
Submitted to:
WPTE 2017

c© S. Mizutani and N. Nishida
This work is licensed under the
Creative Commons Attribution License.

Transforming Proof Tableaux of Hoare Logic into Inference
Sequences of Rewriting Induction

Shinnosuke Mizutani
Graduate School of Information Science

Nagoya University
Nagoya, Japan

mizutani_s@trs.cm.is.nagoya-u.ac.jp

Naoki Nishida
Graduate School of Informatics

Nagoya University
Nagoya, Japan

nishida@i.nagoya-u.ac.jp

A proof tableau of Hoare logic is an annotated program with pre- and post-conditions, which corre-
sponds to an inference tree of Hoare logic. In this paper, using an example, we illustrate a top-down
transformation of a proof tableau for partial correctness into an inference sequence of rewriting induc-
tion for constrained rewriting. The resulting sequence is a valid proof for the equation corresponding
to the Hoare triple if the constrained rewriting system obtained from the program is terminating. Such
a transformation enables us to apply techniques for proving termination of constrained rewriting to
proving total correctness of programs together with proof tableaux for partial correctness.

1 Introduction

In the field of term rewriting, automated reasoning about inductive theorems has been well investigated.
Here, an inductive theorem of a term rewriting system (TRS) is an equation that is inductively valid, i.e.,
all of its ground instances are theorems of the TRS. As principles for proving inductive theorems, we cite
inductionless induction [14, 10] and rewriting induction (RI) [16], both of which are called implicit in-
duction principles. Frameworks based on the RI principle (RI frameworks, for short) consist of inference
rules to prove inductive validity, and RI-based methods are procedures within RI frameworks to apply
inference rules under specified strategies. In recent years, various RI-based methods for constrained
rewriting (see, e.g., constrained TRSs [9, 18], conditional and constrained TRSs [2], Z-TRSs [6], and
logically constrained TRSs [11]) have been developed [2, 19, 6, 12, 8]. Constrained systems have built-in
semantics for some function and predicate symbols and have been used as a computation model of not
only functional but also imperative programs [4, 7, 9, 5, 20, 12, 8].

For program verification, several techniques have been investigated in the literature, e.g., model
checking, Hoare logic, etc. On the other hand, constrained rewriting can be used as a model of some
imperative programs (cf. [8]), and RI frameworks for constrained rewriting are tuned to verification of
imperative programs, e.g. equivalence of two functions under the same specification. In some cases
where a proof based on Hoare logic needs a loop invariant, some RI frameworks succeed in proving
equivalence of an imperative program and its functional specification (cf. [8]). From such experiences,
we are interested in the difference between RI frameworks and other verification methods.

In this paper, using an example, we illustrate a top-down transformation of a proof tableau of Hoare
logic into an inference sequence of rewriting induction for logically constrained TRSs (LCTRSs). Here,
a proof tableau is an annotated while program with pre- and post-conditions, which corresponds to an
inference tree of Hoare logic. The resulting inference sequence is a valid proof for an inductive theo-
rem corresponding to the Hoare triple for the proof tableau if the LCTRS obtained from the program
is terminating. More precisely, given a proof tableau for partial correctness, we proceed as follows:
(1) We transform the while program obtained by removing annotations from the proof tableau into an
LCTRS; (2) We prepare rewrite rules to verify the postcondition in the proof tableau; (3) We prepare a

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Transforming Proof Tableaux of Hoare Logic into Inference Sequences of Rewriting Induction

constrained equation corresponding to the Hoare triple of the proof tableau; (4) Starting with the equa-
tion, we transform the proof tableau into an inference sequence of RI from top to bottom, where we do
not prove termination in constructing inference sequences of RI; (5) We prove termination of the LCTRS
with generated rules. Termination of the LCTRS with generated rules ensures that the resulting inference
sequence is a valid proof of RI (i.e., the equation is an inductive theorem of the LCTRS), and also that
the while program is totally correct. The transformation enables us to apply techniques for proving ter-
mination of constrained rewriting to proving total correctness of programs together with proof tableaux
for partial correctness.

The contribution of this paper is a top-down transformation of proof tableaux for partial correctness
to inference sequences of RI, which applies techniques for proving termination of constrained rewriting
to proving total correctness.

2 Preliminaries

In this section, we recall logically constrained term rewriting systems (LCTRS, for short), following the
definitions in [11, 8]. We also recall while programs, and then introduce a conversion of while programs
to LCTRSs. Familiarity with basic notions on term rewriting [1, 15] is assumed.

2.1 Logically Constrained Term Rewriting Systems

Let S be a set of sorts and V a countably infinite set of variables, each of which is equipped with a
sort. A signature Σ is a set, disjoint from V , of function symbols f , each of which is equipped with
a sort declaration ι1× ·· ·× ιn ⇒ ι where ι1, . . . , ιn, ι ∈ S. For readability, we often write ι instead of
ι1×·· ·× ιn⇒ ι if n = 0. We denote the set of well-sorted terms over Σ and V by T (Σ,V). In the rest of
this section, we fix S, Σ, and V . The set of variables occurring in s is denoted by Var(s). Given a term
s and a position p (a sequence of positive integers) of s, s|p denotes the subterm of s at position p, and
s[t]p denotes s with the subterm at position p replaced by t.

