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Confluence is a fundamental property of rewriting systems that guarantees uniqueness of results of
computation. In this paper we propose a general method for proving confluence through sufficient
conditions for strong commutation with disjoint parallel reduction. The method works not only for
first-order term rewriting systems but also for systems with bound variables and conditional rules.

1 Introduction

Confluence is a fundamental property of rewriting systems and is important in their applications. For
first-order term rewriting systems (TRSs), confluence has been well studied, and many criteria to ensure
confluence have been developed. For rewriting systems with bound variables, confluence has also been
well studied but in most cases only for individual systems. The aim of this work is to provide uniform
methods for proving confluence for classes of TRSs and rewriting systems with bound variables, and to
extract criteria for confluence from such proofs. To this end, we also propose a format of specification
of rewriting systems and notation for it in a rather different way from the standard format and notation
of TRSs and traditional higher-order rewriting frameworks.

Our starting point is what is called an inductive confluence (or commutation) proof for (mutually)
orthogonal TRSs as explained in [1, pp. 208–211]. This method uses an inductive definition of disjoint
parallel reduction which reduces redexes at disjoint positions simultaneously. In [1], it is shown that such
defined disjoint parallel reduction satisfies the (commuting) diamond property. Our approach is different
in that we prove, instead of the diamond property, strong commutation of usual one-step reduction with
disjoint parallel reduction. More precisely, we extract sufficient conditions for strong commutation from
the proof by induction on the derivation of disjoint parallel reduction. The sufficient conditions can be
applied to all rewriting systems in our format including non-orthogonal systems and even systems with
bound variables and conditional rules.

Our format of specification of rewriting systems is obtained by generalising the conventional way of
specifying reduction rules in the field of λ -calculus. It has the following features:

(a) Reduction rules are described as infinite sets using meta-variables for terms. This is common in
the field of λ -calculus while in the field of TRSs rewrite rules are defined as pairs of first-order
terms with object-variables. For finite representations of reduction rules, we introduce the notion
of reduction rule schema which employs indexed holes rather than names for meta-variables.

(b) The notion of grammatical context is used to define disjoint parallel reduction in a general way.
This notion has been used in a previous paper [16].

(c) The way to evaluate the conditional part of a reduction rule is assumed to be known.

(d) In the present paper, it is assumed that the RHS of a rule does not include meta-operation such as
capture-free substitution.
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Closely related formalisms for rewriting systems in the literature are conditional λ -calculus [17]
and (context-sensitive) conditional expression reduction systems (CCERSs) [6, 11]. In conditional λ -
calculus the notion of skeleton corresponds to our notion of reduction rule schema, but it uses meta-
variables and capturing substitution instead of holes and hole-filling. We find the use of the latter helpful
in writing proofs succinctly and in paying attention to capture of free variables in terms with which
holes are filled. Also, the conditional part of a rule is not included in a skeleton, while it is included
in a reduction rule schema as a syntactic expression. In both formalisms of conditional λ -calculus and
CCERSs, confluence has been studied only for (slight extensions of) orthogonal systems.

Strong commutation has often been used to prove confluence for individual rewriting systems with
bound variables (e.g. [14]) or classes of rewriting systems where β -rule is the only reduction rule with
bound variables (e.g. [3]). For first-order TRSs, an automated confluence tool based on commutation
criteria has been presented in [15].

The paper is organised as follows. In Section 2 we introduce our specification format of rewriting
systems, and define disjoint parallel reduction in a general way. In Section 3 we present sufficient
conditions for strong commutation to prove confluence. In Section 4 we discuss rewriting systems with
bound variables and conditional rules. In Section 5 we conclude with referring to related work.

2 Disjoint parallel reduction

We start by introducing notations for specifying rewriting systems to present disjoint parallel reduction in
a general way as a binary relation on terms that are inductively defined. Here we treat rewriting systems
without conditional rules. Rewriting systems with conditional rules will be discussed in Section 4.

First we define the notions of grammatical context (Definition 2.2) and reduction rule schema (Defi-
nition 2.5), using examples from combinatory logic (CL).

Definition 2.1 (Grammar of CL). The set of terms of combinatory logic (CL) is defined by the following
grammar:

M,N ::= x | S | K |M ·N

where x ranges over a denumerable set of variables.

