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We present attributed hierarchical port graphs (AHP) as an extension of port graphs that aims at
facilitating the design of modular port graph models for complex systems. AHP consist of a number
of interconnected layers, where each layer defines a port graph whose nodes may link to layers further
down the hierarchy; attributes are used to store user-defined data as well as visualisation and run-
time system parameters. We also generalise the notion of strategic port graph rewriting (a particular
kind of graph transformation system, where port graph rewriting rules are controlled by user-defined
strategies) to deal with AHP. We describe applications in two areas: functional programming and
financial modelling.

1 Introduction

We present a hierarchical graph transformation system built on a new formalism, that of an attributed
hierarchical port-graph (AHP). Port graphs [3] are graphs where edges are connected to nodes via ports.
Attributed port graphs, where ports, nodes and edges carry data in the form of pairs attribute-value,
have been used as a visual modelling tool in a variety of domains [4, 36, 37]. They provide a visual
mechanism to describe the structure of the system under study (via a graph) together with data structuring
tools (attributes represent data associated to the model, as well as visualisation and run-time system
parameters). However, whereas attributed port graphs carry data of basic types, AHP permit the use of
attributes of graph type in nodes. In this sense, AHP could be thought of as a “higher-order” extension
of attributed port graphs. The occurrence of attributes of graph type defines a nested structure — a
forest. Thus, a hierarchical port graph specifies a graph hierarchy by recursively permitting attributes of
a hierarchical port graph type whilst simultaneously restricting the occurrence of non-tree like structures.
This simplifies the definition of graph morphisms, which are a key notion in graph rewriting, and enforces
a more natural and usable structure.

AHP forms the basis upon which graph transformation rules can be built that will enable a step-wise
transformation of the graph, and unlike a regular port-graph transformation system, is able to fully cap-
ture hierarchical complexity without compromising on transparency and good visualisation. We propose
the use of AHP to represent system states, and AHP rewrite rules to model the dynamic behaviour of
the system. The rewriting relation generated by AHP rewrite rules can be controlled using the strategy
languages already available for port graph transformation systems (see, e.g., [4, 37]) to specify rewriting
positions, rule priorities, etc.

We relate our notion of hierarchical graph rewriting to the conventional rewriting of flat graphs by
introducing a flattening operation, which recursively replaces each hierarchical node by its contents
resulting in a standard port graph. We show that under some conditions every hierarchical graph rewriting
step gives rise to a standard rewriting step on the flattened graphs by using the flattened rule.
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Hierarchical graphs have been used to specify re-factoring transformations for object-oriented pro-
grams [15], to provide semantics for distributed and mobile software systems with dynamic reconfigu-
ration [17] and in computational biology [30] to define multi-layered biochemical systems and represent
molecular agents at varying levels of abstraction [13], to name but a few areas. With the aim of improving
the support for graph-based programming languages, hierarchical hyper-graph transformation systems
have been previously proposed, where certain hyper-edges contain hyper-graphs [14], and rewriting is
defined following the double push-out approach. In this paper, we focus on port graphs, which follow
the single push out approach to rewriting, and extend them by permitting nodes to carry attributes of
graph type. We illustrate the use of hierarchical port graphs in two areas: securitisation (specifically, we
model the secondary market “rational negligence phenomenon” [2, 23], whereby investors may choose
to trade securities without performing independent evaluations of the underlying assets) and functional
programming (specifically, we show how λ -terms can be defined as AHP and evaluated by port graph
rewriting).

Securitisation models have been widely studied especially after the 2008 crisis (see, e.g., [27, 29])
and a port graph model illustrating the rational negligence problem is available [16]. In this paper we
show how the hierarchical features of AHP can be used to refine and complete this model, catering for the
more operational tiers of the securitisation process. Whilst the top tier of the rational negligence model
deals with asset transfers, the operational tiers, at a basic level, encapsulate asset origination, packaging,
structuring and servicing details, the key processes in the life cycle of a structured security.

