Confluence by Strong Commutation with
Disjoint Parallel Reduction

Kentaro Kikuchi
RIEC, Tohoku University, Sendai, Japan

kentaro@nue.riec.tohoku.ac. jp

Confluence is a fundamental property of rewriting systems that guarantees uniqueness of results of
computation. In this paper we propose a general method for proving confluence through sufficient
conditions for strong commutation with disjoint parallel reduction. The method works not only for
first-order term rewriting systems but also for systems with bound variables and conditional rules.

1 Introduction

Confluence is a fundamental property of rewriting systems and is important in their applications. For
first-order term rewriting systems (TRSs), confluence has been well studied, and many criteria to ensure
confluence have been developed. For rewriting systems with bound variables, confluence has also been
well studied but in most cases only for individual systems. The aim of this work is to provide uniform
methods for proving confluence for classes of TRSs and rewriting systems with bound variables, and to
extract criteria for confluence from such proofs. To this end, we also propose a format of specification
of rewriting systems and notation for it in a rather different way from the standard format and notation
of TRSs and traditional higher-order rewriting frameworks.

Our starting point is what is called an inductive confluence (or commutation) proof for (mutually)
orthogonal TRSs as explained in [1, pp. 208-211]. This method uses an inductive definition of disjoint
parallel reduction which reduces redexes at disjoint positions simultaneously. In [[1]], it is shown that such
defined disjoint parallel reduction satisfies the (commuting) diamond property. Our approach is different
in that we prove, instead of the diamond property, strong commutation of usual one-step reduction with
disjoint parallel reduction. More precisely, we extract sufficient conditions for strong commutation from
the proof by induction on the derivation of disjoint parallel reduction. The sufficient conditions can be
applied to all rewriting systems in our format including non-orthogonal systems and even systems with
bound variables and conditional rules.

Our format of specification of rewriting systems is obtained by generalising the conventional way of
specifying reduction rules in the field of A-calculus. It has the following features:

(a) Reduction rules are described as infinite sets using meta-variables for terms. This is common in
the field of A-calculus while in the field of TRSs rewrite rules are defined as pairs of first-order
terms with object-variables. For finite representations of reduction rules, we introduce the notion
of reduction rule schema which employs indexed holes rather than names for meta-variables.

(b) The notion of grammatical context is used to define disjoint parallel reduction in a general way.
This notion has been used in a previous paper [16].

(c) The way to evaluate the conditional part of a reduction rule is assumed to be known.

(d) In the present paper, it is assumed that the RHS of a rule does not include meta-operation such as
capture-free substitution.

© K. Kikuchi
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
WPTE 2017

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Confluence by Strong Commutation with Disjoint Parallel Reduction

Closely related formalisms for rewriting systems in the literature are conditional A-calculus [17]
and (context-sensitive) conditional expression reduction systems (CCERSs) [6, [I1]]. In conditional A-
calculus the notion of skeleton corresponds to our notion of reduction rule schema, but it uses meta-
variables and capturing substitution instead of holes and hole-filling. We find the use of the latter helpful
in writing proofs succinctly and in paying attention to capture of free variables in terms with which
holes are filled. Also, the conditional part of a rule is not included in a skeleton, while it is included
in a reduction rule schema as a syntactic expression. In both formalisms of conditional A-calculus and
CCERSs, confluence has been studied only for (slight extensions of) orthogonal systems.

Strong commutation has often been used to prove confluence for individual rewriting systems with
bound variables (e.g. [14]) or classes of rewriting systems where f-rule is the only reduction rule with
bound variables (e.g. [3]]). For first-order TRSs, an automated confluence tool based on commutation
criteria has been presented in [15]].

The paper is organised as follows. In Section 2] we introduce our specification format of rewriting
systems, and define disjoint parallel reduction in a general way. In Section [3| we present sufficient
conditions for strong commutation to prove confluence. In Section 4] we discuss rewriting systems with
bound variables and conditional rules. In Section [5| we conclude with referring to related work.

2 Disjoint parallel reduction

We start by introducing notations for specifying rewriting systems to present disjoint parallel reduction in
a general way as a binary relation on terms that are inductively defined. Here we treat rewriting systems
without conditional rules. Rewriting systems with conditional rules will be discussed in Section 4]

First we define the notions of grammatical context (Definition[2.2)) and reduction rule schema (Defi-
nition [2.5), using examples from combinatory logic (CL).

