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Motivation

I Central object of study of quantum information and computation theory:
the advantage afforded by quantum resources in information-processing tasks.

I A range of examples are known and have been studied . . . but a systematic understanding of
the scope and structure of quantum advantage is lacking.

I A hypothesis: this is related to non-classical features of quantum mechancics.

I In this talk, we focus on non-local and contextual behaviours as quantum resources.

I Contextuality is a feature of empirical data that is a key signature of non-classicality.
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Overview

I Unified, theory-independent framework for non-locality and contextuality

‘The sheaf-theoretic structure of non-locality and contextuality ’
Abramsky, Brandenburger, New Journal of Physics, 2011.

(cf. Cabello–Severini–Winter, Aćın–Fritz–Leverrier–Sainz)

I A resource theory for contextuality:

I Measure of contextuality

I Combine and transform contextual blackboxes

I Quantifiable advantages in QC and QIP tasks

‘Contextual fraction as a measure of contextuality ’
Abramsky, B, Mansfield, Physical Review Letters, 2017.

‘A comonadic view of simulation and quantum resources’
Abramsky, B, Karvonen, Mansfield, LiCS 2019.
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Contextuality



Non-local games
Alice and Bob cooperate in solving a task set by Verifier.

They may share prior information,

but cannot communicate once the game starts.

Alice

Alice

Bob

Bob

Alice Bob

VerifierVerifier

iA ∈ {0, 1} iB ∈ {0, 1}

oA ∈ {0, 1} oB ∈ {0, 1}

Verifier:
oA ⊕ oB =
iA ∧ iB ?
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier.

They may share prior information, but cannot communicate once the game starts.

Alice Bob

iA ∈ {0, 1} iB ∈ {0, 1}

oA ∈ {0, 1} oB ∈ {0, 1}

They win a play if oA ⊕ oB = iA ∧ iB .

A strategy is described by the probabilities P(oA, oB | iA, iB).
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Non-local games
I Sharing a pair of qubits and performing quantum measurements, Alice and Bob can realise:

A B (0, 0) (0, 1) (1, 0) (1, 1)
0 0 1/2 0 0 1/2

0 1 3/8 1/8 1/8 3/8

1 0 3/8 1/8 1/8 3/8

1 1 1/8 3/8 3/8 1/8

Assuming a uniform distribution on inputs,

P(oA ⊕ oB = iA ∧ iB) =
1

4
P(oA = oB | iA = 0, iB = 0) +

1

4
P(oA = oB | iA = 0, iB = 1)

+
1

4
P(oA = oB | iA = 1, iB = 0) +

1

4
P(oA 6= oB | iA = 1, iB = 1)

This gives a winning probability of 3.25/4 ≈ 0.81 !

I Classically, Alice and Bob’s optimal winning probability is 0.75.
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A simple observation

‘Logical Bell inequalities’, Abramsky, Hardy, Physical Review A, 2012.

I Propositional formulae φ1, . . . , φN

I pi := Prob(φi )

I Suppose the φi are not simultaneously satisfiable. Then Prob (
∧
φi ) = 0.

I Using elementary logic and probability:

1 = Prob
(
¬
∧
φi

)

= Prob
(∨
¬φi
)

≤
N∑
i=1

Prob (¬φi )

=
N∑
i=1

(1− pi )

= N −
N∑
i=1

pi .

I Hence, N∑
i=1

pi ≤ N − 1 .
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Analysis of the Bell table

A B (0, 0) (0, 1) (1, 0) (1, 1)
a0 b0

1/2 0 0 1/2

a0 b1
3/8 1/8 1/8 3/8

a1 b0
3/8 1/8 1/8 3/8

a1 b1
1/8 3/8 3/8 1/8

φ1 = a0 ↔ b0 = (a0 ∧ b0) ∨ (¬a0 ∧ ¬b0)
φ2 = a0 ↔ b1 = (a0 ∧ b1) ∨ (¬a0 ∧ ¬b1)
φ3 = a1 ↔ b0 = (a1 ∧ b0) ∨ (¬a1 ∧ ¬b0)
φ4 = a1 ⊕ b1 = (¬a1 ∧ b1) ∨ (a1 ∧ ¬b1) .