A substitution γ is a sort-preserving total mapping from V to T (Σ,V), and naturally extended for
a mapping from T (Σ,V) to T (Σ,V): the result sγ of applying a substitution γ to a term s is s with all
occurrences of a variable x replaced by γ(x). The domain Dom(γ) of γ is the set of variables x with
γ(x) 6= x. The notation {x1 7→ s1, . . . ,xk 7→ sk} denotes a substitution γ with γ(xi) = si for 1≤ i≤ n, and
γ(y) = y for y /∈ {x1, . . . ,xn}.

To define LCTRSs, we consider different kinds of symbols and terms: (1) two signatures Σterms and
Σtheory such that Σ = Σterms∪Σtheory, (2) a mapping I which assigns to each sort ι occurring in Σtheory a set
Iι , (3) a mapping J which assigns to each f : ι1×·· ·× ιn⇒ ι ∈ Σtheory a function in Iι1×·· ·×Iιn ⇒Iι ,
and (4) a set Valι ⊆ Σtheory of values for each sort ι occurring in Σtheory, where function symbols a : ι such
that J gives a bijective mapping from Valι to Iι . We require that Σterms∩Σtheory ⊆Val =

⋃
ι∈S Valι . The

sorts occurring in Σtheory are called theory sorts, and the symbols theory symbols. Symbols in Σtheory\Val
are calculation symbols. A term in T (Σtheory,V) is called a logical term. For ground logical terms, we
define the interpretation as J f (s1, . . . ,sn)K = J ( f )(Js1K, . . . ,JsnK). For every ground logical term s, there
is a unique value c such that JsK = JcK.

A constraint is a logical term ϕ of some sort bool with Ibool = B = {>,⊥}, the set of booleans. A
constraint ϕ is valid if JϕγK = > for all substitutions γ which map Var(ϕ) to values, and satisfiable if
JϕγK = > for some such substitution. A substitution γ respects ϕ if γ(x) is a value for all x ∈ Var(ϕ)
and JϕγK = >. We typically choose a theory signature with Σtheory ⊇ Σcore

theory, where Σcore
theory contains

true, false : bool, ∧,∨, =⇒ : bool× bool⇒ bool, ¬ : bool⇒ bool, and, for all theory sorts ι , symbols



S. Mizutani and N. Nishida 3

=ι , 6=ι : ι × ι ⇒ bool, and an evaluation function J that interprets these symbols as expected. We omit
the sort subscripts from = and 6= when clear from context.

The standard integer signature Σint
theory is Σcore

theory ∪{+,−,∗,exp,div,mod : int× int⇒ int}∪{≥,> :
int× int⇒ bool}∪{n : int | n ∈ Z} with values true, false, and n for all integers n ∈ Z. Thus, we use
n (in sans-serif font) as the function symbol for n ∈ Z (in math font). We define J in the natural way,
except: since all J ( f ) must be total functions, we set J (div)(n,0) = J (mod)(n,0) = J (exp)(n,k) = 0
for all n and all k < 0.

A constrained rewrite rule is a triple `→ r [ϕ ] such that ` and r are terms of the same sort, ϕ is a
constraint, and ` has the form f (`1, . . . , `n) and contains at least one symbol in Σterms \Σtheory (i.e., ` is
not a logical term). If ϕ = true with J (true) = >, we may write `→ r. We define LVar(`→ r [ϕ ])
as Var(ϕ)∪ (Var(r) \ Var(`)). We say that a substitution γ respects `→ r [ϕ ] if γ(x) ∈ Val for all
x∈LVar(`→ r [ϕ ]), and JϕγK=>. Note that it is allowed to have Var(r) 6⊆ Var(`), but fresh variables
in the right-hand side may only be instantiated with values. Given a set R of constrained rewrite rules,
we let Rcalc be the set { f (x1, . . . ,xn)→ y [y = f (x1, . . . ,xn) ] | f : ι1× ·· · × ιn ⇒ ι ∈ Σtheory \ Val}.
We usually call the elements of Rcalc constrained rewrite rules (or calculation rules) even though their
left-hand side is a logical term. The rewrite relation →R is a binary relation on terms, defined by:
s[`γ]p →R s[rγ]p if `→ r [ϕ ] ∈ R∪Rcalc and γ respects `→ r [ϕ ]. A reduction step with Rcalc is
called a calculation.

Now we define a logically constrained term rewriting system (LCTRS) as the abstract rewriting
system (T (Σ,V),→R). An LCTRS is usually given by supplying Σ,R, and an informal description of I
and J if these are not clear from context. For f (`1, . . . , `n)→ r [ϕ ] ∈ R, we call f a defined symbol of
R, and non-defined elements of Σterms and all values are called constructors of R. Let DR be the set of
all defined symbols and CR the set of constructors. A term in T (CR,V) is a constructor term ofR.

