
Submitted to:
WPTE 2017

c© Liyi Li and Elsa Gunter
This work is licensed under the
Creative Commons Attribution License.

A Method to Translate Order-Sorted Algebras to
Many-Sorted Algebras

Liyi Li and Elsa Gunter
Department of Computer Science,

University of Illinois at Urbana-Champaign
{liyili2,egunter}@illinois.edu

Order-sorted algebras and many sorted algebras are classical ideas with many different implementa-
tions and applications. In order to marry these two worlds, in this paper, we propose an algorithm
to translate an strictly sensible order-sorted algebra to a many-sorted one in a restricted domain by
requiring the order-sorted algebra to have a restricted format. The key idea of the translation is to add
an equivalence relation called core equality to the translated many-sorted algebras. By defining this
relation, we reduce the complexity in translating an strictly sensible order-sorted algebra to a many-
sorted one, increase the translated many-sorted algebra equations by less than a linear factor and keep
the number of rewrite rules in the algebra in the same amount. We then prove the order-sorted algebra
and the many-sorted algebra are bisimilar. We believe that our translation benefits the translations
of order-sorted specifications in languages such as K or Maude to many-sorted systems in theorem
provers such as Isabelle/HOL or Coq, which allows users to prove theorems about large and popular
language specifications.

1 Motivation

Currently, order-sorted algebras are used widely in defining specifications and programs. Maude [3] and
K [20] are successful programming languages for defining order-sorted algebras. The specifications of
a lot of popular programming languages, such as Java [2], Javascript [18], PHP [9], C [8, 12], LLVM
and Python semantics, have been defined in K in a form of order-sorted algebra. Experience shows that
order-sorted algebras allow users to define specifications easily.

On the other hand, many-sorted algebras also have wide usage. Many people define pieces of popular
programming languages such as C, Java, LLVM and Python in forms of many-sorted algebras. For
example, people define specifications based on many-sorted algebras in some interactive theorem provers,
such as Isabelle/HOL[19] and Coq[5], where people commonly use their many-sorted type theories to
prove properties about language specifications.

In order to connect these two worlds, especially to connect the existing programming language
semantic specifications defined in the order-sorted algebra K with the traditional theorem provers such as
Isabelle/HOL and Coq, the key is to discover a way to translate an order-sorted algebra into a many-sorted
algebra. The reason we want to do this is to use the theorem proving engines to develop theories about
specifications defined in the order-sorted world. Please note that the syntax of the specification that we
are interested in translating from a order-sorted form to a many-sorted form is an abstract syntax not a
concrete syntax of a language. Even though users are allowed to defined mixfix syntax in order-sorted
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programming languages such as K or Maude, they are still representing the abstract syntax and not the
concrete syntax of a specification because the mixfix syntax forms are just syntactic sugars K and Maude
use to write abstract syntax for a specification. For example, both K and Maude do not allow users to
create over loaded constants.

To the best of our knowledge, the most recent and relevant work on defining a translation mechanism
is that of Meseguer and Skeirik[16], who created an algorithm to translate an order-sorted algebra to a
many-sorted one. However, this algorithm deals with the most general cases, so it adds more sorts and
rewrite rules than are needed in more restricted cases. In some order-sorted algebras, if some rewrite
rules have many sorts and subsorts, it can cause their algorithm to generate rewrite rules exponentially.
Even though the chance of this extreme situation is rare, for a normal order-sorted algebra, their algorithm
squares or cubes the number of equations and rewrite rules when creating a many-sorted algebra image,
which is not desirable.

Our main goal is to connect the world of people defining language specifications using order-sorted
algebras to that of people using theorem provers to develop theories about language specifications by using
many-sorted algebras. In order to succeed, our translation of an order-sorted algebra must be understood
by the people who are using the theorem provers. Making a many-sorted algebra with relatively the same
amount of rewrite rules would significantly reduce the users’ efforts to understand the translated language
specifications. That is the reason for us to present a way to translate an interesting subset of order-sorted
algebras into many-sorted algebras with increasing the number of the equations by less than a linear factor
and keeping the number of rewrite rules in the same amount.

The basic idea of our algorithm is to view the subsort relation s≤ s′ defined in an order-sorted algebra
as the implicit coercion of a term in the subsort s to a term in the supersort s′. Then, we borrow the idea
of constructors, as a way of explicit coercion, from other functional programming languages, such as
Standard ML [17]. We add an explicit coercion with a constructor for each subsort relation and view
these subsort relations as unary operators in the translated many-sorted algebra. After that, we add a new
equivalence relation for operators, which we call core equality. Core equality allows users to equalize
two terms as long as their core parts (not counting the subsort unary operator parts) are the same. By this
translation process, we are able to translate a valuable subset of order-sorted algebras into many-sorted
ones. Specifically, we are able to translate all those valuable language specifications in K mentioned
above into ones in Isabelle/HOL.

2 The Scope of the Solution

In this section, we describe the exact problem that we want to solve. The basic idea is to find a translation
function tr to translate an order-sorted algebra to a many-sorted one and preserve the meaning of the
former one in the latter one. We first define term algebras for many-sorted algebra and order sorted algebra
in Definition 2.1 and 2.2, respectively. A term algebra is a trivial algebra that defines the terms allowed in
an algebra without variables.

