Efficient implementation of evaluation strategies
via token-guided graph rewriting

Koko Muroya Dan R. Ghica
University of Birmingham, UK
{k.muroya,d.r.ghica}@cs.bham.ac.uk

In implementing evaluation strategies of the lambda-calculus, both correctness and efficiency of im-
plementation are valid concerns. While the notion of correctness is determined by the evaluation
strategy, regarding efficiency there is a larger design space that can be explored, in particular the
trade-off between space versus time efficiency. We contributed to the study of this trade-off by the
introduction of an abstract machine for call-by-need, inspired by Girard’s Geometry of Interaction, a
machine combining token passing and graph rewriting. This work presents a conservative extension
of the machine, to additionally accommodate left-to-right and right-to-left call-by-value strategies.
We show soundness and completeness of the extended machine with respect to each of the call-by-
need and two call-by-value strategies. Analysing time cost of its execution classifies the machine as
“efficient” in Accattoli’s taxonomy of abstract machines.

1 Introduction

The lambda-calculus is a simple yet rich model of computation, relying on a single mechanism to activate
a function in computation—beta-reduction, that replaces function arguments with actual input. While in
the lambda-calculus itself beta-reduction can be applied in an unrestricted way, it is evaluation strategies
that determine the way beta-reduction is applied when the lambda-calculus is used as a programming
language. Evaluation strategies often imply how intermediate results are copied, discarded, cached or
reused. For example, everything is repeatedly evaluated as many times as requested in the call-by-name
strategy. In the call-by-need strategy, once a function requests its input, the input is evaluated and the
result is cached for later use. The call-by-value strategy evaluates function input and caches the result
even if the function does not require the input.

The implementation of any evaluation strategy must be correct, first of all, i.e. it has to produce
results as stipulated by the strategy. Once correctness is assured, the next concern is efficiency. One may
prefer better space efficiency, or better time efficiency, and it is well known that one can be traded off
for the other. For example, time efficiency can be improved by caching more intermediate results, which
increases space cost. Conversely, bounding space requires repeating computations, which adds to the
time cost. Whereas correctness is well defined for any evaluation strategy, there is a certain freedom in
managing efficiency. The challenge here is how to produce a unified framework which is flexible enough
to analyse and guide the choices required by this trade-off. Recent studies by Accattoli et al. 3} 2] [1]]
clearly establish classes of efficiency for a given evaluation strategy. They characterise efficiency by
means of the number of beta-reduction applications required by the strategy, and introduce two efficiency
classes, namely “efficient” and “reasonable.” The expected efficiency of an abstract machine gives us a
starting point to quantitatively analyse the trade-offs required in an implementation.

We employ Girard’s Geometry of Interaction (Gol) [10], a semantics of linear logic proofs, as a
framework for studying the trade-off between time and space efficiency. In particular we focus on Gol-
style abstract machines for the lambda-calculus, pioneered by Danos and Regnier [[6] and Mackie [[13].

© K. Muroya and D. R. Ghica
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
WPTE 2017

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Efficient implementation of evaluation strategies via token-guided graph rewriting

These machines evaluate a term of the lambda-calculus by translating the term to a graph, a network of
simple transducers, which executes by passing a data-carrying token around.

The token simulates graph rewriting without actually rewriting, which is in fact a particular instance
of the trade-off we mentioned above. The token-passing machines keep the underlying graph fixed and
use the data stored in the token to route it. They therefore favour space efficiency at the cost of time
efficiency. The same computation is repeated when, instead, intermediate results could have been cached
by saving copies of certain sub-graphs representing values.

Our intention is to lift the Gol-style token passing to a framework to analyse the trade-off of effi-
ciency, by strategically interleaving it with graph rewriting. The key idea is that the token holds control
over graph rewriting, by visiting redexes and triggering rewrite rules. Graph rewriting offers fine con-
trol over caching and sharing intermediate results, however fetching cached results can increase the size
of the graph. In short, introduction of graph rewriting sacrifices space while favouring time efficiency.
We expect the flexibility given by a fine-grained control over interleaving will enable a careful balance
between space and time efficiency.

