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� CV quantum systems promising candidates for implementing

quantum informational tasks.

� Quantum mechanics in�nite dimensional.

� "Now, it may happen that the two wave functions, ψk and φr , are eigen-

functions of two non-commuting operators corresponding to some physical

quantities P and Q, respectively. [...] Let us suppose that the two systems

are two particles, and that

ψ(x1, x2) =

∫ ∞
−∞

e
2πi
h

(x1−x2+x0)pdp

[...] Since we have here the case of a continuous spectrum [...]".
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� CV quantum systems promising candidates for implementing

quantum informational tasks.

� Quantum mechanics in�nite dimensional.

�

"Now, it may happen that the two wave functions, ψk and φr , are

eigenfunctions of two non-commuting operators corresponding to some physical

quantities P and Q, respectively. [...] Let us suppose that the two systems are

two particles, and that

ψ(x1, x2) =

∫ ∞
−∞

e
2πi
h

(x1−x2+x0)pdp

[...] Since we have here the case of a continuous spectrum [...]". [Einstein35]
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A typical bipartite experiment



Operational depiction

measurement

device

mA ∈ {a, a′}

oA ∈ R

measurement

device

mB ∈ {b, b′}

oB ∈ R

preparation

device
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Measurement scenario

A measurement scenario is a
triple 〈X ,M,O〉 where:

� X a �nite set of

measurements - e.g.

X = {a, a′, b, b′}

� M the (maximal) contexts -

e.g.

M = {{a, b}, {a, b′}, {a′, b}, {a′, b′}}

� O = (Ox)x∈X a measurable

set of outcomes Ox - e.g.
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� M the (maximal) contexts -

e.g.

M = {{a, b}, {a, b′}, {a′, b}, {a′, b′}}

� O = (Ox)x∈X a measurable

set of outcomes Ox - e.g.

O = R or O = [0, 1]
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• b
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Empirical models

De�nition - empirical model

An empirical model e on a measurement scenario 〈X ,M,O〉 is a

family e = {eC}C∈M where eC is a probability measure on OC

which satis�es the compatibility condition:

eC |C∩C ′ = eC ′ |C∩C ′
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Empirical models

De�nition - empirical model

An empirical model e on a measurement scenario 〈X ,M,O〉 is a

family e = {eC}C∈M where eC is a probability measure on OC

which satis�es the compatibility condition:

eC |C∩C ′ = eC ′ |C∩C ′

De�nition - extendability

An empirical model e is said to be extendable (or noncontex-

tual) if there exists a probability measure µ on OX such that

∀C ∈M. µ|C = eC .
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Hidden variable models

De�nition - hidden variable model

A hidden variable model on a measurement scenario 〈X ,M,O〉 con-
sists of:

� A measurable space Λ = 〈Λ,FΛ〉 of hidden variables.

� A probability measure p on Λ.

� For each maximal context C ∈ M, a probability kernel

kC : Λ −→ OC , satisfying the following compatibility condition:

∀λ ∈ Λ. kC (λ,−)|C∩C ′ = kC ′(λ,−)|C∩C ′
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Hidden variable models

Let 〈Λ, p, k〉 a hidden variable on 〈X ,M,O〉. Then empirical model:

eC (B) =

∫
Λ
kC (�,B)dp =

∫
λ∈Λ

kC (λ,B)dp(λ)
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Hidden variable models

De�nition - determinism

A hidden variable model 〈Λ, p, k〉 is said to be deterministic if

kC (λ, �) : FC −→ [0, 1] is a Dirac measure for every λ ∈ Λ and for every maxi-

mal context C ∈ M; in other words, there is an assignment o ∈ OC such that

kC (λ, �) = δo.
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De�nition - determinism

A hidden variable model 〈Λ, p, k〉 is said to be deterministic if

kC (λ, �) : FC −→ [0, 1] is a Dirac measure for every λ ∈ Λ and for every maxi-

mal context C ∈ M; in other words, there is an assignment o ∈ OC such that

kC (λ, �) = δo.