Definition 2.1. A sorted ground term algebra TΣ is a tuple of (S,Φ,Σ), where S is a set of sorts, Φ is a
finite set of constructors, and Σ is the set of all operators in the system, where an operator is of the form of
f : s1× ...× sn→ s, where f is the constructor in set Φ, s1, ...,sn is a list of argument sorts and s is the
target sort. Sorts s1, ...,sn and s are elements of set S. We call (S,Φ,Σ) the signature of the term algebra.
Sometimes we use Σ to refer to the signature. The set of terms TΣ is equal to ∪s∈S(TΣ,s), where the sets
(TΣ,s) are mutually defined by:
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(1) For each operator a : nil→ s ∈ Σ, the constructor a ∈ TΣ,s, where nil means that the argument sort
list of the operator is an empty list.

(2) For each non-zero arity operator f : w→ s ∈ Σ, where w = s1× ...× sn and n > 0, and for each
(t1, ...tn) ∈ TΣ,s1× ...×TΣ,sn , and the term f (t1, ..., tn) ∈ TΣ,s.

Definition 2.2. An order-sorted ground term algebra TΣ is a tuple (S,O,Φ,Σ), where (S,Φ,Σ) is a sorted
ground term algebra T ′

Σ
. The set O is a set of pairs of sorts, such that the reflexive and transitive closure

≤ forms a partial order, which means that O cannot have cycles if we view the pairs of O as defining a
directed graph. The poset (S,≤) represents the subsort relations of the system. Sometimes we use Σ to
refer to the signature. Terms allowed in TΣ can follow the rules:

(1) T ′
Σ
⊆ TΣ.

(2) If s≤ s′, then TΣ,s ⊆ TΣ,s′ .
(3) For each non-zero arity operator f : w→ s ∈ Σ, where w = s1× ...× sn and n > 0, the domain of

the argument list of the constructor f is TΣ,s1× ...×TΣ,sn , where TΣ,si include all terms in subsorts of si.

S : {nat,int,AExp,Id,bool,BExp,Block,Stmt,Map,Pgm}
O : {nat< int,int< AExp, Id< AExp, bool< BExp, Block< Stmt}
Φ : {vvv, truetruetrue, f alsef alsef alse, 0, sss, +++, −−−, <=<=<=, {}{}{}, {_}{_}{_}, _ = _;_ = _;_ = _;, ______, i f _elsei f _elsei f _else, _,__,__,_, .Map.Map.Map,

guessguessguess, < _,_ >< _,_ >< _,_ >, _[_/_]_[_/_]_[_/_], _ 7→ __ 7→ __ 7→ _}
Σ : {truetruetrue :→ bool, f alsef alsef alse :→ bool, 0 :→ nat, sss : nat→ nat, − : int→ int, − : nat→ int,

+++ : AExp∗AExp→ AExp, +++ : nat∗nat→ AExp, +++ : int∗int→ AExp, {}{}{} :→ Block,
<=<=<=: AExp∗AExp→ BExp, −−− : BExp→ BExp, −−− : bool→ BExp, +++ : bool∗bool→ BExp,
vvv : nat→ Id, {_}{_}{_} : Stmt→ Block, _ = _;_ = _;_ = _; : Id∗AExp→ Stmt, ______ : Stmt∗Stmt→ Stmt,
i f _elsei f _elsei f _else : BExp∗Block∗Block→ Stmt, guessguessguess : Id→ int,
< _,_ >< _,_ >< _,_ >: Map∗Stmt→ Pgm, _,__,__,_ : Map∗Map→ Map, .Map.Map.Map :→ Map, +++ : BExp∗BExp→ BExp,
_[_/_]_[_/_]_[_/_] : Map∗int∗Id→ Map, _ 7→ __ 7→ __ 7→ _ : Id∗int→ Map}

Figure 1: IMP Signature

In Figure 1, we show the order-sorted signature of IMP and list the sets of S, O, Φ and Σ accordingly.
Based on the signature, the order-sorted ground term algebra TΣ can be generated by the rules in Defini-
tion 2.2. If we cut the O set, the signature becomes a sorted signature, and we can generate the sorted
ground term algebra TΣ by the rules in Definition 2.1. In our version of IMP language, we assume that
all identifiers in a given term has been initialized. We do not provide semantics for how to lookup the
value for an identifier. Instead, we assume that there is a guessguessguess function that will guess a value for an
identifier, which happens to be the same as the value previously defined for the identifier. The reason is
that describing a lookup function for an identifier requires a lot more operators, equations and rules for the
IMP language, but we cares about the mechanism of translating order-sorted algebras into many-sorted
algebras instead of the semantics of IMP. Finally, we use−−− operator to mean both an integer negative
sign and a negation of a boolean formula, as well as +++ to mean both an arithmetic addition operator and a
conjunctive boolean operator, in order to show how we deal with overloaded operators.