Example 2.1 ([8]) Let S = {int,bool}, and Σ = Σterms∪Σint
theory, where Σterms = { fact : int⇒ int }∪{ n :

int | n ∈ Z }. Then both int and bool are theory sorts. We also define set and function interpretations,
i.e., Iint = Z, Ibool = B, and J is defined as above. With = for =int and infix notation, examples of
logical terms are 0 = 0+−1 and x+ 3 ≥ y+−42 that are constraints. 5+ 9 is also a (ground) logical
term, but not a constraint. Expected starting terms are, e.g., fact(42) or fact(fact(−4)). To implement
an LCTRS calculating the factorial function, we use the signature Σ above and the following rules:
Rfact = { fact(x)→ 1 [x≤ 0 ], fact(x)→ x× fact(x−1) [¬(x≤ 0) ] }. Using calculation steps, a term
3−1 reduces to 2 in one step with the calculation rule x−y→ z [z = x−y ], and 3×(2×(1×1)) reduces
to 6 in three steps. Using the constrained rewrite rules inRfact, fact(3) reduces in ten steps to 6.

A constrained term is a pair s [ϕ ] of a term s and a constraint ϕ . We say that s [ϕ ] and t [ψ ] are
equivalent, written by s [ϕ ] ∼ t [ψ ], if for all substitutions γ which respect ϕ , there is a substitution δ

which respects ψ such that sγ = tδ , and vice versa. Intuitively, a constrained term s [ϕ ] represents all
terms sγ where γ respects ϕ , and can be used to reason about such terms. For this reason, equivalent
constrained terms represent the same set of terms. For a rule ρ := `→ r [ψ ]∈R∪Rcalc and position q,
we let s [ϕ ]→ρ,q t [ϕ ] if there exists a substitution γ such that s|q = `γ , t = s[rγ]q, γ(x) is either a value or
a variable in Var(ϕ) for all x ∈ LVar(`→ r [ψ ]), and ϕ =⇒ (ψγ) is valid. We write s [ϕ ]→base t [ϕ ]
for s [ϕ ]→ρ,q t [ϕ ] with some ρ,q. The relation→R on constrained terms is defined as ∼ ·→base· ∼.

2.2 While Programs

In this section, we recall the syntax of while programs (see e.g., [17]).
We deal with a simple class of while programs over the integers, which consist of assignments, skip,

sequences, “if” statements, and “while” statements with loop invariants: a “while” statement is of the



4 Transforming Proof Tableaux of Hoare Logic into Inference Sequences of Rewriting Induction

form while@ϕ (ψ){c} with ϕ a loop invariant. To deal with proof tableaux, we allow to write assertions
of the form @ϕ as annotations. An annotated while program is defined by the following BNF:

P ::= v := E | skip | P ;P |@B | if(B){P}else{P} | while@B(B){P}
E ::= n | v | (E + E) | (E − E) | (E ∗ E) | (E / E)
B ::= true | false | E = E | E < E | (¬B) | (B∨B)

where n ∈ Z, v ∈ V , and we may omit brackets in the usual way. We use 6=, ≤, >, ≥, ∧, =⇒ , etc,
as syntactic sugars. We abbreviate while@ true(ψ){c} to while(ψ){c}. For page limitation, we do not
introduce the semantics of while programs, and they are evaluated in the usual way—in evaluating while
programs, we ignore loop invariants and assertions, while they are taken into account in considering
proof tableaux. For a while program P, we denote the set of variables appearing in P by Var(P).

Example 2.2 The following is a while program, denoted by Psum, with Var(Psum) = {x, i,z}, which com-
putes the summation from 0 to x if x≥ 0.

1 i := 0;
2 z := 0;
3 while(x > i){
4 z := z+ i+1;
5 i := i+1;
6 }
7

We write a line number for each statement, and write a blank line at the end of the program, which is
used to simplify a conversion of while programs to LCTRSs.

2.3 Converting while Programs to LCTRSs
In this section, we briefly introduce a conversion of while programs to LCTRSs (see e.g., [8]).

Let P be a while program and Var(P) = {x1, . . . ,xn}. We denote the sequence “x1, . . . ,xn” by~x. We
prepare a sort state for tuples of integers. We assume that there is no blank line in P with line numbers, ex-
cept for the last line m e.g., line 7 of Psum. We first prepare m+1 function symbols state1, . . . ,statem,end

with sort

n︷ ︸︸ ︷
Z×·· ·×Z⇒ state. For brevity, we use statem, but we identify statem and end, replacing

statem by end in the final result. Instances of state1, . . . ,statem,end represent states in executing P—a
state consists of a program counter and an assignment to variables in the program (see e.g., [3]). For ex-
ample, statei(v1, . . . ,vn) represents a state such that the program counter is i and v1, . . . ,vn are assigned
to x1, . . . ,xn, resp. For each statement in P, following Table 1, we generate constrained rewrite rules for
state1, . . . ,statem,end.

Example 2.3 The program Psum in Example 2.2 is converted to the LCTRS Rsum in Figure 1. Rsum is
non-overlapping (and thus, locally confluent), quasi-reductive (i.e., every ground term with a defined
symbol is reducible), and terminating. Note that termination ofRsum can be proved by Ctrl [13].