These formulae are contradictory. But p1 +p2 +p3 +p4 = 3.25. The inequality is violated by 1/4.

All Bell inequalities arise in this way.
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Contextuality

I The Bell table can be realised in the real world.

I So, what was our unwarranted assumption?

I That all variables could in principle be observed simultaneously.
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The essence of contextuality

I Not all properties may be observed at once.

I Jointly observable properties provide partial snapshots.

Local consistency but Global inconsistency
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M. C. Escher, Ascending and Descending

Local consistency but Global inconsistency
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Formalising empirical data

A measurement scenario X = 〈X ,Σ,O〉:
I X – a finite set of measurements

I Σ – a simplicial complex on X
faces are called the measurement contexts

I O = (Ox)x∈X – for each x ∈ X a non-empty
set of possible outcomes Ox

An empirical model e = {eσ}σ∈Σ on X:

I each eσ ∈ Prob
(∏

x∈σ Ox

)
is a probability

distribution over joint outcomes for σ.

I generalised no-signalling holds: for any
σ, τ ∈ Σ, if τ ⊆ σ,

eσ|τ = eτ

(i.e. marginals are well-defined)

A B (0, 0) (0, 1) (1, 0) (1, 1)

a0 b0 −− −− −− −−
a0 b1 −− −− −− −−
a1 b0 −− −− −− −−
a1 b1 −− −− −− −−

X = {a0, a1, b0, b1}, Ox = {0, 1}

Σ = ↓ { {a0, b0}, {a0, b1}, {a1, b0}, {a1, b1} }.

•a0 • b0

• a1
•b1

•0
•1

•
•

• 0
• 1

•
•
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Contextuality

An empirical model e = {eσ}σ∈Σ on a measurement scenario (X ,Σ,O) is non-contextual if
there is a distribution d on

∏
x∈X Ox such that, for all σ ∈ Σ:

d |σ = eσ.

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell’s and Kochen–Spekker’s theorems is that there are behaviours arising from
quantum mechanics that are contextual.
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Hierarchy of contextuality

Possibilistic collapse

I Given an empirical model e, define possibilistic model poss(e) by taking the support of each
distributions.

I Contains the possibilistic, or logical, information of that model.

A B (0, 0) (0, 1) (1, 0) (1, 1)
a0 b0

1/2 0 0 1/2

a0 b1
3/8 1/8 1/8 3/8

a1 b0
3/8 1/8 1/8 3/8

a1 b1
1/8 3/8 3/8 1/8

7−→

A B (0, 0) (0, 1) (1, 0) (1, 1)
a0 b0 1 0 0 1
a0 b1 1 1 1 1
a1 b0 1 1 1 1
a1 b1 1 1 1 1
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Hierarchy of contextuality

Hardy model

A B (0, 0) (0, 1) (1, 0) (1, 1)

a0 b0 1 1 1 1
a0 b1 0 1 1 1
a1 b0 0 1 1 1
a1 b1 1 1 1 0

a1 ∨ b0 a0 ∨ b1 ¬(a1 ∧ b1)

[a0 7→ 0, b0 7→ 0]
•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

There are some global sections,

but . . .
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There are some global sections,

but . . .

Classical assignment: [a0 7→ 1, a1 7→ 0, b0 7→ 1, b1 7→ 0]
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Hierarchy of contextuality
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There are some global sections, but . . .

Logical contextuality: Not all sections extend to global ones.
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Hierarchy of contextuality

Popescu–Rohrlich box

A B (0, 0) (0, 1) (1, 0) (1, 1)

a0 b0 1 0 0 1
a0 b1 1 0 0 1
a1 b0 1 0 0 1
a1 b1 0 1 1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Strong contextuality:
no event can be extended to a global assignment.

a0 ↔ b0 a0 ↔ b1 a1 ↔ b0 a1 ⊕ b1
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Measuring Contextuality



The contextual fraction
Non-contextuality: global distribution d ∈ Prob(OX ) such that:

∀C∈M. d |C = eC .

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions c ∈ SubProb(OX ) such that:

∀C∈M. c |C ≤ eC .