This idea was first introduced in [[15]], by developing an abstract machine that interleaves token pass-
ing with as much graph rewriting as possible. We showed this interleaving strategy gives an abstract ma-
chine which implements call-by-need evaluation, which is classified as “efficient”. We further develop
this idea by proposing a conservative extension of the graph-rewriting abstract machine, to accommo-
date other evaluation strategies, namely left-to-right and right-to-left call-by-value. In our framework,
both call-by-value strategies involve similar tactics for caching intermediate results as the call-by-need
strategy, with the only difference being the timing of cache creation.

Contributions. We extend the token-guided graph-rewriting abstract machine for the call-by-need
strategy [15]] to the left-to-right and right-to-left call-by-value strategies. The presentation of the ma-
chine is revised by using term graphs instead of proof nets [9]], to make clearer sense of evaluation
strategies in the graphical representation of terms. The extension is conservative, by introducing nodes
that correspond to different evaluation strategies, rather than modifying the behaviour of existing nodes
to suite different evaluation strategy demands. We prove the soundness and completeness of the ex-
tended machine with respect to the call-by-need strategy and the two call-by-value strategies, separately,
using a “sub-machine” semantics, where the word ‘sub’ indicates both a focus on substitution and its
status as an intermediate representation. The sub-machine semantics is based on Sinot’s “token-passing”
semantics [18}, [19] that makes explicit the two main tasks of abstract machines: searching redexes and
substituting variables. The time cost analysis classifies the machine as “efficient” in Accattoli’s taxon-
omy of abstract machines [[1].

This is an extended abstract. The full paper, including proofs, can be found at http://www.cs.
bham.ac.uk/~drg/papers/wptel7.pdf.

2 A term calculus with sub-machine semantics

We aim at three evaluation strategies of the lambda-calculus, namely call-by-need, left-to-right call-by-
value, and right-to-left call-by-value. The following is an untyped term calculus that accommodates these
strategies by dedicated constructors for function application, namely @ (call-by-need), @ (left-to-right

http://www.cs.bham.ac.uk/~drg/papers/wpte17.pdf
http://www.cs.bham.ac.uk/~drg/papers/wpte17.pdf

K. Muroya and D. R. Ghica 3

call-by-value) and <@ (right-to-left call-by-value).

t,u:::x|lx.t|t@u]t6u]t<@u|t[x<—u} (terms)
vi=Ax.t (values)
A= ()| Alx 1] (answer contexts)
— — = ,
E:=()|E@t|E@t|A(v) @E [t @E |E @A(v) | E[x < t] | E{x)[x < E] (evaluation contexts)

The term calculus uses all strategies so that we do not have to present three almost identical calculi.
But we are not interested in their interaction, but in each strategy separately. In the rest of the paper,
we therefore assume that each term contains function applications of a single strategy. The calculus
accommodates explicit substitutions [x <— u]. A term with no explicit substitutions is said to be “pure.”

The sub-machine semantics is used to establish the soundness of the graph-rewriting abstract ma-
chine. It is an adaptation of Sinot’s lambda-term rewriting system [18, [19], used to analyse a token-
guided rewriting system for interaction nets. It imitates an abstract machine by making explicit the
process of searching for a redex and of decomposing the meta-level substitution into on-demand linear
substitution, also resembling a storeless abstract machine (e.g. [7, Fig. 8]). However the semantics is
still too “abstract” as an abstract machine, in the sense that it works modulo alpha-equivalence to avoid
variable captures.

Fig. 1) defines the sub-machine semantics of our calculus. It is given by labelled relations between
enriched terms E((t))). In an enriched term E{(¢])), a sub-term 7 is not plugged directly into the evalua-
tion context, but into a “window” () which makes it syntactically obvious where the reduction context is
situated. Forgetting the window turns an enriched term into an ordinary term. Basic rules — are labelled
with B, ¢ or €. The basic rules (2), (5) and (8), labelled with 3, apply beta-reduction and delay substi-
tution of a bound variable. Substitution is done one by one, and on demand, by the basic rule (10) with
label o. Each application of the basic rule (10) replaces exactly one bound variable with a value, and
keeps a copy of the value for later use. All other basic rules, with label €, search for a redex by moving
the window without changing the underlying term. Finally, reduction is defined by congruence of basic
rules with respect to evaluation contexts, and labelled accordingly. Any basic rules and reductions are
indeed between enriched terms, because the window () is never duplicated or discarded.

