Phase space simulation method
for quantum computation with magic states
on qubits
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What makes quantum computing work?



Negativity of the Wigner function
is an indicator of quantumness *
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Role of the Hilbert space dimension

quantum opftics:
Hilbert space dimension infinite
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Result

Theorem!=18l: Quantum computation with magic states can
have a quantum speedup only if the Wigner function of the
nitial magic states is negative.

Negativity in the Wigner function
IS @ resource
for quantum computation

[1] Qudits in odd d: V. Veitch et al., New J. Phys. 14, 113011 (2012).
[2] Rebits: N. Delfosse et al., Phys. Rev. X 5, 021003 (2015).
[3] Qubits: R. Raussendorf et al., arXiv:1905.05374.




Contextuality

The case of odd prime local Hilbert space dimension

stabilizer polytope
Quitrit state space
|

positive Wigner function

Wigner negativity = contextuality in odd d

M. Howard et al., Nature 510, 351 (2014)



Quantum Computation with magic states

magic
states /AR output

ﬁ \l/ Tul 4z ﬁ
| restricted gate set

unrestricted classical processing

e Non-universal restricted gate set: e.g. Clifford gates.
e Universality reached through injection of magic states.

+ As of now, leading scheme for fault-tolerant QC.

Computational power is shifted from gates to states




Outline

1. Review: the case of odd local dimension
(a) Wigner functions in finite dimension

(b) Wigner function negativity as a resource

2. The trouble with qubits

3. Quantum computation with magic states in d = 2

e Overcoming Mermin's Monsters



[quantum] mechanics in phase space

classical quantum
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Probability denisty Wigner function

e T he Wigner function
1 _ .
Wyp,q) = — [ dge 24Pyl (g — £/2)(q + /2).
IS @ quasi-probability distribution.

It is the closest quantum counterpart to the classical
probability distribution over phase space.



Wigner functions for qudits
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Wigner functions can be adapted to finite-dimensional state spaces.

e [ he Wigner function W is linear in p.

e [ he marginals of W are probability distributions.



Wigner function for qudits
e

The n-qudit state state space is V = Z’g X Zg.

For every v € V we have a phase point operator Ay such that

1
Wy(v) = ﬁTr (Avp), Vp.

p = Z Wp(V)Av.
veV

e [0 define the Wigner function W, we need to define the
phase point operators.



The phase point operators Ay

Consider the qudit Pauli operators (d x d-matrices)
O 1 1

v — O 1 7= W

and introduce the “translators” Ta, Va = (ax,ay) € Z) x 27,

— (@) é ( )GX(J) (Zj)az(j)

Remark:
e Choice y(a) := alax/2 ensures that Tp p = TaTp, ¥V commuting Ta, Ty

e [ hat choice works only when d is odd.



The phase point operators Ay

Recall: Tp = wfy(a) é <Xj>ax(j) (Zj)az(j).
=1

The phase point operator at the origin is

1
acZaxZ"

All phase point operators are

AV — T\/AoTJ

Now use this in:
1
Wy(v) = d—nTr (Avp)

D. Gross, PhD Thesis, Imperial College London, 2005.




Pauli measurement & the qudit Wigner function
e

If the local dimension is odd, then Gross’ n-qudit Wigner
function preserves positivity under all Pauli measurements.

Denote Pa s the projector corrresponding to the measurement of
the observable T3 with eigenvalue w®. Then,

Wp>0= Wp, pp,, >0, Va,Vs.




Quantum speedup requires W < 0O

In the case of odd prime local Hilbert space dimension:

Theorem [*]: Quantum computation with magic states can
have a quantum speedup only if the Wigner function of the
initial magic states is negative.

*: V. Veitch et al.,, New J. Phys 14 (2012).



Proof idea

We will show that:
If Womagic = 0 = efficiently classical simulation = no speedup.

Simulation algorithm:

1. Wpnagic = O IS a probability distribution. — Sample from it!
Each sample is a point in phase space.

2. Update the phase space points under Clifford gates and Pauli
measurement.



Eliminating Clifford unitaries

P U G =P }y{

0, O 0, 0,

e Only the measurement statistics matters

e All Clifford unitaries can be propagated forward in time
past the last measurement, and then discarded.



Update under Pauli measurements

deterministic outcome
for all Pauli measurements

1/d

1/d

1/d

1/d
1/d ®

1/d*

phase space

Use positivity-preservation under Pauli measurement

1/d



T he trouble with

Local Hilbert space dimension d = 2




The trouble with d =2
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Standard Wigner function does not preserve
positivity under Pauli measurement




The trouble with d =2

X, X5 XX

Z A

XZ /X -YY

In at least one context it must hold that

Ta4p = —1alp,

otherwise we could consistently assign the value \(13) = 1, Va.