Graph representations have been used in many λ -calculus evaluators to enforce sharing of compu-
tations [1]; interaction nets (a particular kind of graph rewriting formalism introduced by Lafont [26],
inspired by the graphical notation of linear logic proofs) permit to implement interesting strategies of
evaluation, such as optimal reduction [22]. However, in interaction net evaluators the representation of
λ -abstraction is involved due to the fact that λ is a binder and explicit markers have to be used to define
and manage its scope. Higher-order port graphs [20] permit to encode binders in a direct way and can be
easily represented as AHP.

Summarising, our main contribution is a definition of attributed hierarchical port graph together with
corresponding notions of graph morphism and rewriting relation. To highlight the suitability of attributed
hierarchical port graphs as a conceptual framework we give two examples of application and compare
the obtained AHP models with closely related models already available (based on standard port graphs
or higher-order port graphs).

This paper is organised as follows: We recall key notions useful in our analyses in Sect. 2. Attributed
Hierarchical Port Graphs are defined in Sect. 3. Applications are described in Sect. 4. Sect. 5 examines
key properties of the model. Sect. 6 discusses related work. We finally conclude and briefly outline
future plans in Sect. 7.

2 Background

There are many different kinds of graph transformation systems see, for instance, [7, 12, 24, 33]. In this
paper we examine the transformation of port graphs [18], which have been used as a modelling tool in
various domains, such as biochemistry and social networks [36, 37].

Intuitively an attributed port graph is a graph where nodes have explicit connection points, called
ports, and edges are attached to ports. Nodes, ports and edges are labelled by a set of attributes describing
properties such as colour, shape, etc. To formally define attributed port graphs, we follow [19], where
records (i.e., sets of pairs attribute-value) are attached to graph elements.
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Definition 1 (Signature) A port graph signature ∇ consists of the following pairwise disjoint sets: ∇A ,
a set of attributes; XA , a set of attribute variables; ∇V , a set of values; XV , a set of value variables.

Definition 2 (Record) A record r over the signature ∇ is a set {(a1,e1), . . . ,(an,en)} of pairs, where for
1 ≤ i ≤ n, ai ∈ ∇A ∪XA and ei is an expression built from ∇A ∪∇V ∪XV , each ai occurs only once
in r, and there is one pair where ai = Name, a special element. The function Atts applies to records
and returns the labels of all the attributes: Atts(r) = {a1, . . . ,an} if r = {(a1,v1), . . . ,(an,vn)}. As usual,
r.ai denotes the value vi of the attribute ai in r. The attribute Name identifies the record in the following
sense: ∀r1,r2,Atts(r1) = Atts(r2) if r1.Name = r2.Name.

In addition to Name, records can contain any number of data attributes, which must be of basic type
(i.e., numbers, strings, Booleans, etc.), as well as distinguished attributes Connect, Attach and Arity,
that define structural properties of graphs, as described in Definition 3. If r is a record, r|D denotes the
sub-record that excludes the structural attributes Connect, Attach and Arity.

Definition 3 (Port Graphs) Let N ,P,E be pairwise disjoint sets. A port graph over a signature ∇ is
a tuple G = (V,P,E,D)L where V ⊆N is a finite set of nodes (n,n1, . . . range over nodes); P⊆P is a
finite set of ports (p, p1, . . . range over ports); E ⊆ E is a finite set of edges between ports (e,e1, . . . range
over edges; edges are undirected and two ports may be connected by more than one edge); D is a set of
records over ∇, and L : V ∪P∪E→ D is a labelling function such that:

• for each edge e ∈ E, L (e) contains an attribute Connect whose value is the pair {p1, p2} of ports
connected by e.

• for each port p ∈ P, L (p) contains an attribute Arity whose value is the number of edges con-
nected to this port, and an attribute Attach whose value is the node to which p belongs.