Based on the ground term algebra TΣ, we can talk about the terms with variables as TΣ(X). Given a
term with variables t(X) ∈ TΣ(X), where all variable in t(X) are contained in X , term t ∈ TΣ is an instance
of t(X) if there exists a substitution h mapping X to TΣ such that t is the result of replacing each variable x
in t(X) by h(x). Every variable in a term in TΣ(X) is represented by a name. Even though we refer to TΣ

and TΣ(X) as term algebras in both many-sorted algebras and order sorted algebras, They are sorted term
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algebras in many-sorted world and order sorted term algebras in order sorted world. It is worth noting that,
while Σ contains sort information, TΣ and TΣ(X) do not. A mapping function x : s maps a variable x to a
sort s representing the target sort of x. We now define a many-sorted algebra and an order sorted-algebra
in Definitions 2.3 and 2.4, respectively.

Definition 2.3. A many-sorted algebra B is a tuple (S,Φ,Σ,E,R), where S is a set of sorts, Φ is the finite
set of constructors allowed in the system, Σ represents all operators in the system and (S,Φ,Σ) is the
many-sorted signature, which we refer to as Σ. The equation set E is a set of pairs of terms in TΣ(X). and
partitions the terms in B, TΣ, into equivalence classes, denoted T(Σ,E). The terms allowed to construct
each equation in E are in sorted term algebra TΣ(X), while the equations are applied on the terms in the
sorted ground term algebra TΣ. We introduce the quotient structure T(Σ,E), which we call terms TΣ modulo
equations E. For two terms t and t ′ in TΣ, if we can prove they are equal through the equations E, we say
these two terms are equivalent modulo E, which partitions TΣ into different equivalence classes and forms
T(Σ,E). A set of rewrite rules R define the semantics of system B. The rule set R is a set of pairs of terms in
TΣ(X), while the rules are applied on the terms in T(Σ,E). A rule r ∈ R is applied to a class c ∈ T(Σ,E), such
that c−→r c′. The transition c−→r c′ means that for t(X) as the left hand side and t ′(X) as the right hand
side of rule r, there is a substitution h mapping X to TΣ such that t and t ′ are the result of replacing each
variable x in t(X) and t ′(X) by h(x) and t ∈ c and t ′ ∈ c′, respectively. The rule r generates a endomorphic
relation, and applications of rules are closed under applications of constructors.

Definition 2.4. An order-sorted algebra A is a tuple (S,O,Φ,Σ,E,R), where (S,Φ,Σ) is a many-sorted
signature, and O is a set of pairs of sorts, such that the reflexive and transitive closure ≤ forms a partial
order. The poset (S,≤) represents the subsort relations of the system. We call (S,O,Φ,Σ) the signature of
the system, which we refer to as Σ. The terms allowed to construct each equation in E are in order-sorted
term algebra TΣ(X), while the equations are applied on the terms in order-sorted ground term algebra TΣ.
A set of rewrite rules R define the semantics of system B. The rule set R is a set of pairs of terms in TΣ(X),
while the rules are applied on the terms in T(Σ,E). The two elements of a pair in E are required to have the
same sort, while for any pair (c,c′) in R, the sort of c′ is a subsort of the sort of c. This property is called
sort decreasing. We introduce the quotient structure T(Σ,E), which we call terms TΣ modulo equations E.
For two terms t and t ′ in TΣ, if we can prove they are equal through the equations E, we say these two
terms are equivalent modulo E, which partitions TΣ into different equivalence classes and forms T(Σ,E).
A set of rewrite rules R define the semantics of system B. The rule set R is a set of pairs of terms in the
order-sorted term algebra TΣ(X), while the rules are applied on the terms in T(Σ,E). A rule r ∈ R is applied
to a class c ∈ T(Σ,E), such that c−→r c′. The transition c−→r c′ means that for t(X) as the left hand side
and t ′(X) as the right hand side of rule r, there is a substitution h mapping X to TΣ such that t and t ′ are the
result of replacing each variable x in t(X) and t ′(X) by h(x) and t ∈ c and t ′ ∈ c′, respectively. The rule r
generates a endomorphic relation, and applications of rules are closed under applications of constructors.

The ≤ relation can be viewed as a directed graph where each relation is an edge. The graph may have
different connected components. For any two sorts in a connected component in an order-sorted algebra,
we require there is a unique top supersort of them.