3 Proof Tableaux of Hoare Logic
Hoare logic is a logic to prove a Hoare triple {ϕ} P {ψ} to hold (see e.g., [17]). In this paper, we
consider proof tableaux for partial correctness only. A triple {ϕ} P {ψ} is said to hold (or P is partially
correct w.r.t. precondition ϕ and postcondition ψ) if for any initial state satisfying ϕ , the final state of



S. Mizutani and N. Nishida 5

Table 1: conversion of statements to constrained rewrite rules.
statement generated constrained rewrite rules

i xk := e; statei(~x)→ statei+1(x1, . . . ,xk−1,e,xk+1, . . . ,xn)
i skip; statei(~x)→ statei+1(~x)
i if(ϕ){
... · · ·
j }else{
... · · ·
k }

statei(~x)→ statei+1(~x) [ ϕ ]
statei(~x)→ state j+1(~x) [¬ϕ ]
state j(~x)→ statek+1(~x)
statek(~x)→ statek+1(~x)

i while@ψ (ϕ){
... · · ·
j }

statei(~x)→ statei+1(~x) [ ϕ ]
statei(~x)→ state j+1(~x) [¬ϕ ]
state j(~x)→ statei(~x)

Rsum =



state1(x, i,z)→ state2(x,0,z)
state2(x, i,z)→ state3(x, i,0)
state3(x, i,z)→ state4(x, i,z) [ x > i ]
state3(x, i,z)→ end(x, i,z) [¬(x > i) ]
state4(x, i,z)→ state5(x, i,z+ i+1)
state5(x, i,z)→ state6(x, i+1,z)
state6(x, i,z)→ state3(x, i,z)


Figure 1: the LCTRSRsum obtained from Psum.

the execution satisfies ψ whenever the execution from the initial state terminates. The aim of this paper
is to transform a proof tableau of Hoare logic into an inference sequence of RI (shown in Section 4). For
this reason, we do not focus on the construction of proof tableaux. In this section, we formalize proof
tableaux of Hoare triple. We consider while programs as sequences of commands connected by “;”, and
we write P as C1;C2; . . . ;Cn. Bodies of “if” and “while” statements are also considered sequences of
commands. Note that we consider “;” to implicitly exist at the end of “if” and “while” statements.

Definition 3.1 An annotated while program P is called a proof tableau if all of the following hold:

• every longest command-(sub)sequence in P has the length more than two and the head and the last
element of the sequence are annotations, e.g., P is of the form @ϕ;C1; . . . ;Cn;@ψ (n > 0) with
the precondition ϕ and the postcondition ψ ,

• for each subsequence C1;C2 where C1 and C2 are annotations @ϕ and @ψ , resp., ϕ =⇒ ψ is
valid, and

• for each subsequence C1;C2;C3 where C2 is not an annotation, C1,C3 are annotations such that
– if C2 is an assignment x := e, then C1 is C3{x 7→ e},
– if C2 is skip, then C1 and C3 are equivalent,
– if C2 is of the form if(ψ){S′}else{S′′}, then C1 is @ϕ , the head of S′ is @ϕ ∧ψ , the head of

S′′ is @ϕ ∧¬ψ , and C3 and the last elements of S′ and S′′ are equivalent, and
– if C2 is of the form while@ϕ (ψ){S}, then C1 is ϕ , the head of S is @ ϕ∧ψ , C3 is @ϕ∧¬ψ ,

and the last element of the sequence S is @ϕ .

In other words, a proof tableau is a tableau version of an inference tree constructed by basic inference
rules of Hoare logic illustrated in Figure 2 (see e.g., [17]).



6 Transforming Proof Tableaux of Hoare Logic into Inference Sequences of Rewriting Induction

ϕ =⇒ ϕ ′ is valid {ϕ ′} C {ψ ′} ψ ′ =⇒ ψ is valid
{ϕ} C {ψ} {ϕ{v 7→ e}} v := e {ϕ} {ϕ} skip {ϕ}

{ϕ} C1 {ξ} {ξ} C2 {ψ}
{ϕ} C1; C2 {ψ}

{ϕ ∧ψ} C1 {ξ} {ϕ ∧¬ψ} C2 {ξ}
{ϕ} if(ψ){C1}else{C2} {ξ}

{ϕ ∧ψ} C {ϕ}
{ϕ} while@ϕ (ψ){C} {ϕ ∧¬ψ}

Figure 2: basic inference rules of Hoare logic.

A1 @ x≥ 0;
A2 @ x≥ 0∧0 = 0;

1 i := 0;
A3 @ x≥ 0∧ i = 0;
A4 @ x≥ 0∧ i = 0∧0 = 0;

2 z := 0;
A5 @ x≥ 0∧ i = 0∧ z = 0;
A6 @ z = 1

2 i(i+1)∧ x≥ i;
3 while@z = 1

2 i(i+1)∧ x≥ i (x > i){
A7 @ z = 1

2 i(i+1)∧ x≥ i∧ x > i;

A8 @ z+ i+1 = 1
2 (i+1)(i+2)∧ x≥ i+1;

4 z := z+ i+1;
A9 @ z = 1

2 (i+1)(i+2)∧ x≥ i+1;
5 i := i+1;

A10 @ z = 1
2 i(i+1)∧ x≥ i;

6 }
A11 @ z = 1

2 i(i+1)∧ x≥ i∧¬(x > i);
A12 @ z = 1

2 x(x+1);
7

Figure 3: an annotated while program Ptab for Psum.

Example 3.2 The annotated while program of Figure 3, denoted by Ptab, is a proof tableau for the Hoare
triple {x≥ 0} Psum

{
z = 1

2 x(x+1)
}

, where the original line numbers for Psum are left.