• For each node n ∈V , L (n) contains an attribute Interface whose value is the set of names of the
ports attached to n, that is, L (n).Interface = {L (pi).Name |L (pi).Attach = n}, satisfying the
following constraint: L (n1).Name = L (n2).Name⇒L (n1).Interface = L (n2).Interface.

A port graph rewriting rule L⇒C R can itself be seen as a port graph consisting of two port graphs L
and R together with an “arrow” node linked to L and R by a set of edges that specify a mapping between
ports in L and R (see Figure 3 for an example of a rule, the edges involving the arrow node are red in
the figure). The pattern, L, is used to identify sub-graphs in a given graph which should be replaced
by an instance of the right-hand side, R, provided the condition C holds. The red edges indicate how
the instance of R should be linked to the remaining part of the graph. Each of the ports attached to the
arrow node has an attribute Type ∈ ∇A , which can have three different values: bridge, wire and black-
hole, values that indicate how a rewriting step using this rule should affect the edges that connect the
redex to the rest of the graph and that satisfy the following conditions: A port of type bridge must have
edges connecting it to L and to R (one edge to L and one or more to R); a port of type black-hole must
have edges connecting it only to L (at least one edge); a port of type wire must have exactly two edges
connecting to L and no edge connecting to R.

Intuitively, a port of type bridge in the arrow node connecting to p1 in L and p2 in R indicates that p1
survives the reduction and becomes p2. A port in L connected to a black-hole port in the arrow node does
not survive the reduction; all edges connected to this port in the graph are deleted when the reduction
step takes place. A port of type wire connected to two ports p1 and p2 in the left-hand side triggers a
particular rewiring, which takes all the ports that are connected to (the image of) p1 in the redex and
creates an edge for each of those ports to each of the ports connected to (the image of) p2. We refer
to [18, 19] for more details and examples.
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To define the rewrite relation, we use port graph morphisms, which preserve the graph structure and
the values of the attributes (instantiating variables that occur in patterns).

Definition 4 (Match) Let L⇒C R be a port graph rewrite rule and G a port graph. We say a match
g(L) of L (i.e., a redex) is found in G if there is a port graph morphism g from L to G (hence g(L) is
a sub-graph of G), C holds in g(L), and for each port in L that is not connected to the arrow node, its
corresponding port in g(L) is not an extremity in the set of edges of G−g(L).

Let G be a port graph. A rewrite step G⇒ H via the port graph rewrite rule L⇒C R is obtained by
replacing in G a match g(L) by g(R) and redirecting the edges incident to ports in g(L) to ports in g(R) as
indicated by the arrow node. The last point in Definition 4 ensures that ports in L that are not connected
to the arrow node are mapped to ports in g(L) that have no edges connecting them with ports outside the
redex, thus ensuring that there will be no dangling edges when g(L) is replaced by g(R).

A sequence of rewriting steps is called a derivation. A derivation tree is a collection of derivations
with a common root.

PORGY [18] is an interactive environement that includes functionalities to create port graphs and
port graph rewrite rules, and to apply rules to graphs (according to user-defined strategies). It provides a
visual representation of the derivation tree, which can be used to analyse the rewriting system; however,
it lacks mechanisms to define graphs in a modular way. To facilitate the design of modular port graph
models, we plan to extend this tool with attributed hierarchical graphs (presented in the next section).

3 Attributed Hierarchical Port-graphs

We extend the notion of a port graph to support a multi-level structure. The key idea is the introduction
of a new kind of attribute in the signature, which we call Ladder, whose value is of type graph. In the
definition of AHP we use the concept of Interface of a graph, which is the set of free ports in the graph
(i.e., ports that do not have edges attached to them).

Definition 5 (AHP-Signature) An AHP-signature ∇G consists of a port graph signature (see Defini-
tion 1), where the set of attribute names ∇A includes a distinguished element Ladder, and the sets of
values, ∇V , and value variables, XV , include elements of type graph.

