Contextuality of Transformations

Shane Mansfield

S. Mansfield and E. Kashefi.
"Quantum advantage via sequential transformation contextuality"
Physical Review Letters 121 (23), 230401.

Contextuality Workshop Oxford
June 6th 2019

A Foundational Approach to Quantum Computing

Objective: Understand the computational advantage afforded by quantum resources

A Foundational Approach to Quantum Computing

Objective: Understand the computational advantage afforded by quantum resources

If quantum systems really provide advantages over classical ones then it must come down to some behaviour that is inaccessible to classical resources

A Foundational Approach to Quantum Computing

Objective: Understand the computational advantage afforded by quantum resources

If quantum systems really provide advantages over classical ones then it must come down to some behaviour that is inaccessible to classical resources

Questions we begin to have answers to:

- What are these non-classical behaviours? Contextuality, ...
- How do they relate to computational advantage? Specific examples, though not yet a systematic understanding. . .

A Foundational Approach to Quantum Computing

Objective: Understand the computational advantage afforded by quantum resources

If quantum systems really provide advantages over classical ones then it must come down to some behaviour that is inaccessible to classical resources

Questions we begin to have answers to:

- What are these non-classical behaviours? Contextuality, ...
- How do they relate to computational advantage? Specific examples, though not yet a systematic understanding. . .

Where to go with this knowledge:

- Higher-level reasoning about contextuality in our resources and how to spend it!
- Systematic, structural path to quantum superiority

Non-Classicality

Non-classical behaviours should be established by no-go theorems

Behaviour	Familiar theorems
Nonlocality	Bell '64
Contextuality	Kochen, Specker '76
Non-macrorealism	Leggett, Garg '85
Generalised contextuality	Spekkens '05
ψ-ontology	Pusey, Barrett, Rudolph '12

Non-Classicality

Non-classical behaviours should be established by no-go theorems

Behaviour	Familiar theorems
Nonlocality	Bell '64
Contextuality	Kochen, Specker '76
Non-macrorealism	Leggett, Garg '85
Generalised contextuality	Spekkens '05
ψ-ontology	Pusey, Barrett, Rudolph '12
Dynamic contextuality	

Ontological Models

- We posit a space of ontic states Λ

	Quantum mechanics	Ontological models
Preparation	ρ	$d_{\rho} \in P(\Lambda)$
Transformation	U	$f_{U}: \Lambda \rightarrow \Lambda$
Measurement	M	$\xi_{M}: \Lambda \rightarrow P(O)$

Ontological Models

- We posit a space of ontic states Λ

	Quantum mechanics	Ontological models
Preparation	ρ	$d_{\rho} \in P(\Lambda)$
Transformation	U	$f_{U}: \Lambda \rightarrow \Lambda$
Measurement	M	$\xi_{M}: \Lambda \rightarrow P(O)$

Empirical predictions

Empirical data $e_{\rho, U, M}: P(O)$ should be reproduced as a weighted average over ontic states,

$$
e_{\rho, U, M}=\sum_{\lambda \in \Lambda} d_{\rho}(\lambda) \xi_{M}\left(f_{U}(\lambda)\right)
$$

Ontological Models

- We posit a space of ontic states Λ

	Quantum mechanics	Ontological models
Preparation	ρ	$d_{\rho} \in P(\Lambda)$
Transformation	U	$f_{U}: \Lambda \rightarrow \Lambda$
Measurement	M	$\xi_{M}: \Lambda \rightarrow P(O)$

Empirical predictions

Empirical data $e_{\rho, U, M}: P(O)$ should be reproduced as a weighted average over ontic states,

$$
e_{\rho, U, M}=\sum_{\lambda \in \Lambda} d_{\rho}(\lambda) \xi_{M}\left(f_{U}(\lambda)\right)
$$

- No-go theorems arise when ontological models and the Born Rule make differing predictions

Ontological Models

- We posit a space of ontic states Λ

	Quantum mechanics	Ontological models
Preparation	ρ	$d_{\rho} \in P(\Lambda)$
Transformation	U	$f_{U}: \Lambda \rightarrow \Lambda$
Measurement	M	$\xi_{M}: \Lambda \rightarrow P(O)$