An evaluation of a pure term ¢ (i.e. a term with no explicit substitution) is a sequence of reductions
starting from (())), that we simply write (f). In any evaluation, a sub-term in the window () is always
pure.

3 Token-guided graph-rewriting machine

A graph is given by a set of nodes and a set of directed edges. Nodes are classified into proper nodes
and /ink nodes. Each edge is directed, and at least one of its two endpoints is a link node. An interface
of a graph is given by two sets of link nodes, namely input and output. Each link node is a source of at
most one edge, and a target of at most one edge. Input links are the only links that are not a target of any
edge, and output links are the only ones that are not a source of any edge. When a graph G has n input
link nodes and m output link nodes, we sometimes write G(n,m) to emphasise its interface. If a graph
has exactly one input, we refer to the input link node as “root.”

The idea of using link nodes, as distinguished from proper nodes, comes from a graphical formali-
sation of string diagrams [[12]. String diagrams consist of “boxes” that are connected to each other by
“wires.” In the formalisation, boxes are modelled by “box-vertices” (corresponding to proper nodes in

4 Efficient implementation of evaluation strategies via token-guided graph rewriting

Basic rules g, o and g

(t@u) —¢ (t) @u (1)
A((Ax.t)) @u g A((t) [x + u]) (2)
r @up e () @ u 3)
AlAx1)) @ ursp A(dxt) @ (u) @)
A(Axt) @ A/((V) g A{(t)[x — A" (1)) 5)
@ u) =t @ (u) 6)
1 @A) e (1) @ A(Y))
Al(Axt)) @A) g A(e) [x A/ (W) ®)
E(((x)) [x <= Au)] ¢ E(x) [x < A((u))])
E{x)[x <= A((V)] =0 ACE((V)) [x < V]) (10)
) ‘ [y il
Reductions —og, —o5 and —og: E) oy E(@) (x €{B,o,€})

Figure 1: ”Sub-machine” operational semantics

our case), and wires are modelled by consecutive edges connected via “wire-vertices” (corresponding
to link nodes in our case). The segmentation of wires into edges can introduce an arbitrary number
of consecutive link nodes, however these consecutive link nodes are identified by the notion of “wire
homeomorphism.” We will later discuss these consecutive link nodes, from the perspective of the graph-
rewriting machine. From now on we simply call a proper node “node,” and a link node “link.”

In drawing graphs, we follow the convention that input links are placed at the bottom and output links
are at the top, and links are usually not drawn explicitly. The latter point means that edges are simply
drawn from a node to a node, with intermediate links omitted. In particular if an edge is connected
to an interface link, the edge is drawn as an open edge missing an endpoint. Additionally, we use a
double-stroke edge/node to represent a bunch of parallel edges/nodes.

Nodes are labelled, and a node with a label X is called an “X-node.” We use two sorts of labels.
One sort corresponds to the constructors of the calculus presented in Sec. 2| namely A (abstraction), @
(call-by-need application), @ (left-to-right call-by-value application) and @ (right-to-left call-by-value
application). These three application nodes are the novelty of this work. The token, travelling in a graph,
reacts to these nodes in different ways, and hence implements different evaluation orders. We believe
that this is a more extensible way to accommodate different evaluation orders, than to let the token react
to the same node in different ways depending on situation. The other sort consists of !, ?, D and C, for
any natural number n, used in the management of copying sub-graphs. This sort is inspired by proof
nets of the multiplicative and exponential fragment of linear logic [9], where C,-nodes generalise the
standard binary contraction and incorporate weakening.

The number of input/output and incoming/outgoing edges for a node is determined by the label as
indicated in Flg I We distinguish two outputs of each of the three application nodes (@, @ and @)
calling one “composition output” and the other “argument output” (cf. [4]). A bullet e in the figure
specifies a function output. Additionally, the outline box indicates a sub-graph G(1,m) (“!-box”) that
is connected to one !-node (“principal door””) and m ?-nodes (“auxiliary doors™). This !-box structure,

K. Muroya and D. R. Ghica 5

Figure 2: Graph nodes

taken from proof nets, aids duplication of sub-graphs by specifying those that can be copied.
We define a graph-rewriting abstract machine as a labelled transition system between graph states.