As in the case of port graph signatures, we consider records over ∇G and distinguish structural
attributes and data attributes. The structural attributes are Connect, Attach, Arity and Ladder. The data
attributes are in turn split into basic and graph attributes. We denote by ∇G

V (resp., X G
V ) the subset of

∇V consisting of values of type graph (resp., the subset of XV consisting of variables of type graph),
and by ∇B

V (resp., X B
V ) the rest of the data elements. Thus, the elements G1,G2, . . . of ∇G

V are attributed
port graphs and the elements X1,X2, . . . of X G

V are variables representing unknown port graphs, each
with an associated interface (list of port names) denoted by Interface(X). AHP with variables in Ladder
attributes will be used only in rewrite rules.

The set of attributed hierarchical port graphs will be defined by induction, relying on the fact that
graph values in records of a given graph are previously defined graphs. More precisely, AHP will be
defined by levels, where the graphs at level i may use graphs of a lower level only.

The levels induce a notion of hierarchy in the graph: in an AHP, the nesting of graph-type attributes
defines a tree structure, i.e., there are no cyclical connections between graph attributes, that is, no edges
linking graphs at different levels, or graphs at peer level. This reduces the complexity of the matching
problem, ensures compositionality (which is important when defining rewriting and flattening relations:
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components of the graph can be replaced and the resulting overall graph is equivalent to the original
graph, whereas it is not obvious how to replace components if there are edges across components), and
facilitates the visualisation of the graph, generating a greater ease in user-understanding.

Definition 6 (Attributed Hierarchical Port-graph) An AHP (Attributed Hierarchical Port-graph) over
a signature ∇G is an element of the set H =

⋃
i≥0 Hi, where Hi, the set of AHP at level i, is defined as

follows:
An AHP at level 0 is an attributed port graph as specified in Definition 3 (i.e., without graph-type

attributes).
An AHP at level i+1 is a tuple (V,P,E,D)L , of a set V of nodes, a set P of ports, a set E of edges, and

a set D of records over ∇G , together with a labelling function L that associates records in D to elements
in V,P,E, such that only nodes may be labelled with records containing the attribute Ladder, and the
value of any Ladder attribute in L (V ) is an AHP at level j ≤ i or a variable of type graph (X ∈X G

V ).
The Ladder graph must have the same interface as the node, i.e., the Ladder graph should have same
number of free ports, with the same names, as the node: Interface(L (n).Ladder) = L (n).Interface.

Given an AHP G, we assume that the graphs in Ladder attributes within G are pairwise disjoint (that
is, they do not share nodes, ports or edges, and therefore there are no edges across graphs at different
levels in G, or graphs of the same level in different nodes).

Figure 1 shows an example of an AHP graph: the node A in the top level has a Ladder attribute
containing the graph shown in the centre of the figure, which in turn contains a node Pools with a Ladder
attribute (the graph in the rightmost part of the figure).

More flexible notions of hierarchical graphs, where edges between nodes at the same level in the
hierarchy are permitted, will be considered in future work.

To define the rewriting relation, we need AHP-morphisms. The definition of AHP-morphism (Defi-
nition 7) ensures that corresponding data attributes in G and H have the same values (except at positions
where there are variables in G, which are instantiated in H), and attachment of ports, edge connections
and ladder graphs are preserved. If f is a morphism from G to H, we will denote by f (G) the sub-graph
of H consisting of the set of nodes, ports, edges and records that are images of nodes, ports, edges and
records in G.

Definition 7 (AHP Morphism) Given two AHP G = (VG,PG,EG,DG)LG and H = (VH ,PH ,EH ,DH)LH

over the same signature ∇G , a morphism f from G to H, denoted f : G→ H, is a family of injective
functions 〈 fV : VG → VH , fP : PG → PH , fE : EG → EH〉 and instantiation functions f1 : XA → ∇A ,
f2 : XV → ∇V (which induce an instantiation function on records) such that

• fP : PG→ PH is a mapping from the set of ports of G to the set of ports of H such that if p ∈ PG

then f1( f2(LG(p))) = LH( fP(p)).