In Figure 2, we show the equations and rules for the order-sorted algebra IMP. With the information
in Figure 1, This information constructs a well-defined order-sorted algebra. A many-sorted algebra is
similar to this one with more restrictions. For example, the left hand side and right hand side of a rule need
to be sort equivalent in a many-sorted algebra. We also cannot write an equation to match against terms
having subsorts of the left hand side of the equation. In order to write an equation for +++ operator, we
either deletes some overloaded +++ operators, or we need to write three versions: one for +++ with argument
sorts AExp∗AExp, one for it with argument sorts int∗int and one for argument sorts nat∗nat.
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E : {0+++A : AExp= A : AExp, sss(A : nat)+++B : nat= A : nat+++sss(B : nat), −−−−−−A : int= A : int,
A : AExp+++B : AExp= B : AExp+++A : AExp,
sss(A : nat)+++−−−sss(B : nat) = A : nat+++B : nat, truetruetrue+++A : BExp= A;BExp,
A : BExp+++B : BExp= B : BExp+++A : BExp, _,__,__,_(A : Map,B : Map) = _,__,__,_(B : Map,A : Map),
sss(A : nat)<=<=<= B : AExp= 0<=<=<= B : AExp+++−−−sss(A : nat), _,__,__,_(A : Map,.Map.Map.Map) = A : Map,
−−−sss(A : nat)<=<=<= B : AExp= 0<=<=<= B : AExp+++sss(A : nat),
_,__,__,_(A : Map,_,__,__,_(B : Map,C : Map)) = _,__,__,_(_,__,__,_(A : Map,B : Map),C : Map),
_[_/_]_[_/_]_[_/_](.Map.Map.Map,A : int,B : Id) = B : Id 7→ A : int,
_[_/_]_[_/_]_[_/_](_,__,__,_(A : Id 7→ B : int,C : Map),D : int,A : Id) = _,__,__,_(A : Id 7→ D : int,C : Map),
_[_/_]_[_/_]_[_/_](_,__,__,_(A : Id 7→ B : int,C : Map),D : int,E : Id)

= _,__,__,_(A : Id 7→ B : int,_[_/_]_[_/_]_[_/_](C : Map,D : int,E : Id)), ______({}{}{},A : Stmt) = A : Stmt,
______({_}{_}{_}(A : Stmt),B : Stmt) = ______(A : Stmt,B : Stmt) }

R : {−−−0⇒ 0, A : AExp+++vvv(B : Id)⇒ A : AExp+++guessguessguess(B : Id), −−−truetruetrue⇒ f alsef alsef alse, −−− f alsef alsef alse⇒ truetruetrue,
A : AExp<=<=<= vvv(B : Id)⇒ A : AExp<=<=<= guessguessguess(B : Id), 0<=<=<= A : nat⇒ truetruetrue,
0<=<=<=−−−sss(A : nat)⇒ f alsef alsef alse, vvv(A : Id)<=<=<= B : AExp⇒ guessguessguess(A : Id)<=<=<= B : AExp,
< _,_ >< _,_ >< _,_ > (A : Map,______(i f _elsei f _elsei f _else( f alsef alsef alse,B : Block,C : Block),D : Stmt))

⇒< _,_ >< _,_ >< _,_ > (A : Map,______(C : Block,D : Stmt)),
< _,_ >< _,_ >< _,_ > (A : Map,______(i f _elsei f _elsei f _else(truetruetrue,B : Block,C : Block),D : Stmt))

⇒< _,_ >< _,_ >< _,_ > (A : Map,______(B : Block,D : Stmt)),
< _,_ >< _,_ >< _,_ > (A : Map,______(_ = _;_ = _;_ = _;(B : Id,C : int),D : Stmt))

⇒< _,_ >< _,_ >< _,_ > (_[_/_]_[_/_]_[_/_](A : Map,C : int,B : Id),D : Stmt),
−−−A : int+++−−−B : int⇒−−−(A : int+++B : int), f alsef alsef alse+++A : BExp⇒ f alsef alsef alse }

Figure 2: IMP Order-Sorted Equations and Rules

In a many-sorted algebra and order-sorted algebra, even though the terms that are used to construct an
equation or a rule is in the form of TΣ(X), they are representatives of equivalent classes in T(Σ,E). One
thing to keep in mind is that we are defining algebras in this paper, not transition systems. The rewrite
rules in an algebra can be applied to any subterms of a given term, not only to its top-most operator. This
idea is similar to the rewrite rules in Rewriting Logic [13]. Based on the order-sorted algebra definition,
the only input restriction of our translation function tr is that the order-sorted algebra A should be, not
just sensible, but strictly sensible. The former term is defined in Definition 2.6, while the latter is defined
in Definition 2.7. One thing about overloaded operators (two operators having the same constructor) in
an algebra is that if the two overloaded operators f and f ′ have argument sorts that have no common
supersorts, we treat them as different operators since they can be easily distinguished by combining the
constructor and the list of argument sorts.

Definition 2.5. We define two overloaded operators f and f ′ to be argument compatible, if they have
the same arities, and f has argument sorts s1, ...,sn, and f ′ has argument sorts s′1, ...,s

′
n, and si ≡≤ s′i for

i = 1, ...,n, where ≡≤ means that the two given sorts have a common supersort.

Definition 2.6. (Goguen and Meseguer [11]) An order-sorted algebra is sensible, if for any pair of
argument compatible constructors f and f ′ with target sorts s and s′, respectively, we have s≡≤ s′.

Definition 2.7. An order-sorted algebra is strictly sensible if:
(1) Whenever there are two argument compatible operators f and f ′ with target sorts s and s′,

respectively, then we have s = s′. We then call the order-sorted algebra being (strong sensible). It is worth
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noting that a strong sensible algebra cannot have overloaded constant operators.
(2) For each operator f , there exists an operator f ′ : s1× ...× sn→ s, such that for every operator

f ′′ being argument compatible with f , f ′ is argument compatible with f ′′, and if f ′′ have argument
sorts s′1× ...× s′n, then s′i ≤ si for all i = 1, ...,n. We then all the order-sorted algebra being (maximal
argument-bounding).