Empirical predictions

Empirical data $e_{\rho, U, M}: P(O)$ should be reproduced as a weighted average over ontic states,

$$
e_{\rho, U, M}=\sum_{\lambda \in \Lambda} d_{\rho}(\lambda) \xi_{M}\left(f_{U}(\lambda)\right)
$$

- No-go theorems arise when ontological models and the Born Rule make differing predictions
- These require additional structural assumptions

Ontological Models

- We posit a space of ontic states Λ

	Quantum mechanics	Ontological models
Preparation	ρ	$d_{\rho} \in P(\Lambda)$
Transformation	U	$f_{U}: \Lambda \rightarrow \Lambda$
Measurement	M	$\xi_{M}: \Lambda \rightarrow P(O)$

Empirical predictions

Empirical data $e_{\rho, U, M}: P(O)$ should be reproduced as a weighted average over ontic states,

$$
e_{\rho, U, M}=\sum_{\lambda \in \Lambda} d_{\rho}(\lambda) \xi_{M}\left(f_{U}(\lambda)\right)
$$

- No-go theorems arise when ontological models and the Born Rule make differing predictions
- These require additional structural assumptions

[^0]
Classicality: Bell-Kochen-Specker

Noncontextuality

Classicality: Bell-Kochen-Specker

Noncontextuality

- Context: a set of compatible measurements

$$
C=\left\{M_{1}, \ldots, M_{n}\right\}
$$

Classicality: Bell-Kochen-Specker

Noncontextuality

- Context: a set of compatible measurements

$$
C=\left\{M_{1}, \ldots, M_{n}\right\}
$$

- Ontological representations respect compatibility

$$
\xi_{C}(\lambda)=\prod_{M \in C} \xi_{M}(\lambda)
$$

Classicality: Bell-Kochen-Specker

Noncontextuality

- Context: a set of compatible measurements

$$
C=\left\{M_{1}, \ldots, M_{n}\right\}
$$

- Ontological representations respect compatibility

$$
\xi_{C}(\lambda)=\prod_{M \in C} \xi_{M}(\lambda)
$$

- ... and are context-independent; e.g. if $M \in C, C^{\prime}$

$$
\xi_{M^{(C)}}=\xi_{M^{\left(C^{\prime}\right)}}
$$

Classicality: Spekkens

Noncontextuality of transformations

Classicality: Spekkens

Noncontextuality of transformations

- A context is a convex decomposition of a fixed transformation, e.g.

$$
\begin{align*}
T & =\frac{1}{2} U_{a}+\frac{1}{2} U_{A} \tag{C}\\
T & =\frac{1}{3} U_{a}+\frac{1}{3} U_{b}+\frac{1}{3} U_{c}
\end{align*}
$$

Classicality: Spekkens

Noncontextuality of transformations

- A context is a convex decomposition of a fixed transformation, e.g.

$$
\begin{align*}
T & =\frac{1}{2} U_{a}+\frac{1}{2} U_{A} \tag{C}\\
T & =\frac{1}{3} U_{a}+\frac{1}{3} U_{b}+\frac{1}{3} U_{c}
\end{align*}
$$

- Ontological representations respect convex decompositions, e.g.

$$
f_{T}=\frac{1}{2} f_{U_{a}}+\frac{1}{2} f_{U_{A}}=\frac{1}{3} f_{U_{a}}+\frac{1}{3} f_{U_{b}}+\frac{1}{3} f_{U_{c}}
$$

Classicality: Spekkens

Noncontextuality of transformations

- A context is a convex decomposition of a fixed transformation, e.g.

$$
\begin{align*}
T & =\frac{1}{2} U_{a}+\frac{1}{2} U_{A} \tag{C}\\
T & =\frac{1}{3} U_{a}+\frac{1}{3} U_{b}+\frac{1}{3} U_{c}
\end{align*}
$$

- Ontological representations respect convex decompositions, e.g.