• fV : VG→ VH is a mapping from the set of nodes of G to the set of nodes of H such that if n ∈ VG

then f1( f2(LG(n)))|D = LH( fV (n))|D (i.e., the morphism preserves data-attribute values), if n =
LG(p).Attach for some p ∈ PG, then fV (n) = LH( fP(p)).Attach (i.e., the morphism preserves the
attachment of ports to nodes), and such that f (LG(n).Ladder) = LH( fV (n)).Ladder.

• fE : EG→ EH is a mapping from the set of edges of G to the set of edges of H such that if e ∈ EG

then f1( f2(LG(e)))|D = LH( fE(e))|D and fP(LG(e).Connect) = LH( fE(e)).Connect where fP

denotes the extension of the function fP to sets of ports (i.e., the morphism preserves the edge
connections).
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As in the case of standard port graphs, when using morphisms to define rewriting, we will only allow
the use of variable labels on one of the graphs: the graph L on the left-hand side may include variable
labels, whilst the graph to be rewritten may not.

Definition 8 (AHP Rewrite Rule) An AHP rewrite rule L⇒C R is an AHP graph that consists of two
sub-graphs L and R together with a node (called arrow node) that may carry a condition C and whose
edges link to ports in the top level of L and in the top level of R, capturing the correspondence between
top level ports in L and R. Each variable in XG occurs at most once in L. The three types of ports in the
arrow node (i.e. bridge, wire and black-hole) remain the same as for conventional port graphs.

Figure 2 is an example of an AHP rule.

Definition 9 (AHP Match) Let L⇒C R be an AHP rewrite rule and G an AHP graph. A match between
L and G is said to take place if an AHP morphism g between L and a sub-graph of G can be identified,
such that g(L) satisfies C and for each port in L that is not connected to the arrow node, its corresponding
port in g(L) is not an extremity in the set of edges of G−g(L).

Note that to find a match, where an attribute is of type graph, a new morphism is sought (recursively)
between the graph attribute in L and the value of the Ladder attribute in the corresponding node in G.

The rewriting relation generated by AHP rules, denoted G⇒ H, is defined in a similar way as for
attributed port graphs (see Section 2): a subgraph g(L) in G is replaced by g(R) and the edges incident
to g(L) are rewired as indicated by the arrow node, provided the morphism g satisfies the matching
conditions. The restriction to linear occurrences of graph-type variables in L ensures that the morphism
always yields a well-defined transformation. Since a rule is an AHP, the arrow node can only link ports
in L and R at the top level (no edges can cross level boundaries) and the replacement of a subgraph by
another one maintains the tree structure. As a consequence, there are no dangling edges when g(L) is
replaced with g(R) in an AHP-rewriting step. We study properties of the rewriting relation in Section 5.

4 Applications

We briefly describe two case studies: Asset-Backed Securitisation and the λ -calculus.

The ABS-AHP Securitisation Model. As defined in [28] “Securitisation is the process of converting
cash flows arising from underlying assets or debts/receivables (typically illiquid such as corporate loans,
mortgages, car loans and credit cards receivables) due to the originator into a smoothed liquid marketable
repayment stream” and this ensures that the originator can raise asset-backed finance through loans or
the issuance of debt securities. An originator is any financial intermediary with a portfolio of assets on
its balance sheet. Assets represent loans to clients or obligors who make regular installment payments to
the originator to clear their debts. In a securitisation, assets are selected, pooled and transferred to a tax
neutral, bankruptcy-remote, liquidation-efficient (i.e bankruptcy avoiding), special purpose entity (SPE)
or special purpose vehicle (SPV), who funds them by issuing securities. In general, an ABS (asset-
backed security), or simply asset if there is no ambiguity, is any securitisation issue backed by consumer
loans, car loans, credit cards, etc.

