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What makes quantum computing work?

Entanglement
Superposition &
     interference Largeness of

Hilbert space

Contextuality
Wigner negativity



Wigner function can 
go negative

Marginals must be
non-negative

p

q

Negativity of the Wigner function 
is an indicator of quantumness *

*: This even holds in quantum computation



Role of the Hilbert space dimension

Wigner function can 
go negative

Marginals must be
non-negative

p

q

quantum optics:
Hilbert space dimension infinite

quantum computation:
Hilbert space dimension finite

Odd: all nice &
         safe

Even: monsters
           lurking

Mermin’s 
square 
and star



Result

Theorem[1]−[3]: Quantum computation with magic states can

have a quantum speedup only if the Wigner function of the

initial magic states is negative.

Negativity in the Wigner function
is a resource

for quantum computation

[1] Qudits in odd d: V. Veitch et al., New J. Phys. 14, 113011 (2012).

[2] Rebits: N. Delfosse et al., Phys. Rev. X 5, 021003 (2015).

[3] Qubits: R. Raussendorf et al., arXiv:1905.05374.



Contextuality

The case of odd prime local Hilbert space dimension

Qutrit state space
stabilizer polytope

positive Wigner function
contextual

non-contextual

Wigner negativity = contextuality in odd d

M. Howard et al., Nature 510, 351 (2014)



Quantum Computation with magic states

output

H Z

magic
states

 restricted gate set
unrestricted classical processing

• Non-universal restricted gate set: e.g. Clifford gates.

• Universality reached through injection of magic states.

+ As of now, leading scheme for fault-tolerant QC.

Computational power is shifted from gates to states



Outline

1. Review: the case of odd local dimension

(a) Wigner functions in finite dimension

(b) Wigner function negativity as a resource

2. The trouble with qubits

3. Quantum computation with magic states in d = 2

• Overcoming Mermin’s Monsters



[quantum] mechanics in phase space

classical

Probability denisty

quantum

Wigner function

[p,q]=i h
_

• The Wigner function

Wψ(p, q) =
1

π

∫
dξ e−2πiξpψ†(q − ξ/2)ψ(q + ξ/2).

is a quasi-probability distribution.

It is the closest quantum counterpart to the classical

probability distribution over phase space.



Wigner functions for qudits
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Wigner functions can be adapted to finite-dimensional state spaces.

• The Wigner function W is linear in ρ.

• The marginals of W are probability distributions.



Wigner function for qudits

The n-qudit state state space is V = Znd × Znd .

For every v ∈ V we have a phase point operator Av such that

Wρ(v) =
1

dn
Tr (Avρ) , ∀ρ.

ρ =
∑

v∈V
Wρ(v)Av.

• To define the Wigner function W , we need to define the

phase point operators.



The phase point operators Av

Consider the qudit Pauli operators (d× d-matrices)

X =


0 1

0 1

1 0

 , Z =


1

ω

ωd−1

 ,

and introduce the “translators” Ta, ∀a = (aX ,aZ) ∈ Znd × Znd ,

Ta = ωγ(a)
n⊗

j=1

(
Xj
)aX(j) (

Zj
)aZ(j)

Remark:

• Choice γ(a) := aTZaX/2 ensures that Ta+b = TaTb, ∀ commuting Ta, Tb

• That choice works only when d is odd.



The phase point operators Av

Recall: Ta = ωγ(a)
n⊗

j=1

(
Xj
)aX(j) (

Zj
)aZ(j)

.

The phase point operator at the origin is

A0 =
1

dn

∑
a∈Z2

d×Z
n
d

Ta.

All phase point operators are

Av = TvA0T
†
v.

Now use this in:

Wρ(v) =
1

dn
Tr (Avρ)

D. Gross, PhD Thesis, Imperial College London, 2005.



Pauli measurement & the qudit Wigner function

If the local dimension is odd, then Gross’ n-qudit Wigner

function preserves positivity under all Pauli measurements.

Denote Pa,s the projector corrresponding to the measurement of

the observable Ta with eigenvalue ωs. Then,

Wρ > 0⇒WPa,sρPa,s > 0, ∀a, ∀s.



Quantum speedup requires W < 0

In the case of odd prime local Hilbert space dimension:

Theorem [*]: Quantum computation with magic states can

have a quantum speedup only if the Wigner function of the

initial magic states is negative.

*: V. Veitch et al., New J. Phys 14 (2012).



Proof idea

We will show that:

If Wρmagic ≥ 0 ⇒ efficiently classical simulation ⇒ no speedup.

Simulation algorithm:

1. Wρmagic ≥ 0 is a probability distribution. −→ Sample from it!

Each sample is a point in phase space.

2. Update the phase space points under Clifford gates and Pauli

measurement.



Eliminating Clifford unitaries

ρ U U1 2

O1 O2

ρ U1 U2

O1O2

• Only the measurement statistics matters

• All Clifford unitaries can be propagated forward in time

past the last measurement, and then discarded.