Definition 2.1 (Grammar of CL). The set of terms of combinatory logic (CL) is defined by the following
grammar:

M,N:=x|S|K|M-N
where x ranges over a denumerable set of variables.

Definition 2.2 (Grammatical context). Given the grammar of terms of a system £, the grammatical
context of &, denoted %gm[|, is defined by replacing, in (the RHS of) the grammar, each meta-variable
by a hole.

Example 2.3. For CL, 6§ ™[] is defined by
cer [l=x|S|K |00,
As in usual contexts, we use notations like €5 [M},M,] to denote the term obtained from a gram-
matical context 45"] with two holes by filling them with M, and M,. We also use €5 [M;]; to denote
the term obtained from ‘Kflf ™[] with an arbitrary number of holes by filling them with M;’s.

Definition 2.4 (Reduction system of CL). The reduction rules of CL are:

(S) ((S-M)-N)-p — (M-P)-(N-P)
(K) (K-M)-N — M
The reduction relation — is defined by the contextual closure of the rule (S). We use —§ for its

reflexive closure, and — for its reflexive transitive closure. These kinds of notations are also used for
the notions of other reductions in this paper.

K. Kikuchi 3

Definition 2.5 (Reduction rule schema). For a reduction rule (p) of a system £, its reduction rule
schema is defined as the pair <‘€[|,Eft[],‘Kgight[|) where ‘Kll)eﬁ[| is obtained by replacing, in the LHS of the
rule (p), each meta-variable by a hole, and %pright[| by replacing, in the RHS of (p), each meta-variable
by the respective hole.

We treat non-left-linear rules as conditional rules by the technique well-known as, e.g. de Vrijer’s
conditional linearisation.

Example 2.6. For the rule (S) of CL,
CEt=((S-0))-0y)-0s and €9 [] = (0 -0s) - (0p - Os)

For the rule (K) of CL, .
€= (K-01)-0, and ELE[=0,

As in the case of grammatical contexts, we use notations such as ‘5[',&& My, M), ‘Kfl,eft [M;]; (‘Kpright M,
My, ‘fgight [M];) to denote the terms obtained from %[| (%’;ight[], respectively) by filling the holes
with M;’s.

Example 2.7. For the rule (S) of CL,

%S'eft[l(,x,K]E((S-K)'x)'K and %;ight[[(’x,l{]E(K.K)-(x-K)

For the rule (K) of CL, _
€S, x K] =(K-S)-(x-K) and %5 E"[S,x-K]=S$

Note that %,;ight[Mi]i has the same number of arguments (i.e. M;’s in [M;];) as %"fft [M;]; has, even if

some of the M;’s are copied or do not occur in ‘fpright [M];.

Now we define the notion of disjoint parallel reduction. The same (but differently difined) notion for
first-order TRSs is called parallel-disjoint reduction in [9]].
Definition 2.8 (Disjoint parallel reduction). Let (p) be a reduction rule of a system £ with the reduction
rule schema <$a”‘|)eft[],%;ight[1). Then the disjoint parallel p-reduction (dpr p-reduction for short) —+,
is the relation inductively defined by the following inference rules:

[Mi —t>p Ni]i (dprgrm) : (dprp)
%‘gm [M,'],' —tp %‘gm [Ni],' < %Aeft [M,'],‘ —tp %,;Ight [M,'],'
where [M; —p N;; denotes the premisses M, —t>p N1, ..., My —t>p Ny, the number of which depends

on the form of €5].
Lemma 2.9. For any dpr p-reduction —, in a system .Z and any term M of £, M —+p M.

Proof. M —+>, M is derived using the rule (dpri}m) only. Formally, the proof is by induction on the
structure of M. 0

Lemma 2.10. For any dpr p-reduction —t, the following hold.
1. If M—, N then M —++, N.

2. If M —+>p N then M —, N.
Proof. 1. If M —, N then M —+, N is derived using the rule (d prp) exactly once. Formally, the
proof is by induction on the structure of M.

2. By induction on the derivation of M —+-, N. O

4 Confluence by Strong Commutation with Disjoint Parallel Reduction

3 Commutation via disjoint parallel reduction

Our basic strategy for proving confluence is to show commutation of each two rules of the system. We
first recall definitions and lemmas on commutation (cf. [1}, pp. 31-33]).