ABSs are rated by credit agencies (e.g., Standard and Poor’s) and are bought by investors (usually
banks or other financial agents), who are paid back over time by the SPV from the stream of receivables.
Investors can then trade these ABSs, characterised by varying levels of liquidity based on the type of
asset, with others in the secondary market.
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The ABS trading model described in [2] has been specified as a port graph rewriting system and
implemented in PORGY [16]; in this paper we incorporate lower, more operational tiers into the model,
by means of attributed hierarchical port graphs. The operational tiers will lead to the computation of the
security’s “pay off” attribute at any point in time (in this case, the profit made from successfully reselling
the security, given varying toxicity likelihood values and the internal examination of the time-value-of-
money).

We represent the full ABS universe hierarchically and enforce information flow bidirectionally. Hi-
erarchical port graph rewriting rules and strategies control the step-wise evolution of the graphs. The
derivation tree is used for plotting and analysing parameters. The asset trading model [16] sits at the
top level of the model hierarchy and below this system lie several more deterministic subsystems that
model encapsulate asset origination, packaging, structuring and servicing processes, and therefore aid in
enforcing internal checks as a result of complete system integration. Figure 1 summarises all the major
components of a securitisation as currently recorded in the system. The first, second and third graphs re-
spectively represent the Secondary Market, Structuring and Origination tiers respectively. B is an agent,
the buyer or seller bank (in the actual system there are eleven agents at the secondary market level), A is
an asset or asset-backed security, Tranches represents the internal structuring or content of an asset and
Pools the connection to underlying that provide an income stream.

Figure 1: Sample Starting Graph

The hierarchical rewrite rules that drive execution have patterns that cut across the two or three
identified tiers. The transformation of the context graph shall be seen in asset transfers, general node
movements, and colour changes that indicate changes of state. Core structuring and origination processes
may be better carried out from an external program and transferred into the graph platform (PORGY can
import graphs through a GXL plug-in). Rules such as that which aid in the structuring of the asset as seen
in Figure 3 or its hierarchical version as seen in Figure 2, can then be efficiently done from within the
system, fulfilling the original objectives of a system that facilitates transparency. A flattening algorithm
that permits same-level interactions as seen in the sample rule is described in the next section.

Compared with standard port graph models, where all the different features and processes have to be
represented in the same ”flat” graph, the hierarchical model facilitates the analysis of the system as it is
possible to hide the non-relevant details in lower levels to focus on the features of interest.

Lambda-terms: An HOPG-AHP Encoding. The λ -calculus [8] is a paradigmatic model of func-
tional computation. We now consider common λ -term representations, and investigate AHP encodings.
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Figure 2: sample Hierarchical Rewrite Rule: “Update Ladder”

Figure 3: FLattened Version of Sample Hierarchical Rewrite Rule: “Update Ladder”

Intuitionistic logic proofs (which, by the Curry-Howard isomorphism are equivalent to λ -terms) ex-
pressed in a natural deduction style can be inductively translated into conventional port graphs (standard
interaction net translations can be used, since interaction nets are a particular kind of port graph). This
representation works well for some aspects of logic but not where boxes are required as this introduces a
two level structure that is not available in standard port graphs or interaction nets. Boxes are represented
by extra nodes requiring additional rules for book-keeping.

In [1], a representation of intuitionistic logic proofs (or λ -terms) is given by means of higher-order
port-graphs (HOPG). Port-graphs coupled with higher-order capabilities overcome some of the draw-
backs of interaction net representations. HOPG [20] extend port graphs with higher-order variable
nodes, which can be instantiated by port graphs. A labelled higher-order port-graph consists of a collec-
tion of first-order nodes (whose names can be constants or variables), a collection of higher-order nodes
(whose names are variables), a collection of ports attached to nodes (higher-order variable nodes con-
tain only variable ports), undirected edges, and labelling functions that determine the concrete properties
(attributes and values) of each graph element.