Update under Pauli measurements

deterministic outcome 
for all Pauli measurements

1/d

1/d

1/d

1/d

1/d

1/d

1/d 2

phase space

Use positivity-preservation under Pauli measurement



The trouble with

Local Hilbert space dimension d = 2



The trouble with d = 2

Mermin’s 
square 
and star

Standard Wigner function does not preserve

positivity under Pauli measurement



The trouble with d = 2

XX

XZ

ZZ

ZX

Z1Z2

X1 X2

-YY

In at least one context it must hold that

Ta+b = −TaTb,

otherwise we could consistently assign the value λ(Ta) = 1, ∀a.



The trouble with d = 2

Assume we use an analogous Wigner function for qubits, with
phase point operators

A0 =
1

2n
∑

a∈Zn2×Z
n
2

Ta, Av = TvA0T
†
v (1)

Now consider Wρ(0) for the stabilizer state

ρ =
(I − Ta)(I − Tb)

2n
=
I − Ta − Tb−Ta+b

2n

We find

Wρ(0) =
1

2n
Tr(A0ρ) =

1− 1− 1−1

4n
<0.

Starting from Eq. (??), whatever the phase convention

for the Ta, there are stabilizer states with negative W .



Local Hilbert space dimension d = 2



Goals

• Construct a Wigner function for multi-qubit systems that

preserves positivity under all Pauli measurement.

• Efficient classical simulation of QC with magic states for

Wρinit ≥ 0.

We obtain that, and in addition:

• Our construction applies to all d, & reproduces Gross’ Wigner

function if d is odd.

⇒ Unified method for classical simulation based on phase space.

+ Also contains simulation of stabilizer mixtures as a special

case.



Phase point operators for d = 2

The multi-qubit Wigner function is defined through

ρ =
∑
Ω,γ

W (Ω, γ)AγΩ,

where the phase point operators are given by

A
γ
Ω =

1

2n
∑
a∈Ω

(−1)γ(a)Ta, Ω ⊂ V = Zn2 × Zn2.

The sets Ω ⊂ V and the functions γ : Ω −→ Z2 satisfy the

following constraints:

• Ω is free of parity-based Kochen-Specker proofs.

• Ω is closed under inference.

If a, b ∈ Ω and [Ta, Tb] = 0 then a+ b ∈ Ω.

• γ is a consistent value assignment.



Phase point operators for Mermin’s square

Example for phase point operator (middle):

A
γ
Ω =

1

4
(I + Z1 + Z2 + Z1Z2 +X2 + Z1X2) .



Phase point operators are classified for d = 2

• The classification of phase point operators is related to Ma-

jorana fermions

See: arXiv:1905.05374.



Properties of phase point operators

• Phase point operators map to probabilistic mixtures of phase

point operators under measurement

• Phase point operators map to phase point operators under

Clifford unitaries (covariance)

⇒ Positivity is preserved in either case



Update of phase point operators

Example of Mermin’s square (update of Ω):

• The sets Ω and the functions γ change under the evolution
by Pauli measurement.



Efficient classical simulation for Wρ ≥ 0

Theorem. If the Wigner function Wρinit ≥ 0 and can be effi-

ciently sampled from, then all magic state quantum computation

on ρinit can be efficiently classically simulated.

Wρinit < 0 is a quantum computational resource!

The classical simulation algorithm is as follows:

1. Sample phase space points (Ω, γ) according to the positive Wρinit.

2. Propagate phase space point (Ω, γ) through circuit, one measurement at a time.

• For the measurement of the Pauli observable Ta:
If a ∈ Ω, then output γ(a)
If a 6∈ Ω, then flip a coin.

• Update Ω, γ depending on a.



Positively representable states

• For any number of qubits: The set of positively W -representable
states is strictly larger than stabilizer mixtures.



But what if W < 0?

• When Wρinit < 0, classical simulation using W provides am-

plitude estimation.

• Number of samples required scales as R(ρ)2/ε2, where

R(ρ) = min
W

‖W‖ : ρ =
∑
Ω,γ

W (Ω, γ)AγΩ

 .

• For all n, for all n-qubit states ρ it holds that

R ≤ RS,

with RS the robustness of magic.



Robustness R

• In addition to governing the hardness of classical simulation,

the robustness R is also a monotone under Clifford gates and

Pauli measurements.



Results

We have constructed a Wigner function for qubits which:

• Is positivity-preserving under all Pauli measurements

• Is Clifford covariant

• Provides a simulation algorithm for quantum computation

with magic states on qubits, for Wρinit ≥ 0.

We extend/unify the results of

• Veitch et al., New J Phys (2012) (odd dimension)

• Howard and Campbell. Phys Rev Lett (2017) (Simulation

based on stabilizer mixtures)

• Wallman and Bartlett, Phys Rev A (2012) (Eight state model

for one qubit)

[arXiv:1905.05374]