$$
f_{T}=\frac{1}{2} f_{U_{a}}+\frac{1}{2} f_{U_{A}}=\frac{1}{3} f_{U_{a}}+\frac{1}{3} f_{U_{b}}+\frac{1}{3} f_{U_{c}}
$$

- ... and are context-independent

$$
f_{U_{a}^{(C)}}=f_{U_{a}^{\left(C^{\prime}\right)}}
$$

Classicality of Dynamics

Noncontextuality of transformations in sequence

Classicality of Dynamics

Noncontextuality of transformations in sequence

- A context is a sequence $U_{n} \circ U_{n-1} \circ \cdots \circ U_{1}$

Classicality of Dynamics

Noncontextuality of transformations in sequence

- A context is a sequence $U_{n} \circ U_{n-1} \circ \cdots \circ U_{1}$
- Ontological representations respect sequentiality

$$
f_{U_{n} \circ \cdots \circ U_{1}}=f_{U_{n}} \circ \cdots \circ f_{U_{1}}
$$

Classicality of Dynamics

Noncontextuality of transformations in sequence

- A context is a sequence $U_{n} \circ U_{n-1} \circ \cdots \circ U_{1}$
- Ontological representations respect sequentiality

$$
f_{U_{n} \circ \cdots \circ U_{1}}=f_{U_{n}} \circ \cdots \circ f_{U_{1}}
$$

- ... and are context-independent

$$
f_{U^{(c)}}=f_{U^{\left(C^{\prime}\right)}}
$$

Classicality of Dynamics

Noncontextuality of transformations in sequence

- A context is a sequence $U_{n} \circ U_{n-1} \circ \cdots \circ U_{1}$
- Ontological representations respect sequentiality

$$
f_{U_{n} \circ \cdots \circ U_{1}}=f_{U_{n}} \circ \cdots \circ f_{U_{1}}
$$

- ... and are context-independent

$$
f_{U^{(C)}}=f_{U^{\left(C^{\prime}\right)}}
$$

"Contextuality in our sense implies that the system of study cannot have an ontology in which transformations correspond to modular, composable operations on ontic states, such that they are well-defined independently of which transformations may have been performed previously or will be performed subsequently."

Example: Quantum Advantage in Shallow Circuits

Bravyi, Gossett, König, Science, 2017
There exists a task for which

Circuit-depth complexity	
Classical	\log
Quantum	constant

Example: Quantum Advantage in Shallow Circuits

Bravyi, Gossett, König, Science, 2017
There exists a task for which

Circuit-depth complexity	
Classical	\log
Quantum	constant

Contextuality analysis
Suppose sequential noncontextuality:

$$
f_{U_{n} \circ \cdots \circ U_{1}}=f_{U_{n}} \circ \cdots \circ f_{U_{1}}
$$

then we should have constant depth in the classical case too!

Example: Quantum Advantage in Shallow Circuits

Bravyi, Gossett, König, Science, 2017
There exists a task for which

Circuit-depth complexity	
Classical	\log
Quantum	constant

Contextuality analysis
Suppose sequential noncontextuality:

$$
f_{U_{n} \circ \cdots \circ U_{1}}=f_{U_{n}} \circ \cdots \circ f_{U_{1}}
$$

then we should have constant depth in the classical case too!

- Sequential contextuality is necessary for advantage

(BKS) Contextuality is Useful

(BKS) Contextuality is Useful

m input bits
l output bits

- Classical control computer
- Determines the sequence of measurements
- In this example can perform \mathbb{Z}_{2}-linear computations only
- Power to compute non-linear functions may reside in certain (quantum) resources

(BKS) Contextuality is Useful

- Classical control computer
- Determines the sequence of measurements
- In this example can perform \mathbb{Z}_{2}-linear computations only
- Power to compute non-linear functions may reside in certain (quantum) resources

Raussendorf, PRA, 2013

- $\ell 2$-MBQC deterministically computes a non-linear Boolean function $f: 2^{m} \longrightarrow 2^{l}$ iff the resource is maximally contextual
- Bounded error non-linear computations require contextuality

(BKS) Contextuality is Useful

- Classical control computer
- Determines the sequence of measurements
- In this example can perform \mathbb{Z}_{2}-linear computations only
- Power to compute non-linear functions may reside in certain (quantum) resources

Abramsky, Barbosa, M, PRL, 2017

$$
\overbrace{1-\bar{p}_{S}}^{\text {error }} \geq \underbrace{[1-C F(e)]}_{\text {classicality }} \overbrace{v(f)}^{\text {hardness }}
$$

quantifiable relationship!