De�nition - factorisability

A hidden-variable model 〈Λ, p, k〉 is said to be factorisable if

kC (λ, �) : FC −→ [0, 1] factorises as a product measure for every λ ∈ Λ

and for every maximal context C ∈ M. That is, for any family of measurable

sets (Bx ∈ Fx)x∈C ,

kC (λ,
∏
x∈C

Bx) =
∏
x∈C

kC |{x}(λ,Bx)

where kC |{x}(λ, �) is the marginal of the probability measure kC (λ, �) on OC =∏
x∈C Ox to the space O{x} = Ox .
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A Fine-Abramsky-Brandenburger

theorem in CV



A FAB theorem in CV [Abramsky11]

Theorem

Let e be an empirical model on a measurement scenario 〈X ,M,O〉.
The following are equivalent:

(1) e is extendable;

∃µ on OX s.t. ∀C ∈M. µ|C = eC

(2) e admits a realisation by a deterministic hidden-variable model;

(3) e admits a realisation by a factorisable hidden-variable model.
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The following are equivalent:

(1) e is extendable;

(2) e admits a realisation by a deterministic hidden-variable model;

(3) e admits a realisation by a factorisable hidden-variable model.

kC (λ,
∏

x∈C Bx) =
∏

x∈C kC |{x}(λ,Bx) for a family of

measurable sets (Bx ∈ Fx)x∈C .
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A FAB theorem in CV [Abramsky11]

Theorem

Let e be an empirical model on a measurement scenario 〈X ,M,O〉.
The following are equivalent:

(1) e is extendable;

(2) e admits a realisation by a deterministic hidden-variable model;

(3) e admits a realisation by a factorisable hidden-variable model.

Q. What does it tell us?

A. Nonlocality special case of contextuality.

Captured by notion of extendability.
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Quantifying contextuality



Noncontextual fraction

What fraction of the empirical model e admits a deterministic

hidden-variable model? [Abramsky11] [Abramsky17]
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Noncontextual fraction

What fraction of the empirical model e admits a deterministic

hidden-variable model? [Abramsky11] [Abramsky17]

e = λeNC + (1− λ)e ′

De�nition - noncontextual fraction

NCF(e) = sup {µ(OX ) | µ ∈M(OX ), ∀C ∈M. µ|C ≤ eC} ∈ [0, 1]
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Quantifying contextuality

Linear programming problems



Linear programming

Primal

(P)



Find µ ∈ M±(OX )

maximising µ(OX )

subject to ∀C ∈M. µ|C ≤ eC

and µ ≥ 0.

Dual

(D)



Find (fC )C∈M ∈
∏

C∈M

C0(OC ,R)

minimising
∑
C∈M

∫
OC

fC d eC

subject to
∑
C∈M

fC ◦ ρXC ≥ 1 on OX

and ∀C ∈M. fC ≥ 0 on OC .
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Quantifying contextuality

Bell inequalities



Generalised Bell inequalities

New dual program

(B)



Find (βC )C∈M ∈
∏

C∈M

C0(OC ,R)

maximising
∑
C∈M

∫
OC

βC d eC

subject to
∑
C∈M

βC ◦ ρXC ≤ 0 on OX

and ∀C ∈M. βC ≤ |M|−1
1 on OC .
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Quantifying contextuality

A hierarchy of Semi-De�nite

Programming problems



A hierarchy of SDPs [Lasserre09] [Henrion14]

Idea → relaxation of the problem:

� Measure → moments of the measure and truncated sequence.

� Continuous functions → SOS polynomials and �xed degree.

13/16



A hierarchy of SDPs [Lasserre09] [Henrion14]

Idea → relaxation of the problem:

� Measure → moments of the measure and truncated sequence.

� Continuous functions → SOS polynomials and �xed degree.

