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Motivations

"Now, it may happen that the two wave functions, 1y and ¢,, are
eigenfunctions of two non-commuting operators corresponding to some physical

quantities P and Q, respectively. [...] Let us suppose that the two systems are

two particles, and that

'(/)(XI,XZ) = / e%(nfxfrxo)f’dp

—o0o

[...] Since we have here the case of a continuous spectrum |[...]". [Einstein35]
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Framework

A typical bipartite experiment



Operational depiction

op €R og €R
measurement measurement

device device
my € {a,a'} mg € {b, b’}

preparation
device
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A measurement scenario is a
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Empirical models

An empirical model e on a measurement scenario (X, M, Q) is a
family e = {ec}cem where ec is a probability measure on O¢
which satisfies the compatibility condition:

eclcner = ecrlenc
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Empirical models

An empirical model e on a measurement scenario (X, M,0) is a
family e = {ec}ceam where ec is a probability measure on O¢
which satisfies the compatibility condition:

eclcner = ecrlenc

b b b b
0 110 1 0 110 1
011 0o Ol »
a a
1 0 1/2 1/2 0 1 . .
Ol0 1|0 1 » »
a a
L2 0| 0 1| . »
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Empirical models

An empirical model e on a measurement scenario (X, M, Q) is a
family e = {ec}cem where ec is a probability measure on O¢
which satisfies the compatibility condition:

eclencr = ecrlenc

An empirical model e is said to be extendable (or noncontex-
tual) if there exists a probability measure ;1 on Ox such that
VC € M. u|c = ec.
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Hidden variable models

A hidden variable model on a measurement scenario (X, M, Q) con-
sists of:
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Hidden variable models

A hidden variable model on a measurement scenario (X, M, Q) con-
sists of:

A measurable space A = (A, Fp) of hidden variables.
A probability measure p on A.
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Hidden variable models

Let (A, p, k) a hidden variable on (X, M, O). Then empirical model:

cc(B) = [ ke-B)dp - /A  ke(r.B)dp()
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Hidden variable models

A hidden variable model (A,p,k) is said to be deterministic if
kc(A,=): Fc — [0,1] is a Dirac measure for every A € A and for every maxi-

mal context C € M; in other words, there is an assignment o € Oc¢ such that
ke(A,=) = do-
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Hidden variable models

A hidden variable model (A,p,k) is said to be deterministic if
kec(X\,=): Fc — [0,1] is a Dirac measure for every A € A and for every maxi-
mal context C € M; in other words, there is an assignment o € Oc¢ such that
ke(A, =) = do.

A hidden-variable model (A,p,k) is said to be factorisable if
kc(A,=): Fc — [0,1] factorises as a product measure for every A\ € A
and for every maximal context C € M. That is, for any family of measurable

sets (Bx € Fx) cc

ke, T B) = [T kelisg (X, B)

xeC xeC

where kc| (A, —) is the marginal of the probability measure kc(X,—) on Oc¢ =
[1.cc Ox to the space O,y = O..
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A Fine-Abramsky-Brandenburger
theorem in CV




A FAB theorem in CV [Abramsky11]

Theorem

Let e be an empirical model on a measurement scenario (X, M, O).
The following are equivalent:
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A FAB theorem in CV [Abramsky11]

Theorem

Let e be an empirical model on a measurement scenario (X, M, O).
The following are equivalent:

(1) e is extendable;

(2) e admits a realisation by a deterministic hidden-variable model;

(3) e admits a realisation by a factorisable hidden-variable model.

Q. What does it tell us?
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Quantifying contextuality




Noncontextual fraction

What fraction of the empirical model e admits a deterministic
hidden-variable model? [Abramsky11] [Abramsky17]
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Noncontextual fraction

What fraction of the empirical model e admits a deterministic
hidden-variable model? [Abramsky11] [Abramsky17]

e=MXenc + (1 —\)é

NCF(e) = sup {u(Ox) | p € M(Ox), VC € M. p|c < ec} € [0,1]
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Quantifying contextuality

Linear programming problems



Linear programming

Primal

Dual

Find

w € My (Ox)

maximising  x(Ox)

subject to  VC € M. u|c < ec

and

Find

minimising

subject to

and

w=>0.

(f)cem € [] Co(Oc,R)

CceM

Z fc dec

cem? Oc

Z fcop)ézl on Ox
CceM

VCGMszO on Oc.
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Quantifying contextuality

Bell inequalities



Generalised Bell inequalities

New dual program

Find (B)cem € J] Go(Oc,R)
Cem
maximising Z Bc dec
(B) cem”’ Oc
subject to Z Bcopt <0 on Ox
cem
and VC € M. Bc < |M|7'1 on Oc.
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Generalised Bell inequalities

New dual program

Find (Bc)cem € J] Go(Oc,R)
cem
maximising Z Bc dec
(B) cem”’ Oc
subject to Z Bcopt <0 on Ox
cem
and YC € M. Bc < |M|™'1 on Oc.
NS
X
Q
NC
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Quantifying contextuality

A hierarchy of Semi-Definite
Programming problems



A hierarchy of SDPs [Lasserre09] [Henrion14]

Idea — relaxation of the problem:

e Measure — moments of the measure and truncated sequence.
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Idea — relaxation of the problem:

e Measure — moments of the measure and truncated sequence.

e Continuous functions — SOS polynomials and fixed degree.
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A hierarchy of SDPs

Primal

Dual

(D)

sup  u(Ox) — Y
HEM 4 (Ox)