Definition 3.1 (Graph states). A graph state ((G(1,0),e),8) is formed of a graph G(1,0) with its distin-
guished link e, and token data § = (d, f,S, B) that consists of: a direction defined by d ::= 1| |, a rewrite
flag defined by f == | A | |, a computation stack defined by S::=0 | x:S|A:S| @ :S, and a box
stack defined by B::=0 | x:B|!:B|<:B|¢€ : B, where ¢ is any link of the graph G.

The distinguished link e is called the “position” of the token. A token reacts to a node in a graph using
its data, which determines its path. The initial state Init(G) on a graph G is given by ((G,eo), (1,0,0, % :
(7)), and the final state Final(G) on the graph G is given by ((G, o), ({,3,0,!: [0)), where ¢ is the root
of G. An execution on a graph G is a sequence of transitions starting from the initial state Init(G).

Each transition ((G,e),8) —, ((G',€'),8") between graph states is labelled by either 3, o or €. Tran-
sitions are deterministic, and classified into pass transitions that search for redexes and trigger rewriting,
and rewrite transitions that actually rewrite a graph as soon as a redex is found.

A pass transition ((G,e), (d,[0,5,B)) —¢ ((G,e),(d', f',S',B")), always labelled with €, applies to a
state whose rewrite flag is L. It simply moves the token over one node, and updates its data by modifying
the top elements of stacks, while keeping an underlying graph unchanged. When the token passes a A-
node or a !-node, a rewrite flag is changed to A or !, which triggers rewrite transitions. Fig.[3|defines pass
transitions, by showing only the relevant node for each transition. The position of the token is drawn
as a black triangle, pointing towards the direction of the token. In the figure, X # %, and » is a natural
number. The pass transition over a C,;1-node pushes the old position e, a link node, to a box stack.

The way the token reacts to application nodes (@, @ and <@) corresponds to the way the window ()
moves in evaluating these function applications in the sub-machine semantics (Fig. [I). When the token
moves on to the composition output of an application node, the top element of a computational stack is
either @ or x. The element x makes the token return from a A-node, which corresponds to reducing the
function part of application to a value (i.e. abstraction). The element @ lets the token proceed at a A-node,
raises the rewrite flag A, and hence trig%Ers a rewrite transition that corresponds to beta-reduction. The
call-by-value application nodes (@ and @) send the token to their argument output, pushing the element
* to a box stack. This makes the token bounce at a !-node and return to the application node, which
corresponds to evaluating the argument part of function application to a value. Finally, pass transitions
through D-nodes, C,-nodes and !-nodes prepare copying of values, and eventually raise the rewrite flag
! that triggers on-demand duplication.

A rewrite transition ((G,e),(d, f,S,B)) =, ((G',¢'),(d’, f',S,B')), labelled with x € {B,0,¢€}, ap-
plies to a state whose rewrite flag is either A or !. It changes a specific sub-graph while keeping its
interface, changes the position accordingly, and pops an element from a box stack. Fig. 4] defines rewrite

6 Efficient implementation of evaluation strategies via token-guided graph rewriting

A

\@L\@J \@L\@J \oL\o/ © - 0

|

@SB ASB D*SB O\ SB 0,5 B 0,5,0: B
A
\QJ \0/ \QJ é—> O
— —> —~> I

DS D*bB ON: bB Db*B SIB 0,a: SBDSXB LS, X:B

‘ollo ol e é%ﬁ éﬁ 0= O

D.S.B DS* B DSI B 0,@: 53 0,Se:B 0,8:B 0,8,!': B

Figure 3: Pass transitions

R
L

A5, B 0,5, B 1,S,0: B 0,8, B 1,S,e: B 0,8, B

Figure 4: Rewrite transitions

transitions by showing a sub-graph (“redex”) to be rewritten. Before we go through each rewrite transi-
tion, we note that rewrite transitions are not exhaustive in general, as a graph may not match a redex even
though a rewrite flag is raised. However we will see that there is no failure of transitions in implementing
the term calculus.

