Contextuality as a Resource for Shallow Circuits

Sivert Aasnæss

University of Oxford

12th July 2019

S. Aasnæss (University of Oxford)

Contextuality and Shallow Circuits

12th July 2019 1 / 17

Bravyi, Gosset, König: Quantum Advantage using Shallow Circuits. The *2D Hidden Linear Function problem* is solved by a bounded depth and fan-in (shallow) family of quantum circuits, any shallow classical circuit fails with probability at least 1/8.

ABM: The Contextual Fraction as a Measure of Contextuality

$$\epsilon \ge (1 - \mathsf{CF}(e)) \cdot v(f)$$

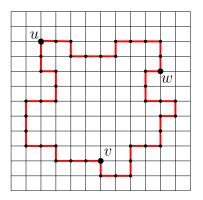
 ϵ - degree of error, CF(e) - degree of contextuality, v(f) - hardness of task.

- BGK as a game.
- Measurement scenarios as a framework for non-local games:
 - Strategies.
 - Bell inequalities, no-communication and contextuality.
 - Value passing.
 - Restricted communication strategies.
- Contextuality as a resource.
- Resource sensitive BGK.

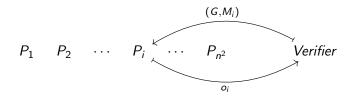
- Let Grid(n, n) be the n × n grid width nodes labelled by 1,..., n².
- If G ≤ Grid(n, n) is a graph, then

$$|G\rangle := \Big(\prod_{\{w,v\}\in E} CZ_{w,v}\Big)|+\rangle^{n^2}$$

where $|+\rangle:=(|0\rangle+|1\rangle)/\sqrt{2}.$



The 2D Graph State Game



At each round:

- Verifier picks $G \leq \text{Grid}(n, n)$ and $M \in \bigotimes_{i=1}^{n^2} \{X, Y\}$.
- Each player $i = 1, ..., n^2$ returns a value $o_i \in \{+1, -1\}$.

• Players win if:

$$\mathsf{Prob}_{|G\rangle}((o_1, o_2, \dots, o_{n^2}) \mid M) > 0$$

- Suppose that each $i \in [1, n^2]$ has a *neighbourhood* $N_i \subset [1, n^2]$.
- A classical/quantum strategy is *N*-local if it only involves classical/quantum communication from $i \in [1, n^2]$ to $j \in [1, n^2]$ if $i \in N_j$.

Theorem (Bravyi-Gosset-König)

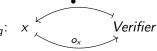
- The 2D-Graph State Game of any size n is solved by an N-local quantum strategy with every #N_i ≤ k, where k is independent of n.
- For all sufficiently large n any classical N-local strategy with every $\#N_i \le n^{1/4}$ fails on some instance (G, M) with probability at least 1/4.

A game over a measurement scenario (X, \mathcal{M}, O) is a tuple (Q, C, A) where

- Q is a set of questions.
- $C_q \in \mathcal{M}$ for every $q \in Q$.
- $A_q \subset O^{C_q}$ for every $q \in Q$.

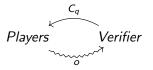
At each round:

• Verifier picks $q \in Q$ and for each $x \in C_q$:



• The Players win if $(x \mapsto o_x) \in A_q$.

Communication and Contextuality

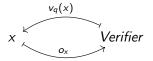


- The *behaviour* of the players: $b = \{b_C \in \mathcal{D}(O^C)\}_{C \in \mathcal{M}}$.
- Prob(Players win $| q, b) := b_{C_q}(A_q)$.
- No-signalling behaviours = Empirical models.
- \bullet Classical no-communication strategies \leftrightarrow Non-contextual behaviours

Suppose that (Q, C, A) is a game over (X, \mathcal{M}, O) and furthermore

- V_x is a set of values for each $x \in X$.
- $v_q(x) \in V_x$ is a value for every $q \in Q$ and $x \in X$.

The game



can be modelled as a game on a different scenario (Y, \mathcal{N}, P) .