Is Dynamic Contextuality Useful?

Dunjko, Kapourniotis, Kashefi, QIC, 2016.

Classical control ($\oplus L$):

- Classical inputs $a, b \in \mathbb{Z}_{2}$
- Controls transformations
- Announces meas. outcome $\{+1 \mapsto 0,-1 \mapsto 1\}$

Quantum resource:

- Prepare qubit in state $|+\rangle$
- Transformations

$$
\begin{aligned}
& U_{0}=V_{0}=W_{0}=I \\
& U_{1}=V_{1}=W_{1}=R_{z}(\pi / 2)
\end{aligned}
$$

$$
f(a, b)=a \otimes_{2} b
$$

Is Dynamic Contextuality Useful?

Dunjko, Kapourniotis, Kashefi, QIC, 2016.

Classical control $(\oplus L)$:

- Classical inputs $a, b \in \mathbb{Z}_{2}$
- Controls transformations
- Announces meas. outcome $\{+1 \mapsto 0,-1 \mapsto 1\}$

Quantum resource:

- Prepare qubit in state $|+\rangle$
- Transformations

$$
\begin{aligned}
& U_{0}=V_{0}=W_{0}=I \\
& U_{1}=V_{1}=W_{1}=R_{z}(\pi / 2)
\end{aligned}
$$

$$
f(a, b)=a \otimes_{2} b
$$

- Boosts computational power: $\oplus L \longrightarrow P$
- Contextuality in the traditional sense cannot arise with a single qubit!
- So what, if anything, is the non-classical behaviour?

An Appropriate Ontology

- Classical computers can do $a \otimes b$, and constitute reasonable ontologies

An Appropriate Ontology

- Classical computers can do $a \otimes b$, and constitute reasonable ontologies
- Artificial problem: boost $\oplus L \longrightarrow P$
- Meaningless without $\oplus L$ restriction on ontological models
- $\oplus L$ circuits are built from NOTs and CNOTs

An Appropriate Ontology

- Classical computers can do $a \otimes b$, and constitute reasonable ontologies
- Artificial problem: boost $\oplus L \longrightarrow P$
- Meaningless without $\oplus L$ restriction on ontological models
- $\oplus L$ circuits are built from NOTs and CNOTs

Commutative $\oplus L$-ontological models:

Ontic states	$\Lambda=\left(\mathbb{Z}_{2}\right)^{n}$
Transformations	$f_{U}(\boldsymbol{\lambda})=\left(I \oplus A_{U}\right) \boldsymbol{\lambda} \oplus \boldsymbol{u}$
Measurements	$\xi_{M}(\boldsymbol{\lambda})=\left[\left(I \oplus A_{M}\right) \boldsymbol{\lambda} \oplus \boldsymbol{u}\right] \cdot \boldsymbol{\delta}$

Parity Proof of Contextuality

- $\oplus L$-ontological realisation of the protocol requires the following equations to be satisfied:

