
Submitted to:
WPTE17

c© J. Breitner
This work is licensed under the
Creative Commons Attribution License.

Invited Talk:
The Sufficiently Smart Compiler can Prove Theorems!

Joachim Breitner
University of Pennsylvania

Philadelphia, Pennsylvania, USA
joachim@cis.upenn.edu

After decades of work on functional programming and on interactive theorem proving, a Haskell
programmer who wants to include simple equational proofs in his code, e.g. that some Monad laws
hold, is still most likely to simply do the proof by hand, as all the advanced powerful proving tools
are inconvenient.

But one powerful tool capable of doing (some of) these proofs is hidden in plain sight: GHC,
the Haskell compiler! Its optimization machinery, in particular the simplifier, can prove many simple
equations all by himself, simply by compiling both sides and noting that the result is the same.
Furthermore, and crucially to make this approach applicable to more complicated equations, the
compiler can be instructed to do almost arbitrary symbolic term rewritings by using Rewrite Rules.

In this hands-on talk I will show how, with a very small amount of plumbing, I can conveniently
embed the proof obligations for the monad laws for a non-trivial functor in the code, and have GHC
prove them to me. I am looking forward to a discussion of the merits, limits and capabilities of this
approach.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