Definition 2.2 (Grammatical context). Given the grammar of terms of a system L , the grammatical
context of L , denoted C grm

L [ ], is defined by replacing, in (the RHS of) the grammar, each meta-variable
by a hole.

Example 2.3. For CL, C grm
CL [ ] is defined by

C grm
CL [ ] ::= x | S | K |�1 ·�2

As in usual contexts, we use notations like C grm
L [M1,M2] to denote the term obtained from a gram-

matical context C grm
L [ ] with two holes by filling them with M1 and M2. We also use C grm

L [Mi]i to denote
the term obtained from C grm

L [ ] with an arbitrary number of holes by filling them with Mi’s.

Definition 2.4 (Reduction system of CL). The reduction rules of CL are:

(S) ((S ·M) ·N) ·P → (M ·P) · (N ·P)
(K) (K ·M) ·N → M

The reduction relation −→S is defined by the contextual closure of the rule (S). We use −→=
S for its

reflexive closure, and −→∗S for its reflexive transitive closure. These kinds of notations are also used for
the notions of other reductions in this paper.
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Definition 2.5 (Reduction rule schema). For a reduction rule (ρ) of a system L , its reduction rule
schema is defined as the pair 〈C left

ρ [ ],C right
ρ [ ]〉 where C left

ρ [ ] is obtained by replacing, in the LHS of the

rule (ρ), each meta-variable by a hole, and C right
ρ [ ] by replacing, in the RHS of (ρ), each meta-variable

by the respective hole.
We treat non-left-linear rules as conditional rules by the technique well-known as, e.g. de Vrijer’s

conditional linearisation.
Example 2.6. For the rule (S) of CL,

C left
S [ ]≡ ((S ·�1) ·�2) ·�3 and C right

S [ ]≡ (�1 ·�3) · (�2 ·�3)

For the rule (K) of CL,
C left

K [ ]≡ (K ·�1) ·�2 and C right
K [ ]≡�1

As in the case of grammatical contexts, we use notations such as C left
ρ [M1,M2], C left

ρ [Mi]i (C right
ρ [M1,

M2], C right
ρ [Mi]i) to denote the terms obtained from C left

ρ [ ] (C right
ρ [ ], respectively) by filling the holes

with Mi’s.
Example 2.7. For the rule (S) of CL,

C left
S [K,x,K]≡ ((S ·K) · x) ·K and C right

S [K,x,K]≡ (K ·K) · (x ·K)

For the rule (K) of CL,
C left

K [S,x ·K]≡ (K ·S) · (x ·K) and C right
K [S,x ·K]≡ S

Note that C right
ρ [Mi]i has the same number of arguments (i.e. Mi’s in [Mi]i) as C left

ρ [Mi]i has, even if
some of the Mi’s are copied or do not occur in C right

ρ [Mi]i.
Now we define the notion of disjoint parallel reduction. The same (but differently difined) notion for

first-order TRSs is called parallel-disjoint reduction in [9].
Definition 2.8 (Disjoint parallel reduction). Let (ρ) be a reduction rule of a system L with the reduction
rule schema 〈C left

ρ [ ],C right
ρ [ ]〉. Then the disjoint parallel ρ-reduction (dpr ρ-reduction for short) −→q ρ

is the relation inductively defined by the following inference rules:

[Mi−→q ρ Ni]i

C grm
L [Mi]i−→q ρ C grm

L [Ni]i
(dprgrmL )

C left
ρ [Mi]i−→q ρ C right

ρ [Mi]i
(dprρ)

where [Mi−→q ρ Ni]i denotes the premisses M1−→q ρ N1, . . . , Mn−→q ρ Nn, the number of which depends
on the form of C grm

L [ ].
Lemma 2.9. For any dpr ρ-reduction −→q ρ in a system L and any term M of L , M−→q ρ M.

Proof. M−→q ρ M is derived using the rule (dprgrmL ) only. Formally, the proof is by induction on the
structure of M.

Lemma 2.10. For any dpr ρ-reduction −→q ρ , the following hold.
1. If M−→ρ N then M−→q ρ N.

2. If M−→q ρ N then M−→∗ρ N.

Proof. 1. If M−→ρ N then M−→q ρ N is derived using the rule (dprρ) exactly once. Formally, the
proof is by induction on the structure of M.