13/16



A hierarchy of SDPs

Primal

(P)


sup

µ∈M±(OX )

µ(OX ) −→ y0

s.t. ∀C ∈M. µ|C ≤ eC −→ Mk(ye,C − y|C ) � 0

µ � 0 −→ Mk(y) � 0

Dual

(D)



inf
(fc )∈

∏
C0(OC ,R)

∑
C∈M

∫
OC

fC d eC −→ inf
(fc )⊂Σ2R[x]

k

(σj )⊂Σ2R[x]
k−rj

∑
C∈M

∫
OC

fc d eC

s.t.
∑
C∈M

fC ◦ ρXC ≥ 1 on OX −→
∑
C∈M

fC − 1 = σ0 +
m∑
j=1

σjPj

∀C ∈M. fC ≥ 0 on OC
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A hierarchy of SDPs

Primal

(SPk)



sup
y∈Rs(k)

y0 ( = µ(OX ) )

s.t. ∀C ∈M. Mk(ye,C − y|C ) � 0

Mk(y) � 0

∀j ∈ {1, . . . ,m}. Mk−rj (Pjy) � 0

Dual

(SDk)



inf
(fc )⊂Σ2R[x]

k

(σj )⊂Σ2R[x]
k−rj

∑
C∈M

∫
OC

fc d eC

s.t.
∑
C∈M

fC − 1 = σ0 +
m∑
j=1

σjPj
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A hierarchy of SDPs

Theorem

The optimal values of the hierarchy of semide�nite programs (SDk)

provide monotonically decreasing upper bounds on the optimal so-

lution of the linear program (D) that converge to its value NCF(e).

That is,

inf (SDk) ↓ inf(D) = NCF(e) as k →∞
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A hierarchy of SDPs

Theorem

The optimal values of the hierarchy of semide�nite programs (SDk)

provide monotonically decreasing upper bounds on the optimal so-

lution of the linear program (D) that converge to its value NCF(e).

That is,

inf (SDk) ↓ inf(D) = NCF(e) as k →∞

Also holds for the primal (SPk):

NCF(e) = sup (P) =
strong
duality

inf (D) ≤ inf (SDk)

sup (P) ≤ sup (SPk) ≤ inf (SDk)
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Outlook:

� Numerical implementation and applications

to real CV experiments.

� Continuous set of measurements.

� Relate CV to advantages for quantum com-

putation.
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Thank you!
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Some elements of measure theory

� Measurable space: pair X = 〈X ,FX 〉 e.g. 〈X ,P(X )〉, 〈R,B(R)〉

� A measurable function f between measurable spaces X = 〈X ,FX 〉 and

Y = 〈Y ,FY 〉 is a function f : X → Y s.t. for any E ∈ FY , f
−1(E) ∈ FX .

� A measure on a measurable space X = 〈X ,FX 〉 is a function µ : FX → R.
Set of measures: M(X) (signed M±(X)) - probability measures: P(X).

Allow to integrate well-behaved measurable functions:
∫
X
f dµ.

� Push-forward: a measurable function f : X→ Y carries any measure µ on

X to a measure f∗µ on Y s.t. f∗µ(E) = µ(f −1(E)) for E measurable in Y.

Important use: marginal measure.
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Some elements of measure theory

� Measurable space: pair X = 〈X ,FX 〉 e.g. 〈X ,P(X )〉, 〈R,B(R)〉

� A measurable function f between measurable spaces X = 〈X ,FX 〉 and

Y = 〈Y ,FY 〉 is a function f : X → Y s.t. for any E ∈ FY , f
−1(E) ∈ FX .

� A measure on a measurable space X = 〈X ,FX 〉 is a function µ : FX → R.
Set of measures: M(X) (signed M±(X)) - probability measures: P(X).

Allow to integrate well-behaved measurable functions:
∫
X
f dµ.

� Push-forward: a measurable function f : X→ Y carries any measure µ on

X to a measure f∗µ on Y s.t. f∗µ(E) = µ(f −1(E)) for E measurable in Y.