4 Rewriting Induction on LCTRSs
In this section, we recall the framework of rewriting induction (RI) for LCTRSs [8], showing a simpler
version. As in [8], we restrict LCTRSs to be terminating and quasi-redutive.

A constrained equation is a triple s ≈ t [ϕ ]. We may simply write s ≈ t instead of s ≈ t [ϕ ] if ϕ

is true. We write s ' t [ϕ ] to denote either s ≈ t [ϕ ] or t ≈ s [ϕ ]. A substitution γ is said to respect
s ≈ t [ϕ ] if γ respects ϕ and Var(s)∪Var(t) ⊆ Dom(γ), and to be a ground constructor substitution
if all γ(x) with x ∈ Dom(γ) are ground constructor terms. An equation s ≈ t [ϕ ] is called an inductive
theorem of an LCTRSR if sγ ↔∗R tγ for any ground constructor substitution γ that respects s≈ t [ϕ ].

An RI-based method is to construct an inference sequence by applying the following basic inference
rules to pairs of finite sets E andH of constrained equations and rewrite rules:

EXPANSION (E ] {s ' t [ϕ ]},H) `RI (E ∪ExpdR(s ≈ t [ϕ ], p),H∪{s→ t [ϕ ]}) where p is a ba-
sic position of s,1 ExpdR(s ≈ t [ϕ ], p) = {s′ ≈ t ′ [ϕ ′ ] | sγ ≈ tγ [ϕγ ∧ψγ ] →1.p,`→r [ψ ] s′ ≈
t ′ [ϕ ′ ], `→ r [ψ ] is a renamed variant of a rule inR, γ is a most general unifier of s|p and `}, and
R∪H∪{s→ t [ϕ ]} is terminating. Note that ≈ is considered a binary function symbol in con-
strained rewriting.

SIMPLIFICATION (E ]{s' t [ϕ ]},H) `RI (E ∪{u≈ t [ψ ]},H) where s [ϕ ]→R∪H u [ψ ].

DELETION (E ]{s≈ t [ϕ ]},H) `RI (E ,H) where s = t or ϕ is not satisfiable.

GENERALIZATION (E ]{s≈ t [ϕ ]},H) `RI (E ∪{s≈ t [ψ ]},H) where ϕ =⇒ ψ is valid. Note that
this is a simpler version of the original one in [8].

A pair (E ,H) is called a process of RI. Starting with (E , /0), we apply the inference rules above to
processes of RI. If we get ( /0,H), all the equations in E are proved to be inductive theorems ofR.

Next, we revisit the role of termination in the RI method. When we apply EXPANSION to (Ei,Hi),
we prove termination ofR∪Hi∪{s→ t [ϕ ]}. This is necessary to avoid both constructing an incorrect

1A position of p of term s is basic if s|p is of the form f (s1, . . . ,sn) with f a defined symbol and s1, . . . ,sn constructor terms.



S. Mizutani and N. Nishida 7

inference sequence and applying SIMPLIFICATION infinitely many times. However, from theoretical
viewpoint, it suffices to prove termination of R∪H after constructing an inference sequence (E , /0) `RI
· · · `RI ( /0,H). In this paper, we drop termination of R∪H∪{s→ t [ϕ ]} from the side condition of
EXPANSION. Due to this relaxation, a constructed inference sequence does not always ensure that E is
a set of inductive theorems of R. For this reason, we introduce the notion of valid inference sequences.
An inference sequence (E , /0) `RI · · · `RI ( /0,H) is called valid ifR∪H is terminating.

Theorem 4.1 ([8]) Let R be an LCTRS and E a finite set of equations. If we have a valid inference
sequence (E , /0) `RI · · · `RI ( /0,H), then every equation in E is an inductive theorem ofR.

5 Transforming a Proof Tableau into an Inference Sequence of RI
In this section, using the proof tableau Ptab, we illustrate a construction of an inference sequence of RI.

To verify the postcondition after the execution of statements, we prepare the following rules with a
new symbol check with sort state⇒ bool:

Rcheck =

{
check(end(x, i,z))→ true [ z = 1

2x(x+1) ]
check(end(x, i,z))→ false [¬(z = 1

2x(x+1)) ]

}
We let R1 = Rsum ∪Rcheck. To prove the Hoare triple {x≥ 0} Psum

{
z = 1

2 x(x+1)
}

, it suffices to
consider initial states satisfying the precondition x ≥ 0, and thus, we prove the following equation an
inductive theorem ofR1:

(A1) check(state1(x, i,z))≈ true [x≥ 0 ]

It is clear thatR1 is quasi-reductive andRcheck is terminating. Since any term with sort state or bool does
not appear in Rsum as a proper subterm, Rcheck does not arise non-termination with Rsum. As described
before,Rsum is terminating and henceR1 is so.

From now on, we transform the proof tableau Ptab into an inference sequence of RI for R1 from
top to bottom. The construction is independent of termination of R1 with generated rules, and thus the
construction itself does not ensure validity of the resulting inference sequence.