2. By induction on the derivation of M−→q ρ N.
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3 Commutation via disjoint parallel reduction

Our basic strategy for proving confluence is to show commutation of each two rules of the system. We
first recall definitions and lemmas on commutation (cf. [1, pp. 31–33]).
Definition 3.1. Let −→R1 and −→R2 be two binary relations on terms of a system L .

1. −→R1 and −→R2 commute def⇐⇒ if M−→∗R1
M1 and M−→∗R2

M2 then there exists N such that
M1−→∗R2

N and M2−→∗R1
N.

2. −→R1 is confluent def⇐⇒−→R1 and −→R1 commute.

3. −→R1 strongly commutes with−→R2

def⇐⇒ if M−→R1 M1 and M−→R2 M2 then there exists N such
that M1−→=

R2
N and M2−→∗R1

N.
Lemma 3.2 ([8]).

1. If −→R1 and −→R2 are confluent and commute then −→R1 ∪−→R2 is also confluent.

2. If −→Ri and −→R j commute for any i, j ∈ I then
⋃

i∈I−→Ri is confluent.
Lemma 3.3 ([8]). If −→R1 strongly commutes with −→R2 then they commute.

To show that −→ρ1 and −→ρ2 commute in a system L , we often use Lemma 3.3 taking −→ρ1 as
−→R1 and the dpr ρ2-reduction−→q ρ2 as−→R2 . In the following we give a sufficient condition for strong
commutation of−→ρ1 with−→q ρ2 , which implies commutation of−→ρ1 and−→ρ2 since−→∗ρ2

=−→q ∗ρ2

by Lemma 2.10.
Theorem 3.4 (Sufficient condition for strong commutation). Let (ρ1) and (ρ2) be reduction rules of a
system L . Suppose that −→ρ1 and −→q ρ2 satisfy the following conditions:
(sc1) If M−→ρ1 M′ with the ρ1-redex at the root, and M−→q ρ2 N is derived with (dprgrmL ) as the last

applied rule, then there exists N′ such that M′−→q ρ2 N′ and N−→∗ρ1
N′.

(sc2) If C left
ρ2

[Mi]i−→ρ1 M′ with the ρ1-redex not in any Mi, then there exists N′ such that M′−→q ρ2 N′

and C right
ρ2 [Mi]i−→∗ρ1

N′.
Then −→ρ1 strongly commutes with −→q ρ2 .

M −−−−→
ρ2

Nyρ1 ∗
yρ1

M′ −−−−→
ρ2

N′

q

q

Proof. We prove by induction on the derivation of M−→q ρ2 N that if M−→ρ1 M′ and M−→q ρ2 N then
there exists N′ such that M′−→q ρ2 N′ and N−→∗ρ1

N′.
• Suppose that the last part of the derivation of M−→q ρ2 N has the form

M1−→q ρ2 N1 · · · Mn−→q ρ2 Nn

C grm
L [M1, . . . ,Mn]−→q ρ2 C grm

L [N1, . . . ,Nn]
(dprgrmL )

First we consider the case where the reduction M−→ρ1 M′ takes place in C grm
L [M1, . . . ,Mn] with

Mi−→ρ1 M′i for some i ∈ {1, . . . ,n}. Then by the induction hypothesis, there exists N′i such that
M′i −→q ρ2 N′i and Ni−→∗ρ1

N′i . Hence by applying the rule (dprgrmL ), we have

M′ ≡ C grm
L [M1, . . . ,M′i , . . . ,Mn]−→q ρ2 C grm

L [N1, . . . ,N′i , . . . ,Nn]
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Also, from Ni−→∗ρ1
N′i we have

N ≡ C grm
L [N1, . . . ,Ni, . . . ,Nn]−→∗ρ1

C grm
L [N1, . . . ,N′i , . . . ,Nn]

Thus the claim follows by taking N′ ≡ C grm
L [N1, . . . ,N′i , . . . ,Nn].

Next we consider the case where the redex of M−→ρ1 M′ is not in any Mi of C grm
L [M1, . . . ,Mn].

Then we can assume that the ρ1-redex is at the root (from the definition of the grammar of L ).
Hence the claim follows from the condition (sc1).