Definition 3.1. Let — g, and —g, be two binary relations on terms of a system £ .

def . .
1. — g, and —g, commute = if M —>;§l My and M —>7ez M, then there exists N such that
M, —)}EZN and M, _>731 N.

2. —p, is confluent &L —>R, and —g, commute.
3. —pg, strongly commutes with —g, g if M — g, My and M — g, M5 then there exists N such
that My — ¢, N and M, —p N.
Lemma 3.2 ([8]).
1. If —R, and —g, are confluent and commute then — g, U ——g, is also confluent.
2. If —g, and —g; commute for any i, j € I then J;c; — g, is confluent.
Lemma 3.3 ([8]). If —g, strongly commutes with —g, then they commute.

To show that —, and —,, commute in a system .#’, we often use Lemma [3.3|taking —, as
— g, and the dpr p,-reduction —p, as —>,. In the following we give a sufficient condition for strong
commutation of —p, with —,, which implies commutation of —p, and —, since —, = —>,
by Lemma|2.10

Theorem 3.4 (Sufficient condition for strong commutation). Let (p;) and (pz) be reduction rules of a
system L. Suppose that —p, and —+p, satisfy the following conditions:

(sc1) If M —p, M with the pi-redex at the root, and M —+p, N is derived with (dpr%;") as the last
applied rule, then there exists N' such that M' —+>p, N" and N —75 N'.

(sco) If (5})‘;& [Mj); —p, M" with the py-redex not in any M, then there exists N' such that M' —+,, N’
and %,;'Zght [Mi}i —);l N'.

Then —p, strongly commutes with —t,.

M —+— N
P2

lpl *lpl

M —4— N’
P2

Proof. We prove by induction on the derivation of M —++p, N that if M —, M’ and M —+,, N then
there exists N’ such that M’ —p, N and N — 7 N'.

e Suppose that the last part of the derivation of M —+p, N has the form

M] _H_>p2N] Mn_H_>p2Nn

grm grm (dpragém)
ng [Ml, e ,Mn] —ttp, ng [Nl, e ,Nn]
First we consider the case where the reduction M —, M’ takes place in €5 [M,,...,M,] with
M; —p, M for some i € {1,...,n}. Then by the induction hypothesis, there exists N; such that

grm

M; —+p, N} and N; —5 N;. Hence by applying the rule (dpr%,"), we have

M =CE" My,... . Mj,... . My] —tp, €5 [N1,...,Nj,...,N,]

K. Kikuchi 5

Also, from N; —, N/ we have

N=FZ"Ni,....,Ni,...,Ny] —5, € [N1,...,N]

IEEEEE)

Ny

Thus the claim follows by taking N' = €5 " [Ny,...,N/,...,N,].

Next we consider the case where the redex of M —, M’ is not in any M; of €5 " [Mj, ..., M,)].
Then we can assume that the p;-redex is at the root (from the definition of the grammar of .¥).
Hence the claim follows from the condition (sc;).

e Suppose that M), N is derived by the rule (dpr,,) of the form

: (d prpz)
G M., My~ p, CpE™ My, ..., M,

First we consider the case where the reduction M —,, M’ takes place in %Aift My, ...,M,] with
M; —p, M; for some i € {1,...,n}. Then by the rule (dpr,,), we have (noting the left-linearity of

(p2))
M =6 My, M, M) 0, G M, M M)

Also, we have
=G My, Mi,... My — G My, M],... . M,]

Thus the claim follows by taking N' = €,8" [M,..., M, ..., M,)].
The case where the redex of M —, M’ is not in any M; of ‘KI')‘ZP‘ [My,...,M,] follows from the
condition (scy). O

The above proof implicitly uses the following property: one step reduction —p, can be applied at
any place of a subterm occurrence including a p;-redex. It would be difficult to extract similar conditions
to (sc;) and (scy) if we tried to show the (commuting) diamond property using —, .

It is easy to check the conditions (sc;) and (scy) for the rules of CL.