We start with the initial process ({ (A1) }, /0). Line A2 of Ptab is an assertion @x≥ 0∧0 = 0 and the
validity of x≥ 0 =⇒ x≥ 0∧0 = 0 is guaranteed by Ptab. Using the validity, we can generalize (A1) by
applying GENERALIZATION to the above process:

({ (A2) check(state1(x, i,z))≈ true [x≥ 0∧0= 0 ]} , /0)

Let us recall the inference rule of assignment in Hoare logic (Figure 2). For an assignment xk :=
e on line j, a rewrite rule state j(~x)→ state j+1(x1, . . . ,xk−1,e,xk+1, . . . ,xn) is generated, and thus, we
have the derivation state j(~x) [ϕ{xk 7→ e} ]→R state j+1(~x) [ϕ ] because state j(~x) [ϕ{xk 7→ e} ]→base

state j+1(x1, . . . ,xk−1,e,xk+1, . . . ,xn) [ϕ{xk 7→ e} ]∼ state j+1(~x) [ϕ ]. Line 1 of Ptab is an assignment i :=
0, and hence, state1(x, i,z) [x≥ 0∧0= 0 ]→R1 state2(x, i,z) [x≥ 0∧ i = 0 ]. Thus, we can simplify (A2)
by applying SIMPLIFICATION to the above process:

({ (A3) check(state2(x, i,z))≈ true [x≥ 0∧ i = 0 ]} , /0)

Line A4 of Ptab is @x≥ 0∧ i = 0∧0 = 0 and we can generalize (A3) by applying GENERALIZATION:

({ (A4) check(state2(x, i,z))≈ true [x≥ 0∧ i = 0∧0= 0 ]} , /0)

Line 2 of Ptab is an assignment z := 0, and we can simplify (A4) by applying SIMPLIFICATION:

({ (A5) check(state3(x, i,z))≈ true [x≥ 0∧ i = 0∧ z = 0 ]} , /0)



8 Transforming Proof Tableaux of Hoare Logic into Inference Sequences of Rewriting Induction

Line A6 of Ptab is @z = 1
2 i(i+1)∧ x≥ i and we can generalize (A5) by applying GENERALIZATION:({

(A6) check(state3(x, i,z))≈ true [z = 1
2 i(i+1)∧ x≥ i ]

}
, /0
)

Line 3 of Ptab is a “while” statement. At this point, we have two branches: the one entering the loop
(i.e., executing the body of the loop) and the other exiting the loop. For the case analysis, we apply
EXPANSION to (A6), getting the following two equations and one oriented equation:({

(A7) check(state4(x, i,z))≈ true [ z = 1
2 i(i+1)∧ x≥ i∧ x > i ]

(A11) check(end(x, i,z))≈ true [z = 1
2 i(i+1)∧ x≥ i∧¬(x > i) ]

}
,{ (A6) }

)
where (A6) is oriented from left to right. The first equation represents the case where the loop body is
executed, and the second one represents the case where we exit from the loop.

Line A8 of Ptab is an assertion and we can generalize (A7) by applying GENERALIZATION:({
(A8) check(state4(x, i,z))≈ true [z+ i+1= 1

2(i+1)(i+2)∧ x≥ i+1 ], (A11)
}
,{ (A6) }

)
Line 4 of Ptab is an assignment z := z+ i+1 and we can simplify (A8) by applying SIMPLIFICATION:({

(A9) check(state5(x, i,z))≈ true [z = 1
2(i+1)(i+2)∧ x≥ i+1 ], (A11)

}
,{ (A6) }

)
Line 5 of Ptab is an assignment i := i+1 and we can simplify (A9) by applying SIMPLIFICATION:({

(A10) check(state6(x, i,z))≈ true [z = 1
2 i(i+1)∧ x≥ i ], (A11)

}
,{ (A6) }

)
Line 6 of Ptab is the end of the loop and we can apply the rule state6(x, i,z)→ state3(x, i,z) that makes
the left-hand side of (A10) go back to the beginning of the loop. Thus, we can simplify (A11):({

(B1) check(state3(x, i,z))≈ true [z = 1
2 i(i+1)∧ x≥ i ], (A11)

}
,{ (A6) }

)
The equation (B1) means that we reach the beginning of the loop after the one execution of the body.
Moreover, (B1) is the same as (A6) due to the loop invariant, and hence the induction hypothesis (A6) is
applicable to (B1). Thus, we can simplify (B1) by applying SIMPLIFICATION to the above process with
the rule check(state3(x, i,z))→ true [z = 1

2 i(i+1)∧ x≥ i ]:({
(B2) true≈ true [z = 1

2 i(i+1)∧ x≥ i ], (A11)
}
,{ (A6) }

)
The both sides of (B2) are equivalent and we can delete (B2) by applying DELETION:({

(A11) check(end(x, i,z))≈ true [z = 1
2 i(i+1)∧ x≥ i∧¬(x > i) ]

}
,{ (A6) }

)
The remaining equation (A11) represents the state after exiting the loop. The last line of Ptab is an

assertion corresponding to the postcondition. Due to the validity of z = 1
2 i(i+1)∧ x≥ i∧¬(x > i) =⇒

z = 1
2 x(x+1), we can generalize (A11) by applying GENERALIZATION:({

(B3) check(end(x, i,z))≈ true [z = 1
2x(x+1) ]