• Suppose that M−→q ρ2 N is derived by the rule (dprρ2
) of the form

C left
ρ2

[M1, . . . ,Mn]−→q ρ2 C right
ρ2 [M1, . . . ,Mn]

(dprρ2
)

First we consider the case where the reduction M−→ρ1 M′ takes place in C left
ρ2

[M1, . . . ,Mn] with
Mi−→ρ1 M′i for some i ∈ {1, . . . ,n}. Then by the rule (dprρ2

), we have (noting the left-linearity of
(ρ2))

M′ ≡ C left
ρ2

[M1, . . . ,M′i , . . . ,Mn]−→q ρ2 C right
ρ2 [M1, . . . ,M′i , . . . ,Mn]

Also, we have

N ≡ C right
ρ2 [M1, . . . ,Mi, . . . ,Mn]−→∗ρ1

C right
ρ2 [M1, . . . ,M′i , . . . ,Mn]

Thus the claim follows by taking N′ ≡ C right
ρ2 [M1, . . . ,M′i , . . . ,Mn].

The case where the redex of M−→ρ1 M′ is not in any Mi of C left
ρ2

[M1, . . . ,Mn] follows from the
condition (sc2).

The above proof implicitly uses the following property: one step reduction −→ρ1 can be applied at
any place of a subterm occurrence including a ρ1-redex. It would be difficult to extract similar conditions
to (sc1) and (sc2) if we tried to show the (commuting) diamond property using −→q ρ1 .

It is easy to check the conditions (sc1) and (sc2) for the rules of CL.

Example 3.5. Let (ρ1) and (ρ2) be the rules (S) and (K) of CL, respectively. To check the condition
(sc1), suppose ((S ·M1) ·M2) ·M3−→S (M1 ·M3) · (M2 ·M3) and ((S ·M1) ·M2) ·M3−→q K N with its last
applied rule (dprgrmCL ). Then the derivation must have the form

S−→q K S
(dprgrmCL )

.... D1
M1−→q K N1

S ·M1−→q K S ·N1
(dprgrmCL )

.... D2
M2−→q K N2

(S ·M1) ·M2−→q K (S ·N1) ·N2
(dprgrmCL )

.... D3
M3−→q K N3

((S ·M1) ·M2) ·M3−→q K ((S ·N1) ·N2) ·N3 (≡ N)
(dprgrmCL )

Hence we can construct a derivation of (M1 ·M3) · (M2 ·M3)−→q K (N1 ·N3) · (N2 ·N3) from D1,D2 and D3
by using the rule (dprgrmCL ). We also have ((S ·N1) ·N2) ·N3−→S (N1 ·N3) · (N2 ·N3), and so the condition
(sc1) is satisfied. On the other hand, it is seen that the condition (sc2) is vacuously satisfied.

Next we consider the case where both (ρ1) and (ρ2) are the rule (S). Then the condition (sc1) can be
checked similarly to the above case. For the condition (sc2), we only have to check the case where both
redexes are at the root, and in that case the claim clearly holds.

The case where both (ρ1) and (ρ2) are the rule (K) can be checked similarly.



6 Confluence by Strong Commutation with Disjoint Parallel Reduction

Proposition 3.6. −→S∪−→K is confluent.

Proof. By Lemma 3.2(2), Lemma 3.3, Theorem 3.4 and Example 3.5.

It is possible to show that the conditions (sc1) and (sc2) are always satisfied for any two rules of an
orthogonal system. The details are omitted.

We generalise Theorem 3.4 on reduction rules (ρ1) and (ρ2) to that on sets of reduction rules R1 and
R2. For a set of reduction rules R, we define −→R =

⋃
(ρ)∈R−→ρ . Also, the disjoint parallel R-reduction

−→q R is defined by the rule (dprgrmL ) and the rules (dprρ) for all (ρ) ∈ R.

Theorem 3.7 (Sufficient condition for strong commutation). Let R1 and R2 be sets of reduction rules of
a system L . Suppose that −→R1 and −→q R2 satisfy the following conditions:

(SC1) If M−→R1 M′ with the R1-redex at the root, and M−→q R2 N is derived with (dprgrmL ) as the last
applied rule, then there exists N′ such that M′−→q R2 N′ and N−→∗R1

N′.

(SC2) For any (ρ2) ∈ R2, if C left
ρ2

[Mi]i−→R1 M′ with the R1-redex not in any Mi, then there exists N′ such

that M′−→q R2 N′ and C right
ρ2 [Mi]i−→∗R1

N′.

Then −→R1 strongly commutes with −→q R2 .