The first rewrite transition in Fig. 4} with label B, occurs when a rewrite flag is A. It implements
beta-reduction by eliminating a pair of an abstraction node (A1) and an application node ($ € {@, @, @}
in the figure). Outputs of the A-node are required to be connected to arbitrary nodes (labelled with ¥ and
Z in the figure), so that edges between links are not introduced, preserving the desired shape of the graph.
The other rewrite transitions are for the rewrite flag !, and they together realise the copying process of
a sub-graph (namely a !-box). The second rewrite transition in Fig. 4] labelled with €, finishes off each
copying process by eliminating doors of the !-box G. It sets the root of G as the new position of the
token, and pops the top element ¢ of a box stack. This rewrite transition also does not introduce an edge
between links.

The last rewrite transition in the figure, with label o, actually copies a !-box. It requires the top
element e of the old box stack to be one of input links of the Cy.-node (where k is a natural number).
The link e is popped from the box stack and becomes the new position of the token, and the Cy, -
node becomes a Cy-node by keeping all the inputs except for the link e. The sub-graph H(n+ m,l)

K. Muroya and D. R. Ghica 7

consists of [parallel C-nodes that altogether have n 4+ m inputs. Among these inputs, n are connected
to auxiliary doors of the !-box G(1,n), and m are connected to nodes that are not in the redex. The
sub-graph H(n+m,[) is turned into H'(2n+ m,[) by introducing n inputs to these C-nodes as follows: if
an auxiliary door of the !-box G is connected to a C-node in H, two copies of the auxiliary door are both
connected the corresponding C-node in H'. Therefore the two sub-graphs consist of the same number [
of C-nodes, whose indegrees are possibly increased. The m inputs, connected to nodes outside a redex,
are kept unchanged. For example, copying a graph G(1,3) for H(5,2) will give an H'(8,2) as shown
below.
When a graph has an edge between links, the

token is just passed along. With this pass tran- H(5,2) H'(8,2)
sition over a link at hand, the equivalence re- f é —
lation between graphs that identifies consecutive ﬁ? < %&

links with a single link—so-called “wire homeo- / ééé / éé b\\%

morphism” [[12]—Ilifts to a weak bisimulation be- ° e

tween graph states. Therefore, behaviourally, we

can safely ignore consecutive links. ¢3) | o [603 |‘ “ ¢.3) |‘
From the perspective of time cost analysis, we d)

benefit from the fact that rewrite transitions are O

designed not to introduce any edge between links. \g@\

This means, by assuming that an execution starts K T \

with a graph with no consecutive links, we can

analyse time cost of the execution without caring the extra pass transition over a link.

4 Implementation of evaluation strategies

The implementation of the term calculus, by means of the dynamic Gol, starts with translating (enriched)
terms into graphs. The definition of the translation uses multisets of variables, to track how many times
each variable occurs in a term. We assume that terms are alpha-converted in a form in which all binders
introduce distinct variables. In the following definitions, M\x denotes a multiset M whose all x’s are
removed.

Definition 4.1 (Free variables). The map FV of terms to multisets of variables is inductively defined by:
FV(x) :=[x], FV(Ax.t) :==FV(t)\x,

FV(t$u) = FV(t)+ FV(u), FV(tlx ¢ u]) := (FV(£)\x) + FV(u). $ecl@ @, @)
For a multiset M of variables, the map F'V, of evaluation contexts to multisets of variables is defined by:
=FV(t)+FVyu(E),
FVy(E)+FV(A(v)),
(FVM(E)\x)+FV(t),
(FV(E'(x))\x) + FVu(E).

A term ¢ is said be closed if FV(t) = 0. Consequences of the above definition are the following
equations, where M’ is not captured in E.

FV(E{(t)) = FViyo)(E), FVyu(E(E') = FVpy,@n(E), FViyim(E)=FVy(E)+M'.

FVu(() :=M, FVM(t @E
FVu(E@¢):= FVy(E)+FV(t), FVu(E @ A(v)
FVy(E @1t) := FVy(E) + FV(1), FVu(Ex 1]

FVi(AD) @ E) := FV(AW)) + FVy(E), FVy(E'(x)x < E]

):
):
)=
)=

8 Efficient implementation of evaluation strategies via token-guided graph rewriting

!
=
=

Aet)f =

“@”QBi@ o

Figure 5: Inductive translation of terms and answer contexts

We give translations of terms, answer contexts, and evaluation contexts separately. Fig. [5and Fig. [q]
define two mutually recursive translations (-)" and (-)*, the first one for terms and answer contexts, and
the second one for evaluation contexts. In the figures, $ € {@, @, <@}, and m is the multiplicity of x. The
general form of the translations is as below.