The order-sorted algebra in Figure 1 and 2 is strictly sensible, but if we change the operator +++ :
nat ∗nat→ AExp to be +++ : nat ∗nat→ nat, the algebra becomes sensible not strictly sensible. The
second condition of the strictly sensible definition is not necessary, and it ensures that the translated
many-sorted algebra from a strictly sensible order-sorted algebra are bi-simulated. Without the condition,
the translated many-sorted algebra simulates the order-sorted algebra. The first condition is the key
distinction between a sensible order-sorted algebra and a strictly sensible order-sorted algebra. We
rule out the possibility for users to define overloaded operator pairs like +++ : AExp ∗AExp→ AExp and
+++ : nat∗nat→ nat.

The reason that we are willing to accept the strictly sensible restriction is that users only need the
limited world in defining language specifications from scratch. This is a real restriction that will affect some
situations, because without the restriction of strictly sensible, we can define two overloaded +++ operators
+++ : int∗int→ int and +++ : nat∗nat→ nat, where int and nat have a subsort relation. However,
there are no operators of this kind in the order-sorted specifications of C [8], PHP [9], JavaScript[18],
and Java[2] in K. In addition, the operators, such as +++ : int∗nat→ int and +++ : nat∗int→ nat,
are usually defined as different operators with different names by users. Even though we are able to
solve them easily by adding more rules and creating more sorts, such as the algorithm of Meseguer and
Skeirik[16] does, we do not want to take that approach because the whole point of the translation is
to have a many-sorted algebra that is concise enough for users to use and read the translated language
specifications. Squaring or cubing the size of the rewrite rules is quite undesirable.

Now, we can formally state the properties of the translation function tr to be: given an strictly sensible
order-sorted algebra A and a translation function tr applied on A, we have a many-sorted algebra B such
that B = tr(A), and for any rule rA in A, if term tA in A can be transitioned to t ′A through rule rA, such that
tA −→rA t ′A, then we have tr(rA) is a rule in B and tr(tA)−→tr(rA) tr(t ′A). The output of our translation is a
many-sorted algebra: B, where the rewrite rules of A and B have the above relation.

3 Translation and Proofs

In this section, a description of the translation function tr and some theorems about it are given. For a
given order-sorted algebra A with (S,O,Φ,Σ,E,R), we do not need to translate the sort set S because our
translation does not change sorts at all. We eliminate the relation O, and we have the functions trΣ, trE

and trR for translating operator definitions, equations and rewrite rules.

Translating Operators. Operators are translated in two steps, such that trΣ = tr#
Σ
◦ tr′

Σ
. The first

step tr′
Σ

is to find a maximal argument-bounding operator f for every operator f ′. Since our strictly
sensible assumptions require any pair of argument compatible operators f ′ and f ′′ to have the same target
sort, we restrict the nature of the argument sorts in these overloaded operators by picking its maximal
argument-bounding operator f as a representative for any argument compatible operator f ′. We then
eliminate the operator f ′ if f is different from f ′. Hence, if Σ′ = tr′

Σ
, then Σ′ has fewer operators than

Σ and for every overloaded operator set, whose elements are argument compatible, Σ′ picks exactly
one representative operator for it. If the overloaded operators have no compatible arguments, then we
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distinguish them by picking different constructors in the translated many-sorted algebra. In the order-
sorted algebra in Figure 1 and 2, there are five different overloaded operators for +++ constructor, where
+++ : AExp ∗ AExp→ AExp, +++ : nat ∗ nat→ AExp and +++ : int ∗ int→ AExp are argument compatible,
while +++ : bool∗bool→ BExp and +++ : BExp∗BExp→ BExp are also argument compatible. These two
groups of +++ operators are not argument compatible cross groups. When translating these operators, we
first pick +++ : AExp∗AExp→ AExp and +++ : BExp∗BExp→ BExp as the representatives for the first and
second group, then we change the name of the first one to +AExp+AExp+AExp and the second one to +BExp+BExp+BExp to avoid
conflict in constructor names.

The translation tr#
Σ

translates a given Σ′ by adding operators. For each pair defined in set O as
(s,s′), which is a subsort relation s ≤ s′, we create one more unary operator Cast_s_to_s’ : s→ s′

that does not appear in Σ′. This operator has argument sort s and target sort s′. The result signature
Σ# = tr#

Σ
(Σ′) contains a set of newly generated unary operators that have bijective relation with the

pairs in O. When translating the order-sorted algebra in Figure 1 and 2, we add the following unary
operators: Cast_nat_to_intCast_nat_to_intCast_nat_to_int : nat→ int, Cast_int_to_AExpCast_int_to_AExpCast_int_to_AExp : int→ AExp, Cast_Id_to_AExpCast_Id_to_AExpCast_Id_to_AExp : Id→
AExp, Cast_bool_to_BExpCast_bool_to_BExpCast_bool_to_BExp : bool→ BExp and Cast_Block_to_StmtCast_Block_to_StmtCast_Block_to_Stmt : Block→ Stmt. Similar to the
theorems in the signature translation of the paper of Meseguer and Skeirik, we also have the following
theorem about the final result Σ#. The proof of the theorem about is similar to the one in the paper of
Meseguer and Skeirik, and is a direct result of the strictly sensible requirement of an order-sorted algebra
and our translation of the operators in the algebra.

