\right) \\
&=\int_{O_{X}} \mathbf{1} \mathrm{~d} \mu+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} e_{C}-\left.\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} \mu\right|_{C} \\
&=\int_{O_{X}} \mathbf{1} \mathrm{~d} \mu+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} e_{C}-\sum_{C \in \mathcal{M}} \int_{O_{X}} f_{C} \circ \rho_{C}^{x} \mathrm{~d} \mu \\
&=\int_{O_{X}} \mathbf{1} \mathrm{~d} \mu+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} e_{C}-\int_{O_{X}}\left(\sum_{C \in \mathcal{M}} f_{C} \circ \rho_{C}^{x}\right) \mathrm{d} \mu
\end{aligned}
$$

LP duality

$$
\begin{aligned}
& \mathcal{L}\left(\mu,\left(f_{C}\right)\right):=\underbrace{\mu\left(O_{X}\right)}_{\text {objective }}+\underbrace{\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\left.\mu\right|_{C}\right)}_{\text {constraints }} \\
& \begin{aligned}
\mathcal{L}\left(\mu,\left(f_{C}\right)\right) & =\mu\left(O_{X}\right)+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d}\left(e_{C}-\mu \mid c\right) \\
& =\int_{O_{X}} 1 \mathrm{~d} \mu+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} e_{C}-\left.\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} \mu\right|_{C} \\
& =\int_{O_{X}} 1 \mathrm{~d} \mu+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} e_{C}-\sum_{C \in \mathcal{M}} \int_{O_{X}} f_{C} o_{C}^{X} \mathrm{~d} \mu \\
& =\int_{O_{X}} 1 \mathrm{~d} \mu+\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{dec}-\int_{O_{X}}\left(\sum_{C \in \mathcal{M}} f_{C} o_{C}^{x}\right) \mathrm{d} \mu \\
& =\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} e_{C}+\int_{O_{X}}\left(1-\sum_{C \in \mathcal{M}} f_{C} \rho_{C}^{x}\right) \mathrm{d} \mu
\end{aligned}
\end{aligned}
$$

LP duality

$$
\begin{gathered}
\mathcal{L}\left(\mu,\left(f_{C}\right)\right)=\sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} e_{C}+\int_{O_{X}}\left(1-\sum_{C \in \mathcal{M}} f_{C} \circ \rho_{C}^{x}\right) \mathrm{d} \mu \\
\inf _{\left(f_{C}\right)} \sup _{\mu} \mathcal{L}\left(\mu,\left(f_{C}\right)\right)
\end{gathered}
$$

Dual

$$
\text { (D) } \begin{cases}\text { Find } & \left(f_{C}\right)_{C \in \mathcal{M}} \in \prod_{C \in \mathcal{M}} C_{0}\left(O_{C}, \mathbb{R}\right) \\ \text { minimising } & \sum_{C \in \mathcal{M}} \int_{O_{C}} f_{C} \mathrm{~d} e_{C} \\ \text { subject to } & \sum_{C \in \mathcal{M}} f_{C} \circ \rho_{C}^{X} \geq \mathbf{1} \text { on } O_{X} \\ \text { and } & \forall C \in \mathcal{M} . f_{C} \geq 0 \text { on } O_{C} .\end{cases}
$$

Generalised Bell inequality

Generalised Bell inequality

Generalised Bell inequality

A generalised Bell inequality (β, R) on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$ is a family $\beta=\left(\beta_{C}\right)_{C \in \mathcal{M}}$ with $\beta_{C} \in C_{0}\left(O_{C}, \mathbb{R}\right)$ for all $C \in \mathcal{M}$, together with a bound $R \in \mathbb{R}$, such that for all noncontextual empirical models e on $\langle X, \mathcal{M}, \mathbf{O}\rangle$ it holds that $\langle\beta, e\rangle_{2}:=\sum_{C \in \mathcal{M}} \int_{O_{C}} \beta_{C} d e_{C} \leq R$.

Generalised Bell inequality

Generalised Bell inequality

A generalised Bell inequality (β, R) on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$ is a family $\beta=\left(\beta_{C}\right)_{C \in \mathcal{M}}$ with $\beta_{C} \in C_{0}\left(O_{C}, \mathbb{R}\right)$ for all $C \in \mathcal{M}$, together with a bound $R \in \mathbb{R}$, such that for all noncontextual empirical models e on $\langle X, \mathcal{M}, \mathbf{O}\rangle$ it holds that $\langle\beta, e\rangle_{2}:=\sum_{C \in \mathcal{M}} \int_{O_{C}} \beta_{C} \mathrm{~d} e_{C} \leq R$.

Normalised violation

The normalised violation of a Bell inequality (β, R) by an empirical model e is:

$$
\frac{\max \left\{0,\langle\beta, e\rangle_{2}\right\}}{\|\beta\|-R}
$$

where: $\|\beta\|=\sum_{C \in \mathcal{M}} \sup \left\{\beta(\mathbf{o}) \mid \mathbf{o} \in O_{C}\right\}$

Generalised Bell inequality

Generalised Bell inequality

A generalised Bell inequality (β, R) on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O}\rangle$ is a family $\beta=\left(\beta_{C}\right)_{C \in \mathcal{M}}$ with $\beta_{C} \in C_{0}\left(O_{C}, \mathbb{R}\right)$ for all $C \in \mathcal{M}$, together with a bound $R \in \mathbb{R}$, such that for all noncontextual empirical models e on $\langle X, \mathcal{M}, \mathbf{O}\rangle$ it holds that $\langle\beta, e\rangle_{2}:=\sum_{C \in \mathcal{M}} \int_{O_{C}} \beta_{C} \mathrm{~d} e_{C} \leq R$.

Theorem

Let e be an empirical model.
(i) The normalised violation by e of any Bell inequality is at most $C F(e)$;
(ii) if $C F(e)>0$ then for every $\epsilon>0$ there exists a Bell inequality whose normalised violation by e is at least $C F(e)-\epsilon$.