}
,{ (A6) }

)
The constraints of (B3) and the postcondition of Ptab are equivalent and we can apply the first rule of
Rcheck to verify the postcondition. Thus, we can simplify (B3) by applying SIMPLIFICATION to the
above process with the rule of check(end(x, i,z))→ true [z = 1

2x(x+1) ]:({
(B4) true≈ true [z = 1

2x(x+1) ]
}
,{ (A6) }

)



S. Mizutani and N. Nishida 9

The both sides of (B4) are equivalent and we can delete (B4) by applying DELETION:

( /0,{ (A6) })
In this way, we constructed an inference sequence of RI. In the above illustration, we did not show
the case of “if” statements. However, the missing case is a simpler one of “while” statements, where
we use EXPANSION without orienting equations. For page limitation, we do not formalize the above
construction, but the above illustration is almost formal because it does not depend on the detail of the
example. For this reason, the formalization would be straightforward.

Next, we show that the constructed inference sequence above is valid. To this end, it suffices to show
thatR1∪{ (A6) } is terminating. Since the right-hand sides of oriented equations inH are always true,
H is always terminating and does not arise non-termination of the original LCTRS R∪Rcheck. This
means that if R is terminating, then so is R∪Rcheck ∪H. As described before, R1 is terminating, and
hence, R1 ∪{ (A6) } is terminating. Therefore, the constructed inference sequence is valid, and the
equation (A1) is an inductive theorem ofR1. This observation implies that given a proof tableau P, ifR
obtained from P is terminating, then we can construct a valid inference sequence of RI from P andR.

Since R1 is non-overlapping and thus confluent, every ground instance of check(state1(x, i,z)) [x≥
0 ] reduces to true. As the proof tableau shows, this means that for any initial state satisfying the precon-
dition x≥ 0, the final state of the terminating execution of Psum satisfies the postcondition z = 1

2 x(x+1).

6 Discussion

In the previous section, we transformed a proof tableau for partial correctness into a valid inference
sequence of RI. It would be possible to transform a proof tableaux for total correctness, which includes
ranking functions in loop invariants, into an inference sequence of RI. It is, however, not clear how to use
ranking functions to prove termination of the corresponding LCTRS. On the other hand, to prove validity
of the converted inference sequence of RI, we can use techniques for proving termination of LCTRSs,
which are based on techniques developed well for term rewriting. The transformation of proof tableaux
for partial correctness into inference sequences of RI enables us to use such techniques instead of finding
appropriate ranking functions for all loops in given programs. The use of techniques to prove termination
is one of the advantages of the transformation.

From the idea of the transformation, we may apply RI to the initial equation such as (A1) instead of
constructing a proof tableau for a given Hoare triple. Unfortunately, Ctrl [13], an RI tool for LCTRSs,
did not succeed in automatically proving (A1) an inductive theorem of R1. It is worth improving tools
for RI so as to directly prove (A1) an inductive theorem ofR1.

As future work, we will transform some inference sequences of RI into proof tableaux of Hoare logic
in order to compare RI with Hoare logic. For inference sequences of RI, we sometimes need a lemma
equation that is helpful to use induction, but it is not easy to find an appropriate lemma equation. For this
reason, we expect the transformation between proof tableaux of Hoare logic and inference sequences of
RI to help us to develop and improve a technique for lemma generation.

Acknowledgement We thank the anonymous reviewers for their useful comments to improve this pa-
per, and to encourage us to continue this work.

References
[1] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press,

doi:10.1145/505863.505888.

http://dx.doi.org/10.1145/505863.505888


10 Transforming Proof Tableaux of Hoare Logic into Inference Sequences of Rewriting Induction

[2] Adel Bouhoula & Florent Jacquemard (2008): Automated Induction with Constrained Tree Automata. In:
Proc. IJCAR 2008, Lecture Notes in Computer Science 5195, Springer, pp. 539–554, doi:10.1007/978-3-
540-71070-7 44.

[3] Aaron R. Bradley & Zohar Manna (2007): The Calculus of Computation: Decision Procedures with Appli-
cations to Verification. Springer, doi:10.1007/978-3-540-74113-8.

[4] Stephan Falke & Deepak Kapur (2008): Dependency Pairs for Rewriting with Built-In Numbers and Semantic
Data Structures. In: Proc. RTA 2008, Lecture Notes in Computer Science 5117, Springer, pp. 94–109,
doi:10.1007/978-3-540-70590-1 7.

[5] Stephan Falke & Deepak Kapur (2009): A Term Rewriting Approach to the Automated Termination Analysis
of Imperative Programs. In: Proc. CADE 2009, Lecture Notes in Computer Science 5663, Springer, pp.
277–293, doi:10.1007/978-3-642-02959-2 22.

[6] Stephan Falke & Deepak Kapur (2012): Rewriting Induction + Linear Arithmetic = Decision Procedure. In:
Proc. IJCAR 2012, Lecture Notes in Computer Science 7364, Springer, pp. 241–255, doi:10.1007/978-3-
642-31365-3 20.

[7] Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp & Stephan Falke (2009): Proving Termi-
nation of Integer Term Rewriting. In: Proc. RTA 2009, Lecture Notes in Computer Science 5595, Springer,
pp. 32–47, doi:10.1007/978-3-642-02348-4 3.