Theorem 3.1. Let Σ be an order-sorted signature, Σ# is the translated many-sorted algebra of it. All
overloaded operators in Σ# have at least one argument position having distinct argument sorts that have no
common supersort in the original order-sorted algebra.

Translating Terms and Equations. We have a function trE to translate every equation in E to E#

and also add a set of core equality equations to E#. After the translation, the terms in the translated
many-sorted algebra forms a term algebra T(Σ#,E#), and T(Σ#,E#) also represents the union of term sets for
each sort s ∈ S as T(Σ#,E#,s). In the quotient structure T(Σ#,E#), the equivalence classes are partitioned by the
combination effects of equations E# and sorts S.

First, the translation trE adds equations to the equation set E to generate E#. The new equations
relates to the idea of the core of a term. In order to talk about the core of a term, we first define non-core
constructors as the new constructors generated during the translation tr#

Σ
. The core constructors are the

constructors of the normal operators of Σ. The core part of a term means the t of term C1(...(Cn(t))...),
where C1, ...,Cn are unary non-core constructors, and the top most constructor of t is a core constructor.
We now show the definition of core equality.

Definition 3.1. If there are two lists of unary non-core constructors C1, ...,Cn and K1, ...,Km, such that
t = C1(...(Cn(x))...) and t ′ = K1(...(Km(x))...) are well-formed, i.e., the input sort of Ci is equal to the
output sort of Ci+1 for all i = 1, ...,n−1, ... and the input sort of K j is equal to the output sort of K j+1 for
all j = 1, ...,m−1, ..., as well as C1 and K1 has target sort s, Cn and Km has input sort s′, then for each pair
of directed paths from s′ to s in the graph of ≤ in the original order-sorted algebra, i.e., s′ ≤ s, we have
a equation C1(...(Cn(x : s′))...) = K1(...(Km(x : s′))...). The congruence closure of all these equations is
core equality.

Theorem 3.2. Core equality is an equivalence relation.

When translating the order-sorted algebra in Figure 1 and 2, the generated unary operators,Cast_nat_to_intCast_nat_to_intCast_nat_to_int :
nat→ int, Cast_int_to_AExpCast_int_to_AExpCast_int_to_AExp : int→ AExp, Cast_Id_to_AExpCast_Id_to_AExpCast_Id_to_AExp : Id→ AExp, Cast_bool_to_BExpCast_bool_to_BExpCast_bool_to_BExp :
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bool→ BExp and Cast_Block_to_StmtCast_Block_to_StmtCast_Block_to_Stmt : Block→ Stmt, are non-core constructors and operators, while
the original operators are core ones. To generate the set of core equality equations for the order-sorted
algebra, we have a practical way to do it; that is to examine the ≤ relation. For every two nodes in ≤, if
there are more than one paths from the first node to the second one, we add equations to connect them.
In the the order-sorted algebra in Figure 1 and 2, if we have one more sort real and two more subsort
relations, nat< real and real< AExp, then two paths can go from AExp to nat in ≤. We add an equa-
tion Cast_nat_to_intCast_nat_to_intCast_nat_to_int(Cast_int_to_AExpCast_int_to_AExpCast_int_to_AExp(A : nat)) =Cast_nat_to_realCast_nat_to_realCast_nat_to_real(Cast_real_to_AExpCast_real_to_AExpCast_real_to_AExp(A : nat))
to E#.

After we have core equality, we can translate terms in TΣ and TΣ(X). We define a translation function
trterm to translate a term in TΣ and TΣ(X) to a term in TΣ# and TΣ#(X). For every sub-term f (t1, ..., ti, ..., tm)
of a term t in TΣ or TΣ(X), if sort of position i in the term is defined with sort s according to the
signature Σ, but ti has sort s′ and s′ ≤ s, then we find a list of non-core unary constructors C1, ...,Cn

to cast the sub-term to sort s as f (t1, ...,C1(...(Cn(ti))...), ..., tm). If s′ = s, then we do not need to
find the constructors. We know that such sequence of unary constructors must exist because the set
of non-core unary constructors is bijective with the pairs in O, and ≤ is the reflexive and transitive
closure of O. If s′ ≤ s, there is a list of pairs in O as (s′,s1), ...,(sn−1,s). Through the list, s′ reaches s.
For each pair in the list, we have generated a unary constructor. Hence, the sequence of constructors
C1, ...,Cn is exactly the constructors generated for pairs (s′,s1), ...,(sn−1,s). When translating the order-
sorted algebra in Figure 1 and 2, the equation sss(A : nat)+++B : nat = A : nat+++sss(B : nat) is translated
to Cast_nat_to_intCast_nat_to_intCast_nat_to_int(Cast_int_to_AExpCast_int_to_AExpCast_int_to_AExp(sss(A : nat)))+++Cast_nat_to_intCast_nat_to_intCast_nat_to_int(Cast_int_to_AExpCast_int_to_AExpCast_int_to_AExp(B : nat)) =
Cast_nat_to_intCast_nat_to_intCast_nat_to_int(Cast_int_to_AExpCast_int_to_AExpCast_int_to_AExp(A : nat))+++Cast_nat_to_intCast_nat_to_intCast_nat_to_int(Cast_int_to_AExpCast_int_to_AExpCast_int_to_AExp(sss(B : nat))).