Proof. By induction on the derivation of M−→q R2 N, similarly to the proof of Theorem 3.4.

4 Extension to systems with bound variables and conditional rules

The remainder of the paper is concerned with rewriting systems possibly with bound variables and con-
ditional rules. For unconditional rules, the sufficient conditions (sc1) and (sc2) (or more generally, (SC1)
and (SC2)) for strong commutation work as well as in the case without bound variables, except some
subtleties caused by identifying α-convertible terms.

We explain the contents using examples from λx-calculus [4].

Definition 4.1 (Grammar of λx). The set of terms of the λx-calculus is defined by the following grammar:

M,N ::= x | λx.M |MN |M〈x := N〉

where x ranges over a denumerable set of variables.

In the following we assume that x, y and z denote distinct variables and that the construct 〈x := 〉
binds more strongly than λx. . The notions of free and bound variables are extended from those for
λ -terms by the clause that the variable x in M〈x := N〉 binds the free occurrences of x in M. The set of
free variables occurring in a term M is denoted by FV(M). We identify α-convertible terms and use ≡
to denote syntactic equality modulo α-conversion.

Example 4.2. For the λx-calculus, C grm
λx [ ] is defined by

C grm
λx [ ] ::= x | λx.�1 |�1�2 |�1〈x :=�2〉

Definition 4.3 (Reduction systems of x and x−). The reduction rules of the system x are:

(x1) M〈x := N〉 → M if x /∈ FV(M)

(x2) x〈x := N〉 → N
(x3) (λy.M)〈x := N〉 → λy.M〈x := N〉
(x4) (M1M2)〈x := N〉 → M1〈x := N〉M2〈x := N〉
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The reduction relation −→x is defined by the contextual closure of the rules (x1)-(x4). The system x−

consists of the rules (x2)-(x4) and the following:

(x1−) y〈x := N〉 → y

The reduction relation −→x− is defined by the contextual closure of the rules (x2)-(x4) and (x1−).
As usual in considering terms up to α-equivalence, we rename bound variables in a redex if acciden-

tal capture of free variables after reduction occurs. Thus, for example,

(λy.yx)〈x := y〉 ≡ (λ z.zx)〈x := y〉−→x3 λ z.(zx)〈x := y〉 and not (λy.yx)〈x := y〉−→x3 λy.(yx)〈x := y〉

However, renaming of variables causes a subtlety in our contextual notation of reduction rule schema.
We look into the problem below.
Example 4.4. For the rules of the system x−,

C left
x2 [ ]≡ x〈x :=�1〉 and C right

x2 [ ]≡�1

C left
x3 [ ]≡ (λy.�1)〈x :=�2〉 and C right

x3 [ ]≡ λy.�1〈x :=�2〉
C left
x4 [ ]≡ (�1�2)〈x :=�3〉 and C right

x4 [ ]≡�1〈x :=�3〉�2〈x :=�3〉
C left
x1−

[ ]≡ y〈x :=�1〉 and C right
x1−

[ ]≡ y

Note that each context above is parametrised by variables. So we suppose that the notations C left
ρ [ ]

and C right
ρ [ ] for each reduction rule schema are indexed with a sequence of the bound variables whose

scope includes one of the holes. Then the above reduction step by the rule (x3) is written as follows:

C left
x3,y,x[yx,y]≡ C left

x3,z,x[zx,y]−→x3 C right
x3,z,x[zx,y]

In fact, when considering terms up to α-equivalence, one always has to pay attention to such kind of
notation ranging over contexts, since free variables in terms with which holes are filled may be renamed
by α-conversion. This remark applies to the proof of Theorem 3.4 in the presence of bound variables,
where we use the fact that properties on reduction do not depend on which names of free variables are
employed.