The annotation of double-stroke edges means each edge of a bunch is

labelled with an element of the annotating multiset, in a one-to-one manner. FV() FVam(A) FVy(E)
In particular if a double-stroke edge is annotated by a variable x, all edges in | 1 11
the bunch are annotated by the variable x. These annotations are only used | f% R TEi[ﬁ |

M M

to define the translations, and are subsequently ignored during execution.
The translations are based on the so-called “call-by-value” translation of
linear logic to intuitionistic logic (studied in e.g. [14]]). Notably only the translation of abstraction can
be accompanied by a !-box, which captures the fact that only values (i.e. abstractions) can be duplicated
(see the basic rule (10) in Fig.[T).
The two mutually recursive translations (-) and (-)* are related by the following decompositions,
which can be checked by straightforward induction.

FViy (o (4)

FV(A®) FV() I W FVw]TI(A) FVM(?E'))I FVFW,IW(EME) FVy(E') T
-A? »

W - v [- L] [EEn]- e | [@n]

AI\I
! ¢ P Par Y f e
!
—
Note that the decomposition property does not hold for E(¢) in general, because a translation (A(Ax.t) @
E)}, lacks a !-box structure, compared to a translation (A(Ax.r) @ u)'.

The inductive translations lift to a weak simulation < of the sub-machine semantics by the graph-
rewriting machine.

Definition 4.2 (Binary relation <). The binary relation < is defined by E((¢)) < ((E*ot™,e),(1,0,S,B)),

with no

where: (i) E{(¢)) is a closed enriched term, and (E*ot",e) is given by L2

T

K. Muroya and D. R. Ghica 9

FVy(E) FV () FV) EVy(E)

<‘>§\1 = ’ |
M
FV(A(ax.t)) FVy(E)

AFV(ix.t)

! M

@ (Elx < 1)}, =

FVy(E) FV () F VM(E> F V(A<u>)

]

(E@ni, = @ (E @ A(v))}, @
@y .
M T

Figure 6: Inductive translation of evaluation contexts

(E'(x)[x < EN,, =

edges between links, and (ii) there is an execution Init(E¥ot") —* ((E*ot',e), (1,0, S, B)) such that the
position e appears only at the last of the sequence.

Theorem 4.3 (Weak simulation with global bound).

1. IFE((t)) —oy E'((t')) and E((t)) < ((E*ot",e),8), there exists a graph state (((E")*o (t')7,¢), &'
and a number n < 3 such that ((E*ot',e),8) —=2—, ((E")*o(t')",€'),8') and E'{(')) =< (
(th',e),8).

2. IfA{(v)) = ((A*ovT,e), 8), the graph state ((A* oV’ e),8) is initial, from which only the transition
Init(A* ov’) —¢ Final(A* ov'") is possible.

We analyse how time-efficiently the token-guided graph-rewriting machine implements evaluation
strategies, following the methodology developed by Accattoli et al. [2, 5, [1]. Given a pure term ¢, the
time cost of an execution on the graph ¢ is estimated by means of: (i) the number of reductions labelled
with B in the evaluation of the term 7, and (ii) the size |t| of the term 7, inductively defined as: |x| := 1,
—]t@u\—]t@u! = t| 4 |u| + 1, |t[x < u]| := |t]| + |u| + 1.

leen an evaluatlon Eval, the number of occurrences of a label x is denoted by |Eval|,. The sub-
machine semantics comes with the following quantitative bounds.

Proposition 4.4. For any evaluation Eval: (t) —* A{(v))) that terminates, the number of reductions are
bounded by |Eval|s = O(|Eval|g) and |Evalle = O (]t|-|Eval|g).

We use the same notation |Exec|,, as for an evaluation, to denote the number of occurrences of each
label y in an execution Exec. Additionally the number of rewrite transitions with the label € is denoted
by |Exec|¢g.

