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A Foundational Approach to Quantum Computing

Objective: Understand the computational advantage afforded by quantum resources

If quantum systems really provide advantages
over classical ones then it must come down to
some behaviour that is inaccessible to classical
resources

Questions we begin to have answers to:
• What are these non-classical behaviours? Contextuality, . . .
• How do they relate to computational advantage?

Specific examples, though not yet a systematic understanding. . .

Where to go with this knowledge:
• Higher-level reasoning about contextuality in our resources and how to spend it!
• Systematic, structural path to quantum superiority
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Non-Classicality

Non-classical behaviours should be established by no-go theorems

Behaviour Familiar theorems
Nonlocality Bell ’64
Contextuality Kochen, Specker ’76
Non-macrorealism Leggett, Garg ’85
Generalised contextuality Spekkens ’05
ψ-ontology Pusey, Barrett, Rudolph ’12

Dynamic contextuality
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Ontological Models

• We posit a space of ontic states Λ

Quantum mechanics Ontological models
Preparation ρ dρ ∈ P(Λ)
Transformation U fU : Λ→ Λ

Measurement M ξM : Λ→ P(O)

Empirical predictions

Empirical data eρ,U,M : P(O) should be reproduced as a weighted average over ontic states,

eρ,U,M = ∑
λ∈Λ

dρ(λ )ξM( fU (λ ))

• No-go theorems arise when ontological models and the Born Rule make differing predictions
• These require additional structural assumptions

*No further assumptions about features at this stage (cf. Spekkens)
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Classicality: Bell-Kochen-Specker

Noncontextuality

• Context: a set of compatible measurements

C = {M1, . . . ,Mn}

• Ontological representations respect compatibility

ξC(λ ) = ∏
M∈C

ξM(λ )

• . . . and are context-independent; e.g. if M ∈C,C′

ξM(C) = ξM(C′)
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Classicality: Spekkens

Noncontextuality of transformations

• A context is a convex decomposition of a fixed transformation, e.g.

T =
1
2

Ua +
1
2

UA (C)

T =
1
3

Ua +
1
3

Ub +
1
3

Uc . (C′)

• Ontological representations respect convex decompositions, e.g.

fT =
1
2

fUa +
1
2

fUA =
1
3

fUa +
1
3

fUb +
1
3

fUc

• . . . and are context-independent
f
U(C)

a
= f

U(C′)
a
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Classicality of Dynamics

Noncontextuality of transformations in sequence

• A context is a sequence Un ◦Un−1 ◦ · · · ◦U1

• Ontological representations respect sequentiality

fUn◦···◦U1 = fUn ◦ · · · ◦ fU1

• . . . and are context-independent
fU(C) = fU(C′)

“Contextuality in our sense implies that the system of study cannot have an ontology in which
transformations correspond to modular, composable operations on ontic states, such that they are
well-defined independently of which transformations may have been performed previously or will
be performed subsequently.”
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Example: Quantum Advantage in Shallow Circuits

Bravyi, Gossett, König, Science, 2017

There exists a task for which

Circuit-depth complexity
Classical log
Quantum constant

Contextuality analysis
Suppose sequential noncontextuality:

fUn◦···◦U1 = fUn ◦ · · · ◦ fU1

then we should have constant depth in the classical case too!

• Sequential contextuality is necessary for advantage
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(BKS) Contextuality is Useful

m input bits
l output bits

• Classical control computer
I Determines the sequence of measurements
I In this example can perform Z2-linear computations only

• Power to compute non-linear functions may reside in certain (quantum) resources

Raussendorf, PRA, 2013

• `2-MBQC deterministically computes a non-linear Boolean function f : 2m −→ 2l

iff the resource is maximally contextual

• Bounded error non-linear computations require contextuality
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(BKS) Contextuality is Useful

m input bits
l output bits

• Classical control computer
I Determines the sequence of measurements
I In this example can perform Z2-linear computations only

• Power to compute non-linear functions may reside in certain (quantum) resources

Abramsky, Barbosa, M, PRL, 2017

error︷ ︸︸ ︷
1− p̄S ≥ [1−CF(e)]︸ ︷︷ ︸

classicality

hardness︷︸︸︷
ν( f )

quantifiable
relationship!
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Is Dynamic Contextuality Useful?
Dunjko, Kapourniotis, Kashefi, QIC, 2016.

|+〉 U(a) V (b) W (a⊕b) σX

Classical control (⊕L):

• Classical inputs a,b ∈ Z2

• Controls transformations
• Announces meas. outcome
{+1 7→ 0,−1 7→ 1}

Quantum resource:
• Prepare qubit in state |+〉
• Transformations

U0 =V0 =W0 = I

U1 =V1 =W1 = Rz(π/2)

f (a,b) = a⊗2 b

• Boosts computational power: ⊕L −→ P

• Contextuality in the traditional sense cannot arise with a single qubit!
• So what, if anything, is the non-classical behaviour?
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An Appropriate Ontology

|+〉 U(a) V (b) W (a⊕b) σX

• Classical computers can do a⊗b, and constitute reasonable ontologies

• Artificial problem: boost ⊕L−→ P

• Meaningless without ⊕L restriction on ontological models
• ⊕L circuits are built from NOTs and CNOTs

Commutative ⊕L-ontological models:

Ontic states Λ = (Z2)
n

Transformations fU (λ) = (I⊕AU )λ⊕u
Measurements ξM(λ) = [(I⊕AM)λ⊕u] ·δ

10 / 20
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Parity Proof of Contextuality

• ⊕L-ontological realisation of the protocol requires the following equations to be satisfied:

[λ⊕AU (0)λ⊕AV (0)λ⊕AW (0)λ⊕AMλ⊕u(0)⊕v(0)⊕w(0)⊕m] ·δ = 0
[λ⊕AU (0)λ⊕AV (1)λ⊕AW (1)λ⊕AMλ⊕u(0)⊕v(1)⊕w(1)⊕m] ·δ = 0
[λ⊕AU (1)λ⊕AV (0)λ⊕AW (1)λ⊕AMλ⊕u(1)⊕v(0)⊕w(1)⊕m] ·δ = 0
[λ⊕AU (1)λ⊕AV (1)λ⊕AW (0)λ⊕AMλ⊕u(1)⊕v(1)⊕w(0)⊕m] ·δ = 1

• System of equations is not jointly satisfiable
• Sum RHS: odd

• Sum LHS: even (each vector appears even number of times)
• Such a realisation is necessarily dynamically contextual
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l2-TBQC

m input bits
1 output bit

l2-TBQC
⊕L control computer with access to a (quantum) resource
• Fixed preparation and 2-outcome measurement
• Controlled unitary operations

• Examples: DKK, CHSH∗

• l2-MBQC 6= l2-TBQC
• In general we could shift perspective and express any MBQC as a TBQC
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Empirical Models

Empirical model: for each context C, a distribution eC over possible outcomes

e = {eC}

Cf. Abramsky, Brandenburger, NJP, 2011.

|+〉 U(a) V (b) σX

E.g. CHSH∗ strategy

context outcome
a b o = 0 o = 1

C0 0 0 3/4 1/4

C1 0 1 1/4 3/4

C2 1 0 1/4 3/4

C3 1 1 0 1

eC0 = (3/4, 1/4)

eC1 = (1/4, 3/4)

eC2 = (1/4, 3/4)

eC3 = (0,1)
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Quantifying Contextuality

Noncontextual fraction NCF(e)
NCF(e) is max ω over all decompositions

e = ωeNC+(1−ω)e′

s.t. eNC is noncontextual

Contextual fraction CF(e)
CF := 1−NCF(e)

• CF(e),NCF(e) ∈ [0,1]
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Quantifying Hardness

Distance on functions: Given f ,g : (Z2)
r→ Z2,

d( f ,g) := 2−r |{i | f (i) 6= g(i)}|

Fraction of inputs for which outputs differ

Non-linearity of a function f : (Z2)
r→ Z2,

ν( f ) := min{d( f ,g) | g : (Z2)
r→ Z2 linear}

Distance to nearest linear function

Cf. Abramsky, Barbosa, M, PRL, 2017.
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Advantage in l2-TBQC

m input bits
1 output bit

l2-TBQC
⊕L control computer with access to a (quantum) resource
• Fixed preparation and 2-outcome measurement
• Controlled unitary operations

error︷ ︸︸ ︷
1− p̄S ≥ [1−CF(e)]︸ ︷︷ ︸

classicality

hardness︷︸︸︷
ν( f )

quantifiable
relationship!
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Example: The CHSH∗ Game

Henaut, Catani, Browne, Pappa, M, PRA, 2018.

|+〉 U(a) V (b) σX

• Task: compute a⊗2 b

• Maximise success probability in various regimes
• Tsirelson bound for qubits
• Similar for qutrits, with ⊗3, etc.
• Dimensional witness!

pmax
success

bit 0.75
Spekkens toy bit 0.75
stabiliser qubit 0.75
qubit 0.85 . . .
qutrit 1
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Classical Erasure
Henaut, Catani, Browne, Pappa, M, PRA, 2018.

|+〉 U(a) V (b) σX

• Classically, can compute a⊗2 b with l2-operations and erasure

U0 = I U1 = NOT V0 = RESET0 V1 = I

• Undesirable for an ontological model!
fI 6= I

• Expected erasure cost per run, averaged over pairs of inputs, to compute a function g, with 1-
and 2-bit gates coincides with non-linearity measure:

ν(g)
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Contextuality-Erasure Tradeoff

|+〉 U(a) V (b) σX

Landauer’s Principle

Erasure of a bit results in an entropy increase of at least kT ln2 in the non-information-bearing
degrees of freedom of the system

The Combined Perspective
If an l2-TBQC is run n times with uniformly random inputs and the overall change in
environmental entropy is ∆S, then

ε ≥
[
NCF(e)− ∆S

nkT ln2

]
ν̃(g)

Equivalently,

CF(e)≥ 1− ε

ν̃(g)
− ∆S

nkT ln2
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Conclusion

• Another way to be contextual! – dynamic contextuality

• Quantifiably relates to quantum advantage in l2-TBQCs
• Results parallel Anders and Browne, Raussendorf, ABM for BKS contextuality
• Available to single qubits
• Dimensional/irreversibility/quantumness witnesses

Some directions

• Where else does it play a role?
E.g. other single qubit advantages (Knill-Laflamme, Galvão), other informatic tasks, universal
QC? Reinforcement learning? Indefinite causal structures?

• Experimental tests
• Circuit contextuality: generalise BKS and dynamic contextuality
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Bonus: Proposal for Generalised Noncontextuality

• Classicality is characterised by the presence of structure preserving partial functors from
category of quantum circuits to category of calssical circuits

• I.e. ‘Shape’ of circuit is preserved and components appearing in different circuits are
represented in same way

• Kind of structure identifies kind of classicality
• Can subsume existing notions of classicality

Components Composition
Locality M ⊗
Noncontextuality (BKS) M ×
Measurement NC (Spekkens*) M ×
Preparation NC (Spekkens*) P +λ

Transformation NC (Spekkens*) T +λ

Preparation Independence (PBR) P ⊗min
Subsystem Condition (SM) P ⊗
Dynamic NC T ◦
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