Now it is not difficult to check the conditions (sc1) and (sc2) for the rules of the system x−.
Example 4.5. Let (ρ1) and (ρ2) be the rules (x4) and (x1−), respectively. To check the condition (sc1),
suppose (M1M2)〈x := M3〉−→x4 M1〈x := M3〉M2〈x := M3〉 and (M1M2)〈x := M3〉−→q x1− N with its last
applied rule (dprgrm

λx ). Then the derivation must have the form
.... D1

M1−→q x1− N1

.... D2
M2−→q x1− N2

M1M2−→q x1− N1N2
(dprgrm

λx )

.... D3
M3−→q x1− N3

(M1M2)〈x := M3〉−→q x1− (N1N2)〈x := N3〉 (≡ N)
(dprgrm

λx )

Hence we can construct a derivation of M1〈x := M3〉M2〈x := M3〉−→q x1− N1〈x := N3〉N2〈x := N3〉 from
D1,D2 and D3 by using the rule (dprgrm

λx ). We also have (N1N2)〈x := N3〉−→x4 N1〈x := N3〉N2〈x := N3〉,
and so the condition (sc1) is satisfied. On the other hand, it is seen that the condition (sc2) is vacuously
satisfied.

Next we consider the case where both (ρ1) and (ρ2) are the rule (x4). Then the condition (sc1) can
be checked similarly to the above case. For the condition (sc2), we only have to check the case where
both redexes are at the root, and in that case the claim clearly holds.

For the other combinations of rules, the conditions can be checked similarly.
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Proposition 4.6. −→x− is confluent.

Proof. By Lemma 3.2(2), Lemma 3.3, Theorem 3.4 and Example 4.5.

For conditional rules like (x1) of the system x, the notion of reduction rule schema of a rule (ρ) is
extended from the pair 〈C left

ρ [ ],C right
ρ [ ]〉 to the triple with C cond

ρ [ ], which is obtained by replacing, in
the conditional part of the rule (ρ), each meta-variable by the respective hole.

Example 4.7. For the rule (x1) of the system x,

C left
x1,x[ ]≡�1〈x :=�2〉 and C right

x1,x [ ]≡�1 and C cond
x1,x [ ]≡ x /∈ FV(�1)

We modify the rule (dprρ) in Definition 2.8 so that it can be applied only when C cond
ρ [[Mi]]i holds,

which means the expression C cond
ρ [Mi]i is evaluated to true. Then Lemmas 2.9 and 2.10 still hold. More-

over, by adding a new condition (stb) and modifying (sc2), the claim corresponding to Theorem 3.4 has
the following form. (Adding (stb) can be seen as an application of stability [2] to strong commutation.)

Theorem 4.8 (Sufficient condition for strong commutation). Let (ρ1) and (ρ2) be reduction rules of a
system L . Suppose that −→ρ1 and −→q ρ2 satisfy the following conditions:

(sc1) If C left
ρ1

[Mi]i−→q ρ2 N is derived with (dprgrmL ) as the last applied rule, and C cond
ρ1

[[Mi]]i holds, then

there exists N′ such that C right
ρ1 [Mi]i−→q ρ2 N′ and N−→∗ρ1

N′. (This is substantially the same as
(sc1) in Theorem 3.4.)

(sc2) If C left
ρ2

[Mi]i−→ρ1 M′ with the ρ1-redex not in any Mi, and C cond
ρ2

[[Mi]]i holds, then there exists N′

such that M′−→q ρ2 N′ and C right
ρ2 [Mi]i−→∗ρ1

N′.

(stb) If C cond
ρ2

[[M1, . . . ,Mn]] holds and Mi−→ρ1 M′i for some i ∈ {1, . . . ,n}, then
C cond

ρ2
[[M1, . . . ,Mi−1,M′i ,Mi+1, . . . ,Mn]] also holds.

Then −→ρ1 strongly commutes with −→q ρ2 .

Proof. By induction on the derivation of M−→q ρ2 N, similarly to the proof of Theorem 3.4. The case
where the last applied rule in the derivation of M−→q ρ2 N is (dprgrmL ) is proved in the same way as in the
proof of Theorem 3.4. So suppose that M−→q ρ2 N is derived by the rule (dprρ2

) of the form

C left
ρ2

[M1, . . . ,Mn]−→q ρ2 C right
ρ2 [M1, . . . ,Mn]

(dprρ2
)

where C cond
ρ2

[[M1, . . . ,Mn]] holds. First we consider the case where the reduction M −→ρ1 M′ takes
place in C left

ρ2
[M1, . . . ,Mn] with Mi −→ρ1 M′i for some i ∈ {1, . . . ,n}. Then by the condition (stb),

C cond
ρ2

[[M1, . . . ,M′i , . . . ,Mn]] holds, and so by the rule (dprρ2
), we have

M′ ≡ C left
ρ2

[M1, . . . ,M′i , . . . ,Mn]−→q ρ2 C right
ρ2 [M1, . . . ,M′i , . . . ,Mn]

Also, we have
N ≡ C right

ρ2 [M1, . . . ,Mi, . . . ,Mn]−→∗ρ1
C right

ρ2 [M1, . . . ,M′i , . . . ,Mn]

Hence the claim follows by taking N′ ≡C right
ρ2 [M1, . . . ,M′i , . . . ,Mn]. The case where the redex of M−→ρ1

M′ is not in any Mi of C left
ρ2

[M1, . . . ,Mn] follows from the condition (sc2).