In defining trterm, for each pair of relation (s,s′) in ≤, we pick a well-formed constructor sequence
C1, ...,Cn, such that the target sort of C1 is s′ and the input sort of Cn is s. The sequence defines the way of
translating a sub-term t having sort s to a sort s′ by constructing C1(...(Cn(t))...) in trterm. Because of core
equality, the choice does not affect the construction of the equivalence classes in TΣ#,E# , and not affect
the represented equivalence classes by a term in TΣ#(X). We have three theorems about the translation
function trterm and term in TΣ#,E# and TΣ#(X).

Theorem 3.3. Let Σ be an order-sorted signature, TΣ be the term algebra of it, E be the equation set of
the order-sorted algebra, TΣ,E be the terms TΣ modulo equations E, TΣ(X) be the terms with variables
in the order-sorted algebra, Σ# be the translated many-sorted algebra of signature Σ, TΣ# , E#, TΣ#,E# and
TΣ#(X) are the corresponding translations of items in the order-sorted algebra, and trterm be the translation
function of terms.

(1) If a term t has least sort s in Σ, then its translation t ′ has the target sort s.
(2) For a term t in TΣ,E , for any two term translation functions trterm and tr′term having difference in

picking different sequences of constructors for pairs in ≤, if c ∈ TΣ#,E# and trterm(t) ∈ c, then tr′term(t) ∈ c.
(3) For a term t(X) in TΣ(X), for two translation functions trterm and tr′term having difference in picking

different sequences of constructors for pairs in≤, we have two terms trterm(t(X)) and tr′term(t(X)), for any
substitution h mapping X to T #

Σ
such that t and t ′ are the result of replacing each variable x in trterm(t(X))

and tr′term(t(X)) by h(x), if c ∈ TΣ#,E# and t ∈ c, then t ′ ∈ c.

Proof. Part (1) is trivial because after we require our operators to be strictly sensible, so any term must
have a unique least target sort in the original order-sorted algebra and the target sort is also the target sort
of the translated term in TΣ# without converting it to other supersort s′ by adding non-core constructors on
top of it.

To show (2), if for a term t having sort s′, and the translation functions trterm and tr′term cast it into a
term in sort s without the need of translating the subterms of t, then the two results terms trterm(t) and
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tr′term(t
′) are trivially in the same equivalent class based on the definition of core equality. s′ and s must

be the same because the order-sorted definition in this paper requires sort equivalence in two sides of an
equation.

If there is a term t having a subterm f (t1, ..., tn), if the position i of the list t1, ..., tn has target sort s
according to the signature, the term ti has sort s′ and s′ ≤ s, then a given translation function generates
well-formed non-core constructor sequences having the form C1, ...,Cn to translate the term ti. We refer to
the number of the non-core constructors in this sequence as n, which is the same as one of the distances
between s′ and s in O, We induct on maximal numbers of the non-core constructors in each argument
position in a term t. If the maximal number of argument non-core constructors is zero, it means that trterm

and tr′term do not translate the direct subterms of f (t1, ..., tn), so any translations on f (t1, ..., tn) to a target
sort s′′ generate terms in the same equivalent class. Assuming that when the maximal numbers of non-
core constructors are less than k, trterm( f (trterm(t1), ..., trterm(tn))) and tr′term( f (tr′term(t1), ..., tr

′
term(tn)))

generate terms in the same equivalent class; if the position i in f (t1, ..., tn) has sort s, the term ti has sort
s′, s′ ≤ s and the maximal distance between s′ and s is k+1, if there is only one path from s to reach s′,
then trterm(ti) must be the same as tr′term(ti) since we generate only one non-core constructor for each
pair in O. If there are at least two paths, without losing generality, assuming that trterm has the longest
path, trterm picks the well-formed sequence C1, ...,Ck+1 to translate ti to a term having sort s and tr′term
picks the well-formed sequence K1, ...,Km to translate ti to a term having sort s, where m≤ k+1. Based
on the definition of core equality, C1(...(Ck+1(ti))...) =core K1(...(Km(ti))...), hence, any argument ti of
f (t1, ..., tn) are translated by trterm and tr′term into terms in the same equivalence class and f (t1, ..., tn) are
also translated by trterm and tr′term into terms in the same equivalence class.

To show (3), the proof basically modifies the proof of part (2) to allow variables in the term and by
any substitution on the same variables in two terms t and t ′ that are generated by trterm and tr′term are in
the same equivalence class.