Important use: marginal measure. πi : X1 × X2 → Xi then µ|Xi = πi∗µ

and for E measurable in X1, µ|X1(E) = µ(π−1
1 (E)) = µ(E × X2).



Derivation of the LP duality



LP duality

Primal

(P)



Find µ ∈ M±(OX )

maximising µ(OX )

subject to ∀C ∈M. µ|C ≤ eC

and µ ≥ 0.

L (µ, (fC )) := µ(OX )︸ ︷︷ ︸
objective

+
∑
C∈M

∫
OC

fC d (eC − µ|C )︸ ︷︷ ︸
constraints
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objective

+
∑
C∈M

∫
OC

fC d (eC − µ|C )︸ ︷︷ ︸
constraints

L(µ, (fC )) = µ(OX ) +
∑
C∈M

∫
OC

fC d (eC − µ|C )

=

∫
OX

1 dµ+
∑
C∈M

∫
OC

fC d eC −
∑
C∈M

∫
OC

fC dµ|C

=

∫
OX

1 dµ+
∑
C∈M

∫
OC

fC d eC −
∑
C∈M

∫
OX

fC ◦ ρXC dµ

=

∫
OX

1 dµ+
∑
C∈M

∫
OC

fC d eC −
∫
OX

(∑
C∈M

fC ◦ ρXC

)
dµ

=
∑
C∈M

∫
OC

fC d eC +

∫
OX

(
1−

∑
C∈M

fC ◦ ρXC

)
dµ



LP duality

L (µ, (fC )) =
∑
C∈M

∫
OC

fC d eC +

∫
OX

(
1−

∑
C∈M

fC ◦ ρXC

)
dµ

inf
(fC )

sup
µ
L(µ, (fC ))

Dual

(D)



Find (fC )C∈M ∈
∏

C∈M

C0(OC ,R)

minimising
∑
C∈M

∫
OC

fC d eC

subject to
∑
C∈M

fC ◦ ρXC ≥ 1 on OX

and ∀C ∈M. fC ≥ 0 on OC .



Generalised Bell inequality



Generalised Bell inequality

Generalised Bell inequality

A generalised Bell inequality (β,R) on a measurement scenario

〈X ,M,O〉 is a family β = (βC )C∈M with βC ∈ C0(OC ,R)

for all C ∈ M, together with a bound R ∈ R, such that for

all noncontextual empirical models e on 〈X ,M,O〉 it holds that

〈β, e〉2 :=
∑

C∈M
∫
OC
βC d eC ≤ R .



Generalised Bell inequality

Generalised Bell inequality

A generalised Bell inequality (β,R) on a measurement scenario

〈X ,M,O〉 is a family β = (βC )C∈M with βC ∈ C0(OC ,R)

for all C ∈ M, together with a bound R ∈ R, such that for

all noncontextual empirical models e on 〈X ,M,O〉 it holds that

〈β, e〉2 :=
∑

C∈M
∫
OC
βC d eC ≤ R .

Normalised violation

The normalised violation of a Bell inequality (β,R) by an empirical

model e is:
max{0, 〈β, e〉2}
‖β‖ − R

where: ‖β‖ =
∑

C∈M sup{β(o)|o ∈ OC}
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Generalised Bell inequality

A generalised Bell inequality (β,R) on a measurement scenario

〈X ,M,O〉 is a family β = (βC )C∈M with βC ∈ C0(OC ,R)

for all C ∈ M, together with a bound R ∈ R, such that for

all noncontextual empirical models e on 〈X ,M,O〉 it holds that

〈β, e〉2 :=
∑

C∈M
∫
OC
βC d eC ≤ R .

Theorem

Let e be an empirical model.

(i) The normalised violation by e of any Bell inequality is at most

CF(e);

(ii) if CF(e) > 0 then for every ε > 0 there exists a Bell inequality

whose normalised violation by e is at least CF (e)− ε.
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