Non-contextual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight λ over all convex decompositions

e = λeNC + (1− λ)e′

where eNC is a non-contextual model.

NCF(e) = λ CF(e) = 1− λ
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∀C∈M. d |C = eC .
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Consider subdistributions c ∈ SubProb(OX ) such that:

∀C∈M. c |C ≤ eC .

Non-contextual fraction: maximum weight of such a subdistribution.
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where eNC is a non-contextual model. eSC is strongly contextual!
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Generalised Bell inequalities
An inequality for a scenario 〈X ,M,O〉 is given by:

I a set of coefficients α = {α(C , s)}C∈M,s∈OC

I a bound R

For a model e, the inequality reads as

Bα(e) ≤ R ,

where
Bα(e) :=

∑
C∈M,s∈OC

α(C , s)eC (s) .

Wlog we can take R non-negative (in fact, we can take R = 0).

It is called a Bell inequality if it is satisfied by every NC model. If it is saturated by some NC
model, the Bell inequality is said to be tight.

NB: A complete set of inequalities can be derived from the logical approach.

Resource theory of contextual behaviours 15/ 33



Generalised Bell inequalities
An inequality for a scenario 〈X ,M,O〉 is given by:

I a set of coefficients α = {α(C , s)}C∈M,s∈OC

I a bound R

For a model e, the inequality reads as

Bα(e) ≤ R ,

where
Bα(e) :=

∑
C∈M,s∈OC

α(C , s)eC (s) .

Wlog we can take R non-negative (in fact, we can take R = 0).

It is called a Bell inequality if it is satisfied by every NC model. If it is saturated by some NC
model, the Bell inequality is said to be tight.

NB: A complete set of inequalities can be derived from the logical approach.

Resource theory of contextual behaviours 15/ 33



Generalised Bell inequalities
An inequality for a scenario 〈X ,M,O〉 is given by:

I a set of coefficients α = {α(C , s)}C∈M,s∈OC

I a bound R

For a model e, the inequality reads as

Bα(e) ≤ R ,

where
Bα(e) :=

∑
C∈M,s∈OC

α(C , s)eC (s) .

Wlog we can take R non-negative (in fact, we can take R = 0).

It is called a Bell inequality if it is satisfied by every NC model. If it is saturated by some NC
model, the Bell inequality is said to be tight.

NB: A complete set of inequalities can be derived from the logical approach.

Resource theory of contextual behaviours 15/ 33



Generalised Bell inequalities
An inequality for a scenario 〈X ,M,O〉 is given by:

I a set of coefficients α = {α(C , s)}C∈M,s∈OC

I a bound R

For a model e, the inequality reads as

Bα(e) ≤ R ,

where
Bα(e) :=

∑
C∈M,s∈OC

α(C , s)eC (s) .

Wlog we can take R non-negative (in fact, we can take R = 0).

It is called a Bell inequality if it is satisfied by every NC model. If it is saturated by some NC
model, the Bell inequality is said to be tight.

NB: A complete set of inequalities can be derived from the logical approach.

Resource theory of contextual behaviours 15/ 33



Generalised Bell inequalities
An inequality for a scenario 〈X ,M,O〉 is given by:

I a set of coefficients α = {α(C , s)}C∈M,s∈OC

I a bound R

For a model e, the inequality reads as

Bα(e) ≤ R ,

where
Bα(e) :=

∑
C∈M,s∈OC

α(C , s)eC (s) .

Wlog we can take R non-negative (in fact, we can take R = 0).

It is called a Bell inequality if it is satisfied by every NC model. If it is saturated by some NC
model, the Bell inequality is said to be tight.

NB: A complete set of inequalities can be derived from the logical approach.

Resource theory of contextual behaviours 15/ 33



Violation of a Bell inequality

A Bell inequality establishes a bound for the value of Bα(e) amongst NC models.

For a general (no-signalling) model e, the quantity is limited only by

‖α‖ :=
∑
C∈M

max
{
α(C , s) | s ∈ OC

}

The normalised violation of a Bell inequality 〈α,R〉 by an empirical model e is the value

max{0,Bα(e)− R}
‖α‖ − R

.
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Bell inequality violation and the contextual fraction

Proposition
Let e be an empirical model.