Example 3.5. Let (p;) and (p2) be the rules (S) and (K) of CL, respectively. To check the condition
(sc1), suppose ((S-My) M) -Mz —s (M;-M3) - (My-M3) and ((S-M) - M) - M3 —+>g N with its last

applied rule (dprf;"). Then the derivation must have the form
s), -
S+ S M| -+ Ny (d grm) Dy .
S-Mi —+>gS-N MQ—H—>KN2 (d grm) 1 D3
(S-My) My =k (S-Ny) Ny M3 —H—)KN3

(dprer)

(($-My)-M)-M3 =+ ((S-N1)-N2) - N3 (=N)
Hence we can construct a derivation of (M} -M3) - (Ma - M3) —k (N -N3) - (N2 - N3) from Dy, D; and D;
by using the rule (dprf;"). We also have ((S-N;)-N>)-N3 —g (N; -N3) - (N2 - N3), and so the condition
(scy) is satisfied. On the other hand, it is seen that the condition (sc;) is vacuously satisfied.

Next we consider the case where both (p;) and (p,) are the rule (S). Then the condition (sc;) can be
checked similarly to the above case. For the condition (sc;), we only have to check the case where both
redexes are at the root, and in that case the claim clearly holds.

The case where both (p;) and (p;) are the rule (K) can be checked similarly.

6 Confluence by Strong Commutation with Disjoint Parallel Reduction

Proposition 3.6. —sU — is confluent.
Proof. By Lemma|[3.22), Lemma Theorem [3.4] and Example O

It is possible to show that the conditions (sc;) and (sc;) are always satisfied for any two rules of an
orthogonal system. The details are omitted.

We generalise Theorem [3.4]on reduction rules (p;) and (p,) to that on sets of reduction rules R; and
R. For a set of reduction rules R, we define — g = J(p)cg —p- Also, the disjoint parallel R-reduction

—p is defined by the rule (dpr¥,") and the rules (dpr,) for all (p) € R

Theorem 3.7 (Sufficient condition for strong commutation). Let Ry and R, be sets of reduction rules of
a system Z. Suppose that —g, and —++g, satisfy the following conditions:

If M —g, M' with the R;-redex at the root, and M —>g, N is derived with dprgrm as the last
1 2
applied rule, then there exists N' such that M' —+>g, N' and N —% N'.

(SCy) Forany (p2) € Ry, if Cﬁleft[ili —>r, M’ with the R\ -redex not in any M;, then there exists N' such
that M' —+-g, N and Cf,;'zght[ili —k, N

Then —p, strongly commutes with —-g,.

Proof. By induction on the derivation of M —+>, N, similarly to the proof of Theorem 3.4} U

4 Extension to systems with bound variables and conditional rules

The remainder of the paper is concerned with rewriting systems possibly with bound variables and con-
ditional rules. For unconditional rules, the sufficient conditions (sc;) and (sc;) (or more generally, (SC;)
and (SC,)) for strong commutation work as well as in the case without bound variables, except some
subtleties caused by identifying ¢-convertible terms.

We explain the contents using examples from Ax-calculus [4].

Definition 4.1 (Grammar of Ax). The set of terms of the Ax-calculus is defined by the following grammar:
M,N :=x|Ax.M | MN | M{(x:=N)
where x ranges over a denumerable set of variables.

In the following we assume that x, y and z denote distinct variables and that the construct _(x := _)
binds more strongly than Ax._. The notions of free and bound variables are extended from those for
A-terms by the clause that the variable x in M (x := N) binds the free occurrences of x in M. The set of
free variables occurring in a term M is denoted by FV (M). We identify a-convertible terms and use =
to denote syntactic equality modulo a-conversion.

Example 4.2. For the Ax-calculus, %f;m[] is defined by
Cr [i=x | Ax.Oy |00, | Oy (x:=)

Definition 4.3 (Reduction systems of x and x™~). The reduction rules of the system x are:

(x1) M(x:=N) — M if x¢ FV(M)
(x2) x(x:=N) — N

(x3) (AyM)(x:=N) — Ay.M(x:=N)

(x4) (M\My)(x:=N) — M;{x:=N)My(x:=N)

K. Kikuchi 7

The reduction relation —> is defined by the contextual closure of the rules (x1)-(x4). The system x~
consists of the rules (x2)-(x4) and the following:
(x17) y(x:=N) — y

The reduction relation —- is defined by the contextual closure of the rules (x2)-(x4) and (x17).