The notion of port graph morphism has been extended in [20] to take into account higher-order
nodes; [20] proposes a matching algorithm for HOPGs, which caters to the fact that higher order variable
nodes cannot be handled by standard (first order) matching.

AHP graphs subsume HOPGs by introducing an abstraction level that not only fulfils the original
HOPG objective of simulating “boxes” or the grouping of a collection of nodes within one node, all
interfaces matching, but that also maintains a tree structure that can be recursively flattened on demand
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Algorithm 1: Flattening Function T

1 Let G be an AHP graph without variables of type graph.
2 T (G) = G if G ∈H0
3 T (G) = G′ otherwise, where G′ is obtained from G by replacing each hierarchical node n
4 in G with T (L (n).Ladder), connecting edges incident to ports in n to the
5 corresponding ports in T (L (n).Ladder)

to produce a conventional graph. An AHP can act as an HOPG and also permits the nesting of additional
nodes. Similar to the example HOPG-implementation given in [20], an AHP graph can directly represent
a proof (or a λ -term) that contains a box by using a hierarchical node Box whose Ladder attribute contains
the box structure. A corresponding sample AHP rule that can act on the graph could represent one step
in the cut-elimination procedure that seeks to normalise the proof, as shown in [20]. However, instead
of giving a direct encoding of λ -terms into AHP graphs, we describe below an encoding of HOPG in
AHP graphs, which shows AHP graphs capture and also extend the higher-order capabilities introduced
in [20] by providing a multi-level representation.

The key idea to encode an HOPG as an AHP graph is to simulate higher-order variables by intro-
ducing an abstraction level: more precisely, a higher-order variable node labelled by X in the HOPG is
represented by a node with a Ladder attribute with value X in the corresponding AHP graph. In other
words, where a higher-order variable is used in an HOPG to represent an unknown subgraph, a node with
a Ladder attribute containing a graph variable is used. The parent node can be seen as a place-holder,
named appropriately. It maintains an interface that the sub-graph, when instantiated, will also adopt.

5 Properties

We start with a soundness property: rewriting an AHP produces another AHP, that is, rewriting does not
leave dangling edges and does not break the hierarchical tree-structure. This is because a rule is itself an
AHP and therefore the arrow node (which describes the rewiring of the edges) cannot introduce edges
across different level subgraphs.

Property 1 Let G be an AHP and L⇒C R an AHP rewrite rule. If G⇒ H using L⇒C R then H is an
AHP.

In order to relate our notion of AHP rewriting to the conventional transformation of flat port graphs,
and to test our example model in the current version of PORGY, we have implemented a flattening
function T that unfolds an attributed hierarchical port graph without graph-type variables into a regular
port graph as seen in Algorithm 1. Since the graph in the Ladder attribute of a node n AHP has the same
interface as n, we can flatten the graph by replacing each hierarchical node with a flattened version of its
Ladder graph (recursively), redirecting the edges incident to n to the corresponding ports in the flattened
Ladder.

It is easy to see that the recursive definition of the flattening function ensures the result is always a
regular port graph (i.e, an AHP at level 0). Moreover, a hierarchical rewriting step induces a correspond-
ing ”flat” rewriting step (the converse does not hold since structural information gets lost in the flattening
process).

Property 2 Assuming there are no graph-type variables:
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1. If G is an AHP, then T (G) is a regular port graph. Similarly, the flattening of an AHP-rewrite
rule produces a regular port graph rule.