I The normalised violation by e of any Bell inequality is at most CF(e).

I This bound is attained: there exists a Bell inequality whose normalised violation by e is
exactly CF(e).

I Moreover, this Bell inequality is tight at “the” non-contextual model eNC and maximally
violated by “the” strongly contextual model eSC for any decomposition:

e = NCF(e)eNC + CF(e)eSC .
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Bell inequality violation and the contextual fraction
Quantifying Contextuality LP:

Find c ∈ Rn

maximising 1 · c
subject to Mc ≤ ve

and c ≥ 0 .

e = λeNC + (1− λ)eSC with λ = 1 · x∗.

NC

C

SC

Qve

Dual LP:

Find y ∈ Rm

minimising y · ve

subject to MT y ≥ 1

and y ≥ 0 .

a := 1− |M|y

Find a ∈ Rm

maximising a · ve

subject to MT a≤ 0

and a ≤ 1 .

computes tight Bell inequality
(separating hyperplane)
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Contextuality as a resource



Contextuality and advantage in quantum computation

I Measurement-based quantum computation (MBQC)

‘Contextuality in measurement-based quantum computation’
Raussendorf, Physical Review A, 2013.

I Magic state distillation

‘Contextuality supplies the ‘magic’ for quantum computation’
Howard, Wallman, Veitch, Emerson, Nature, 2014.

I Shallow circuits

‘Quantum advantage with shallow circuits’
Bravyi, Gossett, Koenig, Science, 2018.

I Contextuality analysis: Aasnæss, Forthcoming, 2019.
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Overview: Contextuality as a resource

I Our focus is on contextuality as a resource:
I how can we use it, what can we do with it?

I From this perspective, we want to compare contextual behaviours:
I When is one a more powerful resource than another?
I When are two behaviours essentially the same?

Example

‘Popescu-Rohrlich correlations as a unit of nonlocality ’
Barrett, Pironio, Physical Review Letters, 2005.

I PR boxes simulate all 2-outcome bipartite boxes
I A tripartite quantum box that cannot be simulated from PR boxes
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Structure of resources

Two perspectives:

1. Resource theories (coming from Physics):
Algebraic theory of ‘free operations’ that do not introduce more of the resource in question.

Resource B can be obtained from resource A if it can be built from A using free operations.

‘Contextual fraction as a measure of contextuality ’, Abramsky, B, Mansfield, PRL, 2017.

‘Noncontextual wirings’, Amaral, Cabello, Terra Cunha, Aolita, PRL, 2018.

2. Simulations or reducibility (coming from Computer Science):
Notion of simulation between behaviours of systems.

One resource can be reduced to another if it can be simulated by it.
Cf. (in)computability, degrees of unsolvability, complexity classes.

‘Categories of empirical models’, Karvonen, QPL 2018.
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Free operations

I We think of empirical models as black boxes

I What operations can we perform (non-contextually) on them?
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Free operations

I Zero model z: unique empirical model on the empty measurement scenario

〈∅,∆0 = {∅}, ()〉 .

I Singleton model u: unique empirical model on the 1-outcome 1-measurement scenario

〈1 = {?},∆1 = {∅, 1}, (O? = 1)〉 .

I Probabilistic mixing: Given empirical models e and d in 〈X ,Σ,O〉 and λ ∈ [0, 1], the
model e +λ d : 〈X ,Σ,O〉 is given by the mixture λe + (1− λ)d .
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Free operations

I Tensor: Let e : 〈X ,Σ,O〉 and d : 〈Y ,∆,P〉. Then

e ⊗ d : 〈X t Y ,Σ ∗∆, [O,P]〉

where Σ ∗Θ := {σ ∪ τ |σ ∈ Σ, τ ∈ ∆}. Runs e and d independently and in parallel.

I Coarse-graining: Given e : 〈X ,Σ,O〉 and a family of functions h = (hx : Ox −→ O ′x)x∈X ,
get a coarse-grained model

e/h : 〈X ,Σ,O ′〉

.