$$
\begin{aligned}
& {\left[\boldsymbol{\lambda} \oplus A_{U}(0) \boldsymbol{\lambda} \oplus A_{V}(0) \boldsymbol{\lambda} \oplus A_{W}(0) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(0) \oplus \boldsymbol{v}(0) \oplus \boldsymbol{w}(0) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=0} \\
& {\left[\boldsymbol{\lambda} \oplus A_{U}(0) \boldsymbol{\lambda} \oplus A_{V}(1) \boldsymbol{\lambda} \oplus A_{W}(1) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(0) \oplus \boldsymbol{v}(1) \oplus \boldsymbol{w}(1) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=0} \\
& {\left[\boldsymbol{\lambda} \oplus A_{U}(1) \boldsymbol{\lambda} \oplus A_{V}(0) \boldsymbol{\lambda} \oplus A_{W}(1) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(1) \oplus \boldsymbol{v}(0) \oplus \boldsymbol{w}(1) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=0} \\
& {\left[\boldsymbol{\lambda} \oplus A_{U}(1) \boldsymbol{\lambda} \oplus A_{V}(1) \boldsymbol{\lambda} \oplus A_{W}(0) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(1) \oplus \boldsymbol{v}(1) \oplus \boldsymbol{w}(0) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=1}
\end{aligned}
$$

Parity Proof of Contextuality

- $\oplus L$-ontological realisation of the protocol requires the following equations to be satisfied:

$$
\begin{aligned}
& {\left[\boldsymbol{\lambda} \oplus A_{U}(0) \boldsymbol{\lambda} \oplus A_{V}(0) \boldsymbol{\lambda} \oplus A_{W}(0) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(0) \oplus \boldsymbol{v}(0) \oplus \boldsymbol{w}(0) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=0} \\
& {\left[\boldsymbol{\lambda} \oplus A_{U}(0) \boldsymbol{\lambda} \oplus A_{V}(1) \boldsymbol{\lambda} \oplus A_{W}(1) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(0) \oplus \boldsymbol{v}(1) \oplus \boldsymbol{w}(1) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=0} \\
& {\left[\boldsymbol{\lambda} \oplus A_{U}(1) \boldsymbol{\lambda} \oplus A_{V}(0) \boldsymbol{\lambda} \oplus A_{W}(1) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(1) \oplus \boldsymbol{v}(0) \oplus \boldsymbol{w}(1) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=0} \\
& {\left[\boldsymbol{\lambda} \oplus A_{U}(1) \boldsymbol{\lambda} \oplus A_{V}(1) \boldsymbol{\lambda} \oplus A_{W}(0) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(1) \oplus \boldsymbol{v}(1) \oplus \boldsymbol{w}(0) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=1}
\end{aligned}
$$

- System of equations is not jointly satisfiable
- Sum RHS: odd
- Sum LHS: even (each vector appears even number of times)

Parity Proof of Contextuality

- $\oplus L$-ontological realisation of the protocol requires the following equations to be satisfied:

$$
\begin{aligned}
& {\left[\boldsymbol{\lambda} \oplus A_{U}(0) \boldsymbol{\lambda} \oplus A_{V}(0) \boldsymbol{\lambda} \oplus A_{W}(0) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(0) \oplus \boldsymbol{v}(0) \oplus \boldsymbol{w}(0) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=0} \\
& {\left[\boldsymbol{\lambda} \oplus A_{U}(0) \boldsymbol{\lambda} \oplus A_{V}(1) \boldsymbol{\lambda} \oplus A_{W}(1) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(0) \oplus \boldsymbol{v}(1) \oplus \boldsymbol{w}(1) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=0} \\
& {\left[\boldsymbol{\lambda} \oplus A_{U}(1) \boldsymbol{\lambda} \oplus A_{V}(0) \boldsymbol{\lambda} \oplus A_{W}(1) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(1) \oplus \boldsymbol{v}(0) \oplus \boldsymbol{w}(1) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=0} \\
& {\left[\boldsymbol{\lambda} \oplus A_{U}(1) \boldsymbol{\lambda} \oplus A_{V}(1) \boldsymbol{\lambda} \oplus A_{W}(0) \boldsymbol{\lambda} \oplus A_{M} \boldsymbol{\lambda} \oplus \boldsymbol{u}(1) \oplus \boldsymbol{v}(1) \oplus \boldsymbol{w}(0) \oplus \boldsymbol{m}\right] \cdot \boldsymbol{\delta}=1}
\end{aligned}
$$