(P){st. vC € M. plc < ec — Mi(y©€ — yic) =0

inf / f. dec
(f)cE2R[x], c; Oc

(epc2rl], _,

fc—l—O’o—‘rZO’l

p=0 — Mi(y) = 0
fc dec —
EHCO Oc;R) C;A/O
s.t.chop)C(ZI on Ox —>Z
CceM CeM

VCe M. fc >0 on Oc¢
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A hierarchy of SDPs

Primal
sup yo (= p(Ox) )
ye]RS(k)
(SPy) s.t. VC € M. Mk(ye’c —Yjc) =0
Mi(y) = 0
Vje{1,...,m}. Mi_,(Pjy) = 0
Dual

inf }j/ £ dec
(fce2rlx],  fea/oc
o 2 X
D04 ek,

m

st. Y fe—l=o0+ Y 0P

ceM Jj=1
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A hierarchy of SDPs

Theorem
The optimal values of the hierarchy of semidefinite programs (SDy)

provide monotonically decreasing upper bounds on the optimal so-
lution of the linear program (D) that converge to its value NCF(e).

That is,

inf (SDx) | inf(D) = NCF(e) as k — o0
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A hierarchy of SDPs

Theorem

The optimal values of the hierarchy of semidefinite programs (SDy)
provide monotonically decreasing upper bounds on the optimal so-
lution of the linear program (D) that converge to its value NCF(e).

That is,

inf (SDx) | inf(D) = NCF(e) as k — o0

Also holds for the primal (SPy):
NCF(e) =sup(P) = inf(D) <inf(SDy)
g

stron
duality

sup (P) < sup (SPx) < inf(SDy)

16/16
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Outlook:

e Numerical implementation and applications
to real CV experiments.

e Continuous set of measurements.

e Relate CV to advantages for quantum com-

putation.



Thank you!
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Some elements of measure theory

e Measurable space: pair X = (X, Fx) e.g. (X,P(X)), (R, B(R))
e A measurable function f between measurable spaces X = (X, Fx) and

Y = (Y, Fy) is a function f : X — Y s.t. for any E € Fy, f1(E) € Fx.

e A measure on a measurable space X = (X, Fx) is a function p1 : Fx — R.
Set of measures: M(X) (signed M (X)) - probability measures: P(X).
Allow to integrate well-behaved measurable functions: fx fdpu.

e Push-forward: a measurable function f : X — Y carries any measure . on
X to a measure f,ppon Y s.t. f/L(E) = pu(f~*(E)) for E measurable in Y.
Important use: marginal measure. : X1 X X2 — X then plx; = miwp

and for E measurable in Xy, M|X1( ) = (M (E)) = u(E x Xo).
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LP duality
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P) maximising  u(Ox)
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LP duality

Primal
Find u € My (Ox)
) maximising  1(Ox)
subject to  VC € M. u|c < ec
and w > 0.

£ () = 100+ 3 [ fe dlec sl

CeM

N——

objective constraints

sup inf L(u, (fc))
I (fC)



LP duality

L(ns(fe)) = n(0x)+ Y [ e dlec —ule)
cem” Oc
~——

objective constraints

L (f)) = M(Ox)-i-z'/o fe d(ec — plc)

ceM



LP duality

£ () = w(Ox)+ 3 /O fe d(ec — #lc)

CeM
N——

objective constraints

ﬁ(:uﬂ (fC))

u(Ox) + Z/o fc d(ec — ulc)

ceM

/ 1dﬂ+2/ fc desz/ fc d,u,|c
Ox oc oc

ceM ceM



LP duality

Ll () =n(0x)+ Y [

fc d(ec — plc)
cem”Oc

~——
objective constraints

L) = w00+ Y [

fe d(ec — plc)
C

Ccem”O
= [ran+ Y [ fedee- Y [ fean
Ox cem” Oc cem” Oc

= /ldu+2/ fcdecfZ/ feopf dp
Ox Oc Ox

ceMm ceM



LP duality
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LP duality

L(p, (fc)) = p(Ox) + Z/ fc d(ec — plc)

CeM
~——
objective constraints
Lin(f) = w00+ 3 [ fe d(ec = ple)
cemM
= /ldu-l—Z/fcdec—Z/fcdmc
Ox cem CeM
S / 1du—|—Z/ fcdec—Z/ fcop)c(d,u
Ox CeM CeM
~ [ranr ¥ [ e | (chopé> a
Ox Ccem Ox \cem

Z/ fcdec+/ <1—chop)c<) dy,
cem”Oc Ox CeM



LP duality

,ua fC

Dual

Z/ fcdec+/ <1chopc> [

CeM

CeM

inf sup L(u, (fc))

(fc)
Find (f)cem € J] Co(Oc,R)
CeM
minimising Z/ fc dec
CeM

subject to Z fc opC >1 on Ox
Cem

and VC e M. fc >0 on Oc.
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(X, M,0) is a family 8 = (Bc)cem with fc € Co(Oc,R)
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Generalised Bell inequality

A generalised Bell inequality (5,R) on a measurement scenario
<X,M,O> is a family g = (BC)CGM with B¢ € Co(OC,R)
for all C € M, together with a bound R € R, such that for
all noncontextual empirical models e on (X, M, O) it holds that
(B,€)2:= ZCEM fOC pc dec < R.

Theorem

Let e be an empirical model.

(i) The normalised violation by e of any Bell inequality is at most

CF(e);

(i1) if CF(e) > 0 then for every € > O there exists a Bell inequality
whose normalised violation by e is at least CF(e) — e.
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