I Measurement translation: Given e : 〈X ,Σ,O〉 and a simplicial map f : Σ′ −→ Σ, the
model f ∗e : 〈X ′,Σ′,O〉 is defined by pulling e back along the map f .
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New free operation

I Conditioning on a measurement: Given e : 〈X ,Σ,O〉, x ∈ X and a family of
measurements (yo)o∈Ox

with yo ∈ Vert(lkxΣ). Consider a new measurement x?(yo)o∈Ox
,

abbreviated x?y . Get

e[x?y ] : 〈X ∪ {x?y},Σ[x?y ],O[x?y 7→ Ox?y ]〉

that results from adding x?y to e.

If Σ is a simplicial complex and a σ ∈ Σ is a face, the link of σ in Σ is the subcomplex
of Σ whose faces are

lkσΣ := {τ ∈ Σ | σ ∩ τ = ∅, σ ∪ τ ∈ Σ} .

What contexts are still available once the measurements in σ have been performed.
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Free operations

Free operations generate terms typed by measurement scenarios:

Terms 3 t ::= v ∈ Var | z | u | f ∗t | t/h
| t +λ t | t ⊗ t | t[x?y ]

Terms without variables represent noncontextual empirical models.

Conversely, every noncontextual model can be represented by a term without variables.

Can d be transformed to e?

Formally: is there a typed term v : 〈Y ,∆,P〉 ` t : 〈X ,Σ,O〉 such that t[d/v ] = e ?
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Contextual fraction is a monotone

Relabelling

Restriction

Coarse-graining

Mixing

Choice

Tensor

NCF(e1 ⊗ e2) = NCF(e1) NCF(e2)

Conditional
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Contextual fraction is a monotone

Relabelling CF(e[α]) = CF(e)

Restriction CF(e �M′) ≤ CF(e)

Coarse-graining CF(e/f ) ≤ CF (e)

Mixing CF (λe + (1− λ)e′) ≤ λCF(e) + (1− λ)CF(e′)

Choice CF(e & e′) = max{CF(e),CF(e′)}

Tensor CF(e1 ⊗ e2) = CF(e1) + CF(e2)− CF(e1)CF(e2)

NCF(e1 ⊗ e2) = NCF(e1) NCF(e2)
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Contextual fraction and
quantum advantages



Contextual fraction and advantages

I Contextuality has been associated with quantum advantage in information-processing and
computational tasks.

I Measure of contextuality  quantify such advantages.
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Contextual fraction and cooperative games

I Game described by n formulae (one for each allowed input).

I These describe the winning condition that the corresponding outputs must satisfy.

I If the formulae are k-consistent (at most k are jointly satisfiable),
hardness of the task is n−k

n .

‘Logical Bell inequalities’, Abramsky, Hardy, Physical Review A, 2012.

I We have

1− p̄S ≥ NCF
n − k

n
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Contextuality and MBQC

E.g. Raussendorf (2013) `2-MBQC

I measurement-based quantum computing scheme
(m input bits, l output bits, n parties)

I classical control:
I pre-processes input
I determines the flow of measurements
I post-processes to produce the output

only Z2-linear computations.

I additional power to compute non-linear functions resides in resource empirical models.

Impact of contributions

Classical
Dependence logics
(Hyttinen, Paolini, Väänänen ’15)

Binary constraint systems
(Kolaitis ’16)

Complexity
(Abramsky, Gottlob, Kolaitis ’13)

Quantum

Stronger no-go theorems
Unifies non-locality and
contextuality
Power of computational models
(Raussendorf ’13)

“MBQC” models
(Raussendorf, Briegel ’01)

Using our framework: “non-linearity implies contextuality”
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Contextual fraction and MBQC

I Goal: Compute Boolean function f : 2m −→ 2l using `2-MBQC

I Hardness of the problem

ν(f ) := min {d(f , g) | g is Z2-linear}

(average distance between f and closest Z2-linear function)

where for Boolean functions f and g , d(f , g) := 2−m| {i ∈ 2m | f (i) 6= g(i)}.

I Average probability of success computing f (over all 2m possible inputs): p̄S .

I Then,

1− p̄S ≥ NCF(e) ν(f )
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Questions...

?
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