- System of equations is not jointly satisfiable
- Sum RHS: odd
- Sum LHS: even (each vector appears even number of times)
- Such a realisation is necessarily dynamically contextual

l2-TBQC

m input bits
1 output bit

12-TBQC

$\oplus L$ control computer with access to a (quantum) resource

- Fixed preparation and 2-outcome measurement
- Controlled unitary operations

l2-TBQC

m input bits
1 output bit

12-TBQC

$\oplus L$ control computer with access to a (quantum) resource

- Fixed preparation and 2-outcome measurement
- Controlled unitary operations
- Examples: DKK, CHSH*

l2-TBQC

m input bits
1 output bit

12-TBQC

$\oplus L$ control computer with access to a (quantum) resource

- Fixed preparation and 2-outcome measurement
- Controlled unitary operations
- Examples: DKK, CHSH*
- $12-\mathrm{MBQC} \neq 12-\mathrm{TBQC}$

l2-TBQC

m input bits
1 output bit

12-TBQC

$\oplus L$ control computer with access to a (quantum) resource

- Fixed preparation and 2-outcome measurement
- Controlled unitary operations
- Examples: DKK, CHSH*
- $12-\mathrm{MBQC}=12-\mathrm{TBQC}$
- In general we could shift perspective and express any MBQC as a TBQC

Empirical Models

Empirical model: for each context C, a distribution e_{C} over possible outcomes

$$
e=\left\{e_{C}\right\}
$$

Cf. Abramsky, Brandenburger, NJP, 2011.

Empirical Models

Empirical model: for each context C, a distribution e_{C} over possible outcomes

$$
e=\left\{e_{C}\right\}
$$

Cf. Abramsky, Brandenburger, NJP, 2011.

E.g. CHSH^{*} strategy

Empirical Models

Empirical model: for each context C, a distribution e_{C} over possible outcomes

$$
e=\left\{e_{C}\right\}
$$

Cf. Abramsky, Brandenburger, NJP, 2011.

E.g. CHSH^{*} strategy

context			outcome	
	a	b	$o=0$	$o=1$
C_{0}	0	0	$3 / 4$	$1 / 4$
C_{1}	0	1	$1 / 4$	$3 / 4$
C_{2}	1	0	$1 / 4$	$3 / 4$
C_{3}	1	1	0	1

Empirical Models

Empirical model: for each context C, a distribution e_{C} over possible outcomes

$$
e=\left\{e_{C}\right\}
$$

Cf. Abramsky, Brandenburger, NJP, 2011.

E.g. CHSH^{*} strategy

context			outcome	
	a	b	$o=0$	$o=1$
C_{0}	0	0	$3 / 4$	$1 / 4$
C_{1}	0	1	$1 / 4$	$3 / 4$
C_{2}	1	0	$1 / 4$	$3 / 4$
C_{3}	1	1	0	1

$$
\begin{aligned}
e_{C_{0}} & =(3 / 4,1 / 4) \\
e_{C_{1}} & =(1 / 4,3 / 4) \\
e_{C_{2}} & =(1 / 4,3 / 4) \\
e_{C_{3}} & =(0,1)
\end{aligned}
$$

Quantifying Contextuality

Noncontextual fraction NCF (e)
$\operatorname{NCF}(e)$ is max ω over all decompositions

$$
e=\omega e^{\mathrm{NC}}+(1-\omega) e^{\prime}
$$

s.t. e^{NC} is noncontextual

Contextual fraction CF (e)

$$
\mathrm{CF}:=1-\operatorname{NCF}(e)
$$

- $\operatorname{CF}(e), \operatorname{NCF}(e) \in[0,1]$

Quantifying Hardness

Distance on functions: Given $f, g:\left(\mathbb{Z}_{2}\right)^{r} \rightarrow \mathbb{Z}_{2}$,

$$
d(f, g):=2^{-r}|\{\boldsymbol{i} \mid f(\boldsymbol{i}) \neq g(\boldsymbol{i})\}|
$$

Fraction of inputs for which outputs differ

Non-linearity of a function $f:\left(\mathbb{Z}_{2}\right)^{r} \rightarrow \mathbb{Z}_{2}$,

$$
v(f):=\min \left\{d(f, g) \mid g:\left(\mathbb{Z}_{2}\right)^{r} \rightarrow \mathbb{Z}_{2} \text { linear }\right\}
$$

Distance to nearest linear function

Cf. Abramsky, Barbosa, M, PRL, 2017.