Now we can check the conditions (sc1), (sc2) and (stb) for the rule (x1) and the other rules of the
system x.
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Example 4.9. Let (ρ1) and (ρ2) be the rules (x4) and (x1), respectively. Then the condition (sc1) can be
checked similarly to the case of (x4) and (x1−) in Example 4.5. To check the condition (sc2), we have
to consider this time the case where C left

x1,x[M1M2,M3] ≡ (M1M2)〈x := M3〉−→x4 M1〈x := M3〉M2〈x :=
M3〉 and C cond

x1,x [M1M2,M3] ≡ x /∈ FV(M1M2). Then we have M1〈x := M3〉M2〈x := M3〉 −→q x1 M1M2

and C right
x1,x [M1M2,M3] ≡ M1M2. Hence the condition (sc2) is satisfied. Also, since C cond

x1,x [[M1,M2]] (i.e.
x /∈ FV(M1) is true) and M1−→x4 M′1 imply C cond

x1,x [[M′1,M2]] (i.e. x /∈ FV(M′1) is true), the condition (stb)
is satisfied.

For the cases where (ρ1) and (ρ2) are the rules (x2) and (x1) or the rules (x3) and (x1), the conditions
can be checked similarly. For the case where both (ρ1) and (ρ2) are the rule (x1), the conditions can be
easily checked.

Proposition 4.10. −→x is confluent.

Proof. We have already checked in Example 4.5 the conditions (sc1) and (sc2) for all combinations of
the unconditional rules (x2)-(x4), and checked in Example 4.9 the conditions (sc1), (sc2) and (stb) for
the rule (x1) and the other rules. Hence by Lemma 3.2(2), Lemma 3.3 and Theorem 4.8, we conclude
that −→x is confluent.

It is sometimes useful to work with (sc1) and (sc2) rather than general versions (SC1) and (SC2) with
larger sets of rules, since there are more possibilities of reusing already obtained results on commutation
of part of the rules of the system, as seen in the proof of the above proposition.

5 Conclusion

We proposed a specification format of rewriting systems and presented sufficient conditions for strong
commutation to prove confluence for classes of rewriting systems possibly with bound variables and
conditional rules. We also pointed out subtleties that arise from identifying α-convertible terms in de-
veloping a general framework of proving confluence for rewriting systems with bound variables.

As remarked after Example 4.4, one has to pay attention to notations ranging over contexts when
identifying α-convertible terms. This problem appears even if one employs a specification format of
rewriting systems with meta-variables and capturing substitution (or assignment) as in [17, 6, 11]. In
that case, the substitution should not be considered separately from the terms to which it is applied. In
the framework of CCERSs [6, 11], the problem has been treated to some extent by requiring closure of
admissibility under the renaming of bound variables (cf. footnote 6 of [11, p. 124]). However, it is not
sufficient for dealing with the relation between a pattern (which corresponds to C left

ρ [ ] in our notation)
and arguments (i.e. Mi’s in C left

ρ [Mi]i).
In the framework of nominal rewriting [5], where α-convertible terms are not identified, the above

problem can be treated rigorously (as far as conditions of conditional rules are restricted to freshness
ones). In particular, the notions of uniformity [5] and α-stability [16] stipulate suitable conditions for
the rules concerned. Confluence criteria using strong commutation or parallel critical pairs [7, 18] have
not yet been proposed in the framework of nominal rewriting.

On the other hand, traditional higher-order rewriting frameworks [12, 13] use higher-order terms
involving some meta-level calculus (e.g. the simply-typed λ -calculus). In those cases, one has to first
transform reduction rules into rules of a higher-order system. (An example of transformation is found
in [10, p. 145].) Such a process is rarely written down in the literature, though it is not completely
straightforward.
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