2. If G is an AHP and L⇒C R an AHP rewrite rule, such that G⇒ H using L⇒C R, then T (G)⇒
T (H) using T (L⇒C R) .

6 Related Work

Various extensions of graph formalisms have been previously defined with the aim to provide abstraction
and structuring features in graph-based modelling tools. A prominent example is the concept of bigraph
introduced by Milner (see [9, 31]) to model computation on a global scale. Bigraphs are graphs whose
nodes may be nested, thus providing direct support to notions of locality (nesting of nodes) and connec-
tivity (edges), which are key aspects of mobile systems [32]. Formally, bigraphs are defined in terms
of two structures that share the same node set: place graphs and link graphs. A place graph is a forest
(and in this sense bigraphs define a notion of hierarchy similar to AHP’s), whereas the link graph is a
hyper-graph. Closely related to bigraphs are the deduction graphs proposed by Geuvers and Loeb [21],
able to intuitively and graphically represent proofs.

Hierarchical hyper-graphs [14] also provide structuring features: attributes of type graph are permit-
ted within hierarchical hyper-graphs in association with edges as “frames” where frames are hyper-edges
that can contain hierarchical hyper-graphs of an arbitrary nesting depth and, also in a similar fashion
to our solution, edges cutting across components are prohibited. Similar to our proposal, a recursive
flattening approach is highlighted, albeit via hyper-edge replacement as opposed to node replacement.

Bigraphs and hierarchical hyper-graphs are equipped with a formal, categorical semantics. Where
a double push-out graph transformation approach applies naturally to the transformation of hierarchical
hyper-graphs, the dynamic theory of bigraphs relies on a notion of relative push-out. For AHP graphs, we
follow the single push-out approach advocated in previous port graph transformation systems. However,
the notion of matching we define in this paper is purely operational, and can be easily implemented as
an extension of existing port graph matching algorithms.

H-Graphs [10] model hierarchy by labelling nodes of set N over a set of atoms A or permitting an
embedded directed sub-graph created from N. H-Graphs in practice are used to model run-time data
structures for the definition of programming language semantics and H-Graph grammars model oper-
ations over these structures by substituting an atomic node with a H-Graph. A benchmark developed
in 2001 [10] analyses hierarchical graphs in terms of underlying graph structure, the nested packages
and a coupling mechanism, investigating the two major approaches presented by H-graph grammars and
hierarchical hyper-graphs, and providing a means by which to compare their properties uniformly.

Distributed hierarchical graphs form the basis upon which the agent-based OWL semantic web on-
tological model is built and in which graph transformations can take place at various levels of abstrac-
tion [35]. There is however no clear handling of structural connectivity by the use of ports and limited
attribute handling. Other interesting hierarchical representations and implementations include that of
L-Graphs in which edges and nodes are labelled by graphs [34], that of the verbose property graphs used
in graph analytics [25], and [38]; also using attributes and multi-typed sub-graphs.

Specifically for port graphs, an abstract higher-order calculus inspired by the ρ-calculus [11] is de-
fined in [5,6], where terms can refer to objects that are port-graphs and variables may range over rewrite
rules. This calculus can be seen as a combination of first-order rewrite rules with abstraction, but the
notion of graph morphism (which is the basis for the matching and the rewriting algorithm) is first-
order. As already mentioned, the higher-order port graphs found in [20] include a class of nodes labelled
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by variables that can be instantiated by graphs, thus offering abstraction but no additional structuring
capabilities.

7 Conclusions and Future Work

We have introduced AHP as a means to specify hierarchical models in a manner that is concise, visual,
transparent, modular and feasible. Future work will include a full implementation of this design within
PORGY and completing the construction of the case-studies outlined. Despite additional computational
complexity in matching, our strict hierarchical tree structure could be extended to permit more flexibility
and edges linking nodes at different levels. Boundary-crossing edges are permitted within some of
the visual languages used in software modelling (e.g., to represent UML diagrams, given inheritance
dependencies between separate sub-graphs).
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[37] J. Vallet, H. Kirchner, B. Pinaud, and G. Melançon. A visual analytics approach to compare propagation
models in social networks. In A. Rensink and E. Zambon, editors, Proc. Graphs as Models, GaM 2015,
volume 181 of EPTCS, pages 65–79, 2015.
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