Advantage in 12 -TBQC

m input bits
1 output bit

l2-TBQC

$\oplus L$ control computer with access to a (quantum) resource

- Fixed preparation and 2-outcome measurement
- Controlled unitary operations

$$
\overbrace{1-\bar{p}_{S}}^{\text {error }} \geq \underbrace{[1-\mathrm{CF}(e)]}_{\text {classicality }} \overbrace{v(f)}^{\text {hardness }}
$$

quantifiable relationship!

Example: The CHSH* Game

Henaut, Catani, Browne, Pappa, M, PRA, 2018.

- Task: compute $a \otimes_{2} b$
- Maximise success probability in various regimes
- Tsirelson bound for qubits
- Similar for qutrits, with \otimes_{3}, etc.
- Dimensional witness!

	$p_{\text {success }}^{\max }$
bit	0.75
Spekkens toy bit	0.75
stabiliser qubit	0.75
qubit	$\mathbf{0 . 8 5} \ldots$
qutrit	1

Classical Erasure

Henaut, Catani, Browne, Pappa, M, PRA, 2018.

- Classically, can compute $a \otimes_{2} b$ with $l 2$-operations and erasure

$$
U_{0}=I \quad U_{1}=\mathrm{NOT} \quad V_{0}=\mathrm{RESET}_{0} \quad V_{1}=I
$$

Classical Erasure

Henaut, Catani, Browne, Pappa, M, PRA, 2018.

- Classically, can compute $a \otimes_{2} b$ with $l 2$-operations and erasure

$$
U_{0}=I \quad U_{1}=\mathrm{NOT} \quad V_{0}=\mathrm{RESET}_{0} \quad V_{1}=I
$$

- Undesirable for an ontological model!

$$
f_{I} \neq I
$$

Classical Erasure

Henaut, Catani, Browne, Pappa, M, PRA, 2018.

- Classically, can compute $a \otimes_{2} b$ with $l 2$-operations and erasure

$$
U_{0}=I \quad U_{1}=\mathrm{NOT} \quad V_{0}=\mathrm{RESET}_{0} \quad V_{1}=I
$$

- Undesirable for an ontological model!

$$
f_{I} \neq I
$$

- Expected erasure cost per run, averaged over pairs of inputs, to compute a function g, with 1and 2-bit gates coincides with non-linearity measure:

$$
v(g)
$$

Contextuality-Erasure Tradeoff

Contextuality-Erasure Tradeoff

Landauer's Principle

Erasure of a bit results in an entropy increase of at least $k T \ln 2$ in the non-information-bearing degrees of freedom of the system

Contextuality-Erasure Tradeoff

Landauer's Principle

Erasure of a bit results in an entropy increase of at least $k T \ln 2$ in the non-information-bearing degrees of freedom of the system

The Combined Perspective
If an $l 2-\mathrm{TBQC}$ is run n times with uniformly random inputs and the overall change in environmental entropy is ΔS, then

$$
\bar{\varepsilon} \geq\left[\operatorname{NCF}(e)-\frac{\Delta S}{n k T \ln 2}\right] \tilde{v}(g)
$$

Equivalently,

$$
\mathrm{CF}(e) \geq 1-\frac{\bar{\varepsilon}}{\tilde{v}(g)}-\frac{\Delta S}{n k T \ln 2}
$$

Conclusion

- Another way to be contextual! - dynamic contextuality

Conclusion

- Another way to be contextual! - dynamic contextuality
- Quantifiably relates to quantum advantage in $12-\mathrm{TBQCs}$

Conclusion

- Another way to be contextual! - dynamic contextuality
- Quantifiably relates to quantum advantage in $12-\mathrm{TBQCs}$
- Results parallel Anders and Browne, Raussendorf, ABM for BKS contextuality