[8] Carsten Fuhs, Cynthia Kop & Naoki Nishida (2017): Verifying Procedural Programs via Constrained Rewrit-
ing Induction. ACM Trans. Comput. Log. 18(2), pp. 14:1–14:50, doi:10.1145/3060143.

[9] Yuki Furuichi, Naoki Nishida, Masahiko Sakai, Keiichirou Kusakari & Toshiki Sakabe (2008): Approach to
Procedural-program Verification Based on Implicit Induction of Constrained Term Rewriting Systems. IPSJ
Trans. Program. 1(2), pp. 100–121. In Japanese (a translated summary is available from http://www.trs.

css.i.nagoya-u.ac.jp/crisys/).
[10] Gérard Huet & Jean-Marie Hullot (1982): Proof by Induction in Equational Theories with Constructors. J.

Comput. Syst. Sci. 25(2), pp. 239–266, doi:10.1016/0022-0000(82)90006-X.
[11] Cynthia Kop & Naoki Nishida (2013): Term Rewriting with Logical Constraints. In: Proc. FroCoS 2013,

Lecture Notes in Computer Science 8152, Springer, pp. 343–358, doi:10.1007/978-3-642-40885-4 24.
[12] Cynthia Kop & Naoki Nishida (2014): Automatic Constrained Rewriting Induction towards Verifying Proce-

dural Programs. In: Proc. APLAS 2014, Lecture Notes in Computer Science 8858, Springer, pp. 334–353,
doi:10.1007/978-3-319-12736-1 18.

[13] Cynthia Kop & Naoki Nishida (2015): Constrained Term Rewriting tooL. In: Proc. LPAR-20, Lecture Notes
in Computer Science 9450, Springer, pp. 549–557, doi:10.1007/978-3-662-48899-7 38.

[14] David R. Musser (1980): On Proving Inductive Properties of Abstract Data Types. In: Proc. POPL 1980, pp.
154–162, doi:10.1145/567446.567461.

[15] Enno Ohlebusch (2002): Advanced Topics in Term Rewriting. Springer, doi:10.1007/978-1-4757-3661-8.
[16] Uday S. Reddy (1990): Term Rewriting Induction. In: Proc. CADE 1990, Lecture Notes in Computer Science

449, Springer, pp. 162–177, doi:10.1007/3-540-52885-7 86.
[17] John C. Reynolds (1998): Theories of Programming Languages. Cambridge University Press,

doi:10.1017/CBO9780511626364.
[18] Tsubasa Sakata, Naoki Nishida & Toshiki Sakabe (2011): On Proving Termination of Constrained Term

Rewrite Systems by Eliminating Edges from Dependency Graphs. In: Proc. WFLP 2011, Lecture Notes in
Computer Science 6816, Springer, pp. 138–155, doi:10.1007/978-3-642-22531-4 9.

[19] Tsubasa Sakata, Naoki Nishida, Toshiki Sakabe, Masahiko Sakai & Keiichirou Kusakari (2009): Rewriting
Induction for Constrained Term Rewriting Systems. IPSJ Trans. Program. 2(2), pp. 80–96. In Japanese (a
translated summary is available from http://www.trs.css.i.nagoya-u.ac.jp/crisys/).

[20] Germán Vidal (2012): Closed Symbolic Execution for Verifying Program Termination. In: Proc. SCAM
2012, IEEE Computer Society, pp. 34–43, doi:10.1109/SCAM.2012.13.

http://dx.doi.org/10.1007/978-3-540-71070-7_44
http://dx.doi.org/10.1007/978-3-540-71070-7_44
http://dx.doi.org/10.1007/978-3-540-74113-8
http://dx.doi.org/10.1007/978-3-540-70590-1_7
http://dx.doi.org/10.1007/978-3-642-02959-2_22
http://dx.doi.org/10.1007/978-3-642-31365-3_20
http://dx.doi.org/10.1007/978-3-642-31365-3_20
http://dx.doi.org/10.1007/978-3-642-02348-4_3
http://dx.doi.org/10.1145/3060143
http://www.trs.css.i.nagoya-u.ac.jp/crisys/
http://www.trs.css.i.nagoya-u.ac.jp/crisys/
http://dx.doi.org/10.1016/0022-0000(82)90006-X
http://dx.doi.org/10.1007/978-3-642-40885-4_24
http://dx.doi.org/10.1007/978-3-319-12736-1_18
http://dx.doi.org/10.1007/978-3-662-48899-7_38
http://dx.doi.org/10.1145/567446.567461
http://dx.doi.org/10.1007/978-1-4757-3661-8
http://dx.doi.org/10.1007/3-540-52885-7_86
http://dx.doi.org/10.1017/CBO9780511626364
http://dx.doi.org/10.1007/978-3-642-22531-4_9
http://www.trs.css.i.nagoya-u.ac.jp/crisys/
http://dx.doi.org/10.1109/SCAM.2012.13

	Introduction
	Preliminaries
	Logically Constrained Term Rewriting Systems
	While Programs
	Converting while Programs to LCTRSs

	Proof Tableaux of Hoare Logic
	Rewriting Induction on LCTRSs
	Transforming a Proof Tableau into an Inference Sequence of RI
	Discussion