The trouble with d =2

Assume we use an analogous Wigner function for qubits, with
phase point operators

1
Ado=_. > Ta Av= Ty ATy (1)
CISYAS YIS
Now consider W,(0) for the stabilizer state

— (I—Ta)I —Tp) I—Ta—Tp Tatp

2n 2n
We find
1 1-1-—-1-1
Wp(0) = - Tr(Agp) = T <0.

Starting from Eq. (?7), whatever the phase convention
for the 13, there are stabilizer states with negative W.




Local Hilbert space dimension d = 2



Goals

e Construct a Wigner function for multi-qubit systems that
preserves positivity under all Pauli measurement.

e Efficient classical simulation of QC with magic states for
Wpinit Z 0.

We obtain that, and in addition:

e Our construction applies to all d, & reproduces Gross’ Wigner
function if d is odd.

= Unified method for classical simulation based on phase space.

+ AIlso contains simulation of stabilizer mixtures as a special
case.



Phase point operators for d =2

The multi-qubit Wigner function is defined through
p=> W(Q AL,
Q.
where the phase point operators are given by

1
Ay=0 > (—) 71, QcV=725x1Z5
a2

The sets €2 C V and the functions ~ : 2 — Zo, satisfy the
following constraints:

e (2 is free of parity-based Kochen-Specker proofs.

e (2 is closed under inference.
If a,b € Q and [T,,Ty] = 0 then a+b € Q2.

e < is a consistent value assignment.




Phase point operators for Mermin’s square

X, X XX X X .
7 4 7 77
X7 Zx Y . 7X Yy

Example for phase point operator (middle):

1
Agz=Z(I+Zl+ZQ+leQ+X2+ZlX2)-



Phase point operators are classified for d = 2

_ I
G,I—I—I at
= G;5+f I (Ig—l—f
7 [ g
P / \
(13—|—f (12—|-f as+1 as+1
m =0 m=1 m = 2

e [ he classification of phase point operators is related to Ma-
jorana fermions

See: arXiv:1905.05374.



Properties of phase point operators
]

e Phase point operators map to probabilistic mixtures of phase
point operators under measurement

e Phase point operators map to phase point operators under
Clifford unitaries (covariance)

= Positivity is preserved in either case



Update of phase point operators
—_

Example of Mermin’s square (update of Q):

e [ he sets €2 and the functions v change under the evolution
by Pauli measurement.



Efficient classical simulation for W, > 0
e

Theorem. If the Wigner function W, .. > 0 and can be effi-
ciently sampled from, then all magic state quantum computation
on pinit €an be efficiently classically simulated.

Woinie < 0 is @ quantum computational resource!

The classical simulation algorithm is as follows:
1. Sample phase space points (£2,v) according to the positive W,,..

2. Propagate phase space point (€2,v) through circuit, one measurement at a time.

e For the measurement of the Pauli observable Ty:
If a € 2, then output ~(a)
If a € €2, then flip a coin.

e Update 2, v depending on a.



Positively representable states
—_

Portion of positively representable states for the cross section of the 2
qubit Bloch Sphere:

1
p(x,y) = lelz + x(X1Xo + £142 — Y1 Y2) + y(41 + £2)

Hyper-Octahedral States Positively Representable States

e For any number of qubits: The set of positively W-representable
states is strictly larger than stabilizer mixtures.



But what if W <07

e When W, .. < 0, classical simulation using W provides am-
plitude estimation.

e Number of samples required scales as R(p)2/e2, where

N(p) = min (IIWll NEDD W(Qvﬂ%) -
Qy
e For all n, for all n-qubit states p it holds that

%S%SU

with Rg the robustness of magic.



Robustness ‘R
e —
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e In addition to governing the hardness of classical simulation,
the robustness ‘R is also a monotone under Clifford gates and
Pauli measurements.



Results
|

We have constructed a Wigner function for qubits which:
e Is positivity-preserving under all Pauli measurements
e Is Clifford covariant

e Provides a simulation algorithm for quantum computation
with magic states on qubits, for W, .. > 0.

We extend/unify the results of
e Veitch et al., New J Phys (2012) (odd dimension)

e Howard and Campbell. Phys Rev Lett (2017) (Simulation
based on stabilizer mixtures)

e Wallman and Bartlett, Phys Rev A (2012) (Eight state model
for one qubit)

[arXiv:1905.05374]