Conclusion

- Another way to be contextual! - dynamic contextuality
- Quantifiably relates to quantum advantage in $12-\mathrm{TBQCs}$
- Results parallel Anders and Browne, Raussendorf, ABM for BKS contextuality
- Available to single qubits

Conclusion

- Another way to be contextual! - dynamic contextuality
- Quantifiably relates to quantum advantage in $12-\mathrm{TBQCs}$
- Results parallel Anders and Browne, Raussendorf, ABM for BKS contextuality
- Available to single qubits
- Dimensional/irreversibility/quantumness witnesses

Conclusion

- Another way to be contextual! - dynamic contextuality
- Quantifiably relates to quantum advantage in $12-\mathrm{TBQCs}$
- Results parallel Anders and Browne, Raussendorf, ABM for BKS contextuality
- Available to single qubits
- Dimensional/irreversibility/quantumness witnesses

Some directions

- Where else does it play a role?
E.g. other single qubit advantages (Knill-Laflamme, Galvão), other informatic tasks, universal QC? Reinforcement learning? Indefinite causal structures?

Conclusion

- Another way to be contextual! - dynamic contextuality
- Quantifiably relates to quantum advantage in $12-\mathrm{TBQCs}$
- Results parallel Anders and Browne, Raussendorf, ABM for BKS contextuality
- Available to single qubits
- Dimensional/irreversibility/quantumness witnesses

Some directions

- Where else does it play a role?
E.g. other single qubit advantages (Knill-Laflamme, Galvão), other informatic tasks, universal QC? Reinforcement learning? Indefinite causal structures?
- Experimental tests

Conclusion

- Another way to be contextual! - dynamic contextuality
- Quantifiably relates to quantum advantage in 12 -TBQCs
- Results parallel Anders and Browne, Raussendorf, ABM for BKS contextuality
- Available to single qubits
- Dimensional/irreversibility/quantumness witnesses

Some directions

- Where else does it play a role?
E.g. other single qubit advantages (Knill-Laflamme, Galvão), other informatic tasks, universal QC? Reinforcement learning? Indefinite causal structures?
- Experimental tests
- Circuit contextuality: generalise BKS and dynamic contextuality

Bonus: Proposal for Generalised Noncontextuality

- Classicality is characterised by the presence of structure preserving partial functors from category of quantum circuits to category of calssical circuits

Bonus: Proposal for Generalised Noncontextuality

- Classicality is characterised by the presence of structure preserving partial functors from category of quantum circuits to category of calssical circuits
- I.e. 'Shape' of circuit is preserved and components appearing in different circuits are represented in same way

Bonus: Proposal for Generalised Noncontextuality

- Classicality is characterised by the presence of structure preserving partial functors from category of quantum circuits to category of calssical circuits
- I.e. 'Shape' of circuit is preserved and components appearing in different circuits are represented in same way
- Kind of structure identifies kind of classicality

Bonus: Proposal for Generalised Noncontextuality

- Classicality is characterised by the presence of structure preserving partial functors from category of quantum circuits to category of calssical circuits
- I.e. 'Shape' of circuit is preserved and components appearing in different circuits are represented in same way
- Kind of structure identifies kind of classicality
- Can subsume existing notions of classicality

Bonus: Proposal for Generalised Noncontextuality

- Classicality is characterised by the presence of structure preserving partial functors from category of quantum circuits to category of calssical circuits
- I.e. 'Shape' of circuit is preserved and components appearing in different circuits are represented in same way
- Kind of structure identifies kind of classicality
- Can subsume existing notions of classicality

	Components	Composition
Locality	M	\otimes
Noncontextuality $($ BKS $)$	M	\times
Measurement NC (Spekkens*)	M	\times
Preparation NC (Spekkens*)	P	$+_{\lambda}$
Transformation NC $($ Spekkens $*)$	T	$+\lambda$
Preparation Independence $(P B R)$	P	$\otimes_{\min }$
Subsystem Condition $($ SM $)$	P	\otimes
Dynamic NC	T	\circ

[^0]: *No further assumptions about features at this stage (cf. Spekkens)