Translating Semantic Rules. Translating semantic rules R to R# is very straight forward and similar to
the one in translating equations in E to E#. For each pair (t(X), t ′(X)) in R, the first step is to apply the term
translation on t(X) and t ′(X), to be terms in TΣ#(X). Then, we add one rule (trterm(t(X)), trterm(t ′(X)))
to R#. Since we assume all order-sorted algebra are sort decreasing, the right hand side of a rule have
top-most target sort being a subsort of the left hand side of the rule. After they are translated into
many-sorted algebras, the two sides of a rule must have the same top-most target sort. We solve this
problem by casting the right hand side of a rule to have top-most sort equal to the left hand side. For
example, in translating the rule−−−0⇒ 0 in the order-sorted algebra in Figure 1 and 2, we make a new rule
−−−0⇒Cast_nat_to_intCast_nat_to_intCast_nat_to_int(0) in the translated many-sorted algebra.

For a given order-sorted algebra A as (S,O,Φ,Σ,E,R), our translation produces the many-sorted
algebra (S, trΣ(Σ), trE(E), trR(R)). We believe that our many-sorted algebra maintains a bi-simulation
relation as the original order-sorted algebra. The bi-simulation proof is based on structural inductions on
the signature (S,O,Φ,Σ) and (S, trΣ(Σ)).

Theorem 3.4 (Bi-simulation between A and tr(A)). Let (S, trΣ(Σ), trE(E), trR(R)) be the translated many-
sorted algebra of a given order-sorted algebra (S,O,Φ,Σ,E,R), For any r in R and term t in T(Σ,E), if
t −→r t ′, then we have trΣ(t)−→trR(r) trΣ(t ′). For any p in T(Σ#,E#), if p−→trR(r) p′, then there are terms
t and t ′ such that p = trΣ(t), p′ = trΣ(t ′) and t −→r t ′.
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4 Related Work and Conclusion

An order-sorted algebra is a classical idea, which was first systematically introduced into programming
language field by Goguen et al. [10]. Many people tried to define rewriting strategies, unifications and
equational rules on top of order-sorted algebras [4, 1, 15, 11].

Maude [3] and K [20] are two implementations of order-sorted algebras as programming languages.
They are successful languages since a lot of specifications and applications have been built on top of them,
for example, defining popular language specifications, including the semantics of Java [2], Javascript [18],
PHP [9], C [8, 12], LLVM and Python, as well as applications [14, 6, 7].

On the other hand, a many sorted algebra is also a classical idea whose logic system has been
explored by Wang [21]. Many well-known programming languges such as C, Java, LLVM and Python
are based on many-sorted algebras. One of the most prominent and mathematical of programming
language specifications, Standard ML by Milner, Tofte, Harper, and Macqueen [17] is based on many
sorted algebras. The two famous theorem provers: Isabelle/HOL[19] and Coq[5] are also, which was our
motivation to provide a translation from order-sorted algebras into many-sorted ones.

As far as we know, the most recent and unique solution for translating order-sorted algebras into
many-sorted ones is by Meseguer and Skeirik[16]. In their translation, by adding possible more sorts,
they calculate the least sorts of constructs and put them under corresponding sorts to create the signature
of a many-sorted algebra. For any given rule, they add more rules if variables of the rule have subsorts
in the original order-sorted algebra. They need to add one more rule for each subsort of a variable in a
rule. In dealing with the order-sorted algebra in Figure 1 and 2, to translate the equation A : AExp+++B :
AExp= B : AExp+++A : AExp, they generate three different equations: A : nat+++B : nat= B : nat+++A : nat,
A : int+++B : int= B : int+++A : int and A : AExp+++B : AExp= B : AExp+++A : AExp. The original rule
involves only one sort AExp. if there is a rule involving AExp, BExp and Stmt, which all have subsorts,
then the algorithm generates twelve different equations in the translated many-sorted algebra. In fact, if
there is a rule or an equation involving n variable having different sorts and each of them have m different
subsorts, the algorithm generates mn different rules or equations in the translated many-sorted algebra. On
the other hand, our translation does not change their sorts. We view subsort relations as implicit coercions,
while our translation makes them into explicit ones by inserting a constructor for each relation and making
the relation into a unary operator in the given order-sorted algebra. We insert a new equational rule named
core equality to introduce new partitions on the equivalence classes of the terms allowed in the algebra.
Because of these features, our translation keeps relatively same size of rewrite rules in the translated
many-sorted algebra and gives users a simpler final description of the language specifications.

Conclusion. In this paper, we proposed an algorithm to translate an order-sorted algebra into a many-
sorted one in a restricted domain by requiring the order-sorted algebra to be strictly sensible. The key
idea of the translation is to add an equivalence relation called core equality to the translated many-sorted
algebras. By defining this relation, we reduce the complexity in translating an strictly sensible order-sorted
algebra to a many-sorted one, increase the translated many-sorted algebra equations by less than a linear
factor and keep the number of rewrite rules in the algebra in the same amount. We then prove the order-
sorted algebra and the many-sorted algebra are bisimilar (Section 3). We also showed that core equality is
indeed an equivalence relation and that our translation bi-simulates the order-sorted and the many-sorted
algebras. Along showing our algorithm and theorems, an IMP language is introduced as an exmple of the
algorithm. We believe that our translation facilitates translations of order-sorted specifications in K or
Maude into many-sorted systems in Isabelle/HOL or Coq, which will empower users to prove theorems
about large and popular language specifications.
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