N-local strategies

Let
$$\mathcal{G} = (Q, C, A)$$
 be a game on (X, \mathcal{M}, O) and $N = \{N_x \subset X\}_{x \in X}$.

Definition

A classical strategy Cl is *N-local* if:

$$(x \xrightarrow{\mathsf{m}} y) \in \mathsf{CI} \implies x \in N_y$$

for all players $x, y \in X$.

We show:

Classical N-local strategies for $\mathcal{G} \leftrightarrow \text{Non-contextual behaviours for } \mathcal{G}[N]$

where $\mathcal{G}[N]$ is constructed from \mathcal{G} by adding the value

$$v_q(x) := N_x \cap C_q$$

- Empirical models are resources.
- Quality of a resource e is proportional to the degree of contextuality as measured by the *contextual fraction* CF(e)
 - Completely (strongly) contextual: CF(e) = 1.
 - Non-contextual: CF(e) = 0.

Abramsky et al.:

$$\epsilon \geq (1 - \mathsf{CF}(e)) \cdot v(f)$$

 ϵ - degree of error, CF(e) - degree of contextuality, v(f) - hardness of task.

Theorem (Raussendorf)

If an I2-MBQC deterministically computes a non linear function (mod 2) using a resource e then NCF(e) = 0.

Theorem (Raussendorf)

If an I2-MBQC deterministically computes a non linear function (mod 2) using a resource e then NCF(e) = 0.

Theorem (Abramsky et al.)

If an I2-MBQC probabilistically computes a function $f : \mathbb{B}^m \to \mathbb{B}^n$ then

 $p_F \ge NCF(e) \cdot v(f)$

where $v(f) \in [0, 1]$ measures the distance from f to the closest mod 2 linear function.

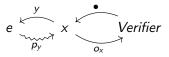
Theorem (Abramsky et al.)

Let e be a no-signalling behaviour for a non-local game $\mathcal{G}.$ For some question q

$$Prob(Players \ lose \mid q, e) \geq NCF(e) \cdot v(G)$$

where $v(\mathcal{G})$ is a measure of the hardness of \mathcal{G} .

- Suppose that the players share a resource $e: (Y, \mathcal{N}, P)$.
- If Verifier picks $q \in Q$ then for all $x \in C_q$:



• We show:

Classical N-local strategies with resource e for \mathcal{G} . \uparrow No-signalling behaviours e' for $\mathcal{G}[N]$ with a simulation $s : e \to e'$.

Theorem

For all sufficiently large n:

• For every N-local measurement aided strategy for \mathcal{G}_{2D}^n there is a question q such that

$$Prob(Players \ lose \mid q) \geq NCF(e) \cdot \frac{1}{4}$$

where e is the resource and $\#N_i \leq n^{1/4}$ for every $i \in [1, n^2]$.

Let CI be a classical N-local strategy with resource $e: (Y, \mathcal{N}, P)$ for \mathcal{G}_{2D}^n .

- $p_F(\mathcal{G}_{2D}^n, CI) = p_F(\mathcal{G}_{2D}^n[N], e')$ where $s : e \to e'$.
- By Abramsky et al.: $p_F(\mathcal{G}_{2D}^n[N], e') \ge \mathsf{NCF}(e') \cdot v(\mathcal{G}_{2D}^n[N]).$
- Because s is a simulation: $NCF(e') \ge NCF(e)$.

$$p_F(\mathcal{G}_{2D}^n, CI) = p_F(\mathcal{G}_{2D}^n[N], e')$$

$$\geq \mathsf{NCF}(e') \cdot v(\mathcal{G}[N])$$

$$\geq \mathsf{NCF}(e) \cdot v(\mathcal{G}[N])$$

For all sufficently large $n: \#N_i \le n^{1/4} \ \forall i \implies v(\mathcal{G}[N]) \ge \frac{1}{4}$

- Framed BGK as a theorem about games and N-local strategies.
- Considered N-local classical with a resource.
- Refined BGK's bound using the inequality

 $p_F \geq \mathsf{NCF}(e) \cdot v(\mathcal{G})$