As usual in considering terms up to ¢-equivalence, we rename bound variables in a redex if acciden-
tal capture of free variables after reduction occurs. Thus, for example,

(Ayyx)(x:=y) = (Az.zx)(x:=y) —>3 Az.(zx)(x :=y) and not (Ay.yx){x :=y) —3 Ay.(yx)(x:=y)

However, renaming of variables causes a subtlety in our contextual notation of reduction rule schema.
We look into the problem below.

Example 4.4. For the rules of the system x—,

EIft] = x(x:=0)) and CREM]=0

'eft[] = (Ay.0))(x:=0) and ”ghtH = Ay.0(x:=0,)

Eleft] = (D1D2)<x:: O3) and GUE"[] =0, (x:= O3)0y (x := O3)
€] = y(x:=0y) and €=y

Note that each context above is parametrised by variables. So we suppose that the notations %I'fft[]

and ‘Kpﬁght[] for each reduction rule schema are indexed with a sequence of the bound variables whose
scope includes one of the holes. Then the above reduction step by the rule (x3) is written as follows:

h
CK)!%% X [yx7y] cg)!gfz x[] —x3 Cgrll%gz ;cc[zx)7]

In fact, when considering terms up to ¢-equivalence, one always has to pay attention to such kind of
notation ranging over contexts, since free variables in terms with which holes are filled may be renamed
by a-conversion. This remark applies to the proof of Theorem in the presence of bound variables,
where we use the fact that properties on reduction do not depend on which names of free variables are
employed.

Now it is not difficult to check the conditions (sc;) and (scy) for the rules of the system x~.
Example 4.5. Let (p;) and (p>) be the rules (x4) and (x17), respectively. To check the condition (sc;),
suppose (M1Ma)(x := M3) —>wa My (x := M3)M,(x := M3) and (M M;)(x := Mz) —,,- N with its last
applied rule (dpr§"). Then the derivation must have the form

" D

My —+5,1- N My —++51- No (d grm) Ds
MM, —tt5,1- N1V Plax M3 —>,1- N3 (Cl rgrm)
(M M) (x := M3) —t>,1- (N1N2)(x :=N3) (=N) Ax

Hence we can construct a derivation of M (x := M3)M,(x := M3) - N1 {x := N3)N>(x := N3) from
Dy, D; and D; by using the rule (dprs ™). We also have (N Ny) (x := N3) —a Ny (x := N3)No (x := N3),
and so the condition (sc;) is satisfied. On the other hand, it is seen that the condition (sc;) is vacuously
satisfied.

Next we consider the case where both (p;) and (p;) are the rule (x4). Then the condition (sc;) can
be checked similarly to the above case. For the condition (sc;), we only have to check the case where
both redexes are at the root, and in that case the claim clearly holds.

For the other combinations of rules, the conditions can be checked similarly.

8 Confluence by Strong Commutation with Disjoint Parallel Reduction

Proposition 4.6. —,- is confluent.
Proof. By Lemma|[3.22), Lemma Theorem [3.4] and Example 4.5 O

For conditional rules like (x1) of the system x, the notion of reduction rule schema of a rule (p) is
extended from the pair (%[1, €5 []) to the triple with %5], which is obtained by replacing, in
the conditional part of the rule (p), each meta-variable by the respective hole.

Example 4.7. For the rule (x1) of the system x,

G] =0(x:=0) and EE[]=0, and E[]=x¢FV(D)

x1,x x1,x X

We modify the rule (dpr,) in Definition so that it can be applied only when %pm”d [M;]; holds,
which means the expression %pcc’“d [M;]; is evaluated to true. Then Lemmas|2.9|and [2.10|still hold. More-
over, by adding a new condition (stb) and modifying (sc»), the claim corresponding to Theorem [3.4] has
the following form. (Adding (stb) can be seen as an application of stability [2] to strong commutation.)

Theorem 4.8 (Sufficient condition for strong commutation). Let (p;) and (p2) be reduction rules of a
system . Suppose that —p, and —+p, satisfy the following conditions:
(sc1) If ‘Kll)?ft [M;)i —+5p, N is derived with (dpr%,") as the last applied rule, and ‘Kpcl"”d [M;]; holds, then

there exists N' such that ‘gpqght[Mi] i —trp, N and N —5 N'. (This is substantially the same as

(sc1) in Theorem[3.4))

(sc) If CKF',‘;& [Mj]; —p, M with the p\-redex not in any M;, and €s°" [M;]; holds, then there exists N'
such that M' —+p, N' and %;izght [Mj]; —5, N

(stb) If %lfz"”d My, ..., M,] holds and M; —p, M for some i € {1,...,n}, then
%pcz"“d[[Ml,...,M,-_l,M;,M,-H,...,Mn]] also holds.

Then —p, strongly commutes with —t,.

Proof. By induction on the derivation of M —+p, N, similarly to the proof of Theorem The case

where the last applied rule in the derivation of M —+,, N is (dpr%,") is proved in the same way as in the
proof of Theorem So suppose that M —+, N is derived by the rule (dpr),) of the form

(dprp,)

G My, ..., M) 0 p, CpE™ M, ... M,

where ‘fpczc’“d [Mi,...,M,] holds. First we consider the case where the reduction M —p, M’ takes
place in %’;‘;ft[Ml,...,Mn] with M; —p, M] for some i € {1,...,n}. Then by the condition (stb),
€52 M, ..., Mj,...,M,] holds, and so by the rule (dpr,,), we have

M =6 My, M, M) 0, G M, M M)

Also, we have . .
N =G My,... . M;,..., My —5 ChE" M.\ M},... .M,

Hence the claim follows by taking N = ‘Kpr;ght [My,...,Mj,...,M,]. The case where the redex of M —,
M’ is not in any M; of ‘5;2& [Mi,...,M,] follows from the condition (scy). O

Now we can check the conditions (scy), (scz) and (stb) for the rule (x1) and the other rules of the
system x.

K. Kikuchi 9

Example 4.9. Let (p;) and (p») be the rules (x4) and (x1), respectively. Then the condition (sc;) can be
checked similarly to the case of (x4) and (x17) in Example To check the condition (sc;), we have
to consider this time the case where %)lﬁf;[Mle,Mﬂ = (MiM)(x := M3) —>xa M (x := M3)M,(x :=

M) and CL M My, M3) = x ¢ FV(MM>). Then we have M (x := M3)M>(x := M3) —t+, MiM>

x1,x
and (ﬁﬁg}?t [M1M,,M3] = M{M,. Hence the condition (sc,) is satisfied. Also, since %;f';d [My,M;] (i.e.
x ¢ FV(M,) is true) and My —,4 M| imply G0 [M,M>] (i.e. x ¢ FV(M]) is true), the condition (stb)
is satisfied. '
For the cases where (p;) and (p2) are the rules (x2) and (x1) or the rules (x3) and (x1), the conditions
can be checked similarly. For the case where both (p;) and (p;) are the rule (x1), the conditions can be

easily checked.

Proposition 4.10. —, is confluent.

Proof. We have already checked in Example [4.5| the conditions (sc;) and (scz) for all combinations of
the unconditional rules (x2)-(x4), and checked in Example {4.9] the conditions (sc;), (sc) and (stb) for
the rule (x1) and the other rules. Hence by Lemma 2), Lemma and Theorem 4.8, we conclude
that —, is confluent. O

It is sometimes useful to work with (sc;) and (scy) rather than general versions (SC;) and (SC;) with
larger sets of rules, since there are more possibilities of reusing already obtained results on commutation
of part of the rules of the system, as seen in the proof of the above proposition.

5 Conclusion

We proposed a specification format of rewriting systems and presented sufficient conditions for strong
commutation to prove confluence for classes of rewriting systems possibly with bound variables and
conditional rules. We also pointed out subtleties that arise from identifying o-convertible terms in de-
veloping a general framework of proving confluence for rewriting systems with bound variables.

As remarked after Example [4.4] one has to pay attention to notations ranging over contexts when
identifying a-convertible terms. This problem appears even if one employs a specification format of
rewriting systems with meta-variables and capturing substitution (or assignment) as in [[17} |6 [11]. In
that case, the substitution should not be considered separately from the terms to which it is applied. In
the framework of CCERSs [6, [11], the problem has been treated to some extent by requiring closure of
admissibility under the renaming of bound variables (cf. footnote 6 of [11, p. 124]). However, it is not
sufficient for dealing with the relation between a pattern (which corresponds to %Aeft[] in our notation)
and arguments (i.e. M;’s in %l')eft [Mi])).

In the framework of nominal rewriting [15], where ¢-convertible terms are not identified, the above
problem can be treated rigorously (as far as conditions of conditional rules are restricted to freshness
ones). In particular, the notions of uniformity [5] and a-stability [16] stipulate suitable conditions for
the rules concerned. Confluence criteria using strong commutation or parallel critical pairs [7, (18] have
not yet been proposed in the framework of nominal rewriting.

On the other hand, traditional higher-order rewriting frameworks [12, [13] use higher-order terms
involving some meta-level calculus (e.g. the simply-typed A-calculus). In those cases, one has to first
transform reduction rules into rules of a higher-order system. (An example of transformation is found
in [10, p. 145].) Such a process is rarely written down in the literature, though it is not completely
straightforward.

10

Confluence by Strong Commutation with Disjoint Parallel Reduction

Acknowledgements I am grateful to the anonymous referees for valuable comments. This work was
supported by JSPS KAKENHI Grant Numbers JP16K00091 and JP17K00005.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)

Bergstra, J.A., Klop, J.W.: Conditional rewrite rules: confluence and termination. Journal of Computer and
System Sciences 32(3), 323-362 (1986)

Blanqui, F., Kirchner, C., Riba, C.: On the confluence of lambda-calculus with conditional rewriting. Theo-
retical Computer Science 411(37), 3301-3327 (2010)

Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution
and garbage collection. In: Proceedings of Computing Science in the Netherlands (CSN 1995). pp. 62-72.
(1995)

Ferndndez, M., Gabbay, M.J.: Nominal rewriting. Information and Computation 205(6), 917-965 (2007)

Glauert, J.R.W., Kesner, D., Khasidashvili, Z.: Expression reduction systems and extensions: An overview.
In: Processes, Terms and Cycles. LNCS, vol. 3838, pp. 496-553. Springer-Verlag (2005)

Gramlich, B.: Confluence without termination via parallel critical pairs. In: Proceedings of the 21st Collo-
quium on Trees in Algebra and Programming (CAAP 1996). LNCS, vol. 1059, pp. 211-225. Springer-Verlag
(1996)

Hindley, J.R.: The Church-Rosser Property and a Result in Combinatory Logic. Ph.D. thesis, University of
Newcastle-upon-Tyne (1964)

Huet, G.: Confluent reductions: abstract properties and applications to term rewriting systems. Journal of the
Association for Computing Machinery 27(4), 797-821 (1980)

Joachimski, F., Matthes, R.: Standardization and confluence for a lambda calculus with generalized applica-
tions. In: Proceedings of the 11th International Conference on Rewriting Technique and Applications (RTA
2000). LNCS, vol. 1833, pp. 141-155. Springer-Verlag (2000)

Khasidashvili, Z., Ogawa, M., van Oostrom, V.: Perpetuality and uniform normalization in orthogonal rewrite
systems. Information and Computation 164(1), 118-151 (2001)

Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems: introduction and survey.
Theoretical Computer Science 121(1-2), 279-308 (1993)

Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoretical Computer Science
192(1), 3-29 (1998)
de Moura, F.L.C., Kesner, D., Ayala-Rincén, M.: Metaconfluence of calculi with explicit substitutions at a

distance. In: Proceedings of the 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science (FSTTCS 2014). LIPIcs, vol. 29, pp. 391-402. (2014)

Shintani, K., Hirokawa, N.: CoLL: a confluence tool for left-linear term rewrite systems. In: Proceedings of
the 25th International Conference on Automated Deduction (CADE 2015). LNCS, vol. 9195, pp. 127-136.
Springer-Verlag (2015)

Suzuki, T., Kikuchi, K., Aoto, T., Toyama, Y.: Confluence of orthogonal nominal rewriting systems revisited.
In: Proceedings of the 26th International Conference on Rewriting Technique and Applications (RTA 2015).
LIPIcs, vol. 36, pp. 301-317. (2015)

Takahashi, M.: A-calculi with conditional rules. In: Proceedings of the 1st International Conference on Typed
Lambda Calculi and Applications. LNCS, vol. 664, pp. 406—417. Springer-Verlag (1993)

Toyama, Y.: On the Church-Rosser property of term rewriting systems. Technical Report 17672, NTT ECL
(1981), In Japanese

	Introduction
	Disjoint parallel reduction
	Commutation via disjoint parallel reduction
	Extension to systems with bound variables and conditional rules
	Conclusion