Proposition 4.5 (Soundness & completeness, with number bounds). For any pure closed term t, an
evaluation Eval: (t) —* A{((V)) terminates with A{(v)) if and only if an execution Exec: Init(t") —
Final(A* ov') terminates with the graph A* ovi. Moreover the number of transitions are bounded by
|Exec|g = |Eval|g, |Exec|s = O(|Evallg), O(|t]-|Eval|g), O(|Eval|g).

10 Efficient implementation of evaluation strategies via token-guided graph rewriting

Making some (reasonable) assumptions on how graphs can be implemented, we can go ahead and
give bounds on the overall execution time cost.

Theorem 4.6 (Soundness & completeness, with cost bounds). For any pure closed term t, an evaluation
Eval: (t) —* A((v)) terminates with A{(v)) if and only if an execution Exec: Init(t') —* Final(A* ov")
terminates with the graph A% ov'. The overall time cost of the execution Exec is bounded by O (|t| -
|Evallg).

Proof. Non-constant cost of rewrite transitions are either the number of auxiliary doors of a !-box or
the size of a !-box. Because rewrite transitions can only copy or discard a !-box, and cannot expand or
reduce a single !-box, any !-boxes involved in the execution Exec has no more size than !-boxes included
in the initial graph 7. The size of the initial graph ' can be bounded by the size |¢| of the initial term.
Therefore any non-constant cost of each rewrite transition, in the execution Exec, can be also bounded
by [t|. The overall time cost of rewrite transitions labelled with 8 is &'(|Eval|g), and that of the other
rewrite transitions and pass transitions is & ([t| - |Eval|g). O

Thm. 6| classifies the graph-rewriting machine as “efficient,” by Accattoli’s taxonomy [I| Def. 7.1]
of abstract machines. The efficiency benefits from the graphical representation of environments (i.e.
explicit substitutions in our setting). In particular the translations ()" and (-)* are carefully designed
to exclude any two sequentially-connected C-nodes, which yields the constant cost to look up a bound
variable and its associated computation in environments.

5 Related work and conclusions

The idea of using the token as a guide of graph rewriting was also proposed by Sinot [[18, [19] for inter-
action nets. He shows how using a token can make the rewriting system implement the call-by-name,
call-by-need and call-by-value evaluation strategies. Our development in this work can be seen as a re-
alisation of the rewriting system as an abstract machine, in particular with explicit control over copying
sub-graphs. The Gol-style token passing itself has been adapted to implement the call-by-value eval-
uation strategy. Ferndndez and Mackie allow the token to jump along a path in a graph, and yield a
token-passing abstract machine that implements the call-by-value strategy in [8]. Their machine keeps
the underlying graph fixed during execution, but jumps of the token enable the machine to recover time
efficiency, although no quantitative analysis is provided. Jumps can be seen as a form of graph rewriting
that eliminates nodes, and some jumps are to or from edges with an index that are effectively “virtual”
copies of edges. Another popular way to implement the call-by-value strategy is to use the CPS transfor-
mation [16], as adopted in [17] and [[11]], that focuses on correctness. However this method leads to an
abstract machine with inefficient overhead cost, at least in the case of [[L1].

To wrap up, we presented a graph-rewriting abstract machine, with token passing as a guide, that can
efficiently implement three evaluation strategies that have different control over caching intermediate
results. The token-guided graph rewriting is a flexible framework in which we can carry out the study
of space-time trade-off in abstract machines for various evaluation strategies of the lambda-calculus.
Starting with [[15] and continuing with the present work, our focus was primarily on time-efficiency, to
complement existing work on Gol-style operational semantics which usually achieves space-efficiency.
We believe that more refined strategies of interleaving token routing and graph reduction can be formu-
lated to serve particular objectives in the space-time execution efficiency trade-off.

K. Muroya and D. R. Ghica 11

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

Beniamino Accattoli (2017): The complexity of abstract machines. In: WPTE 2016, EPTCS 235, pp. 1-15.

Beniamino Accattoli, Pablo Barenbaum & Damiano Mazza (2014): Distilling abstract machines. In: ICFP
2014, ACM, pp. 363-376.

Beniamino Accattoli & Ugo Dal Lago (2016): (Leftmost-outermost) beta reduction is invariant, indeed.
Logical Methods in Comp. Sci. 12(1).

Beniamino Accattoli & Stefano Guerrini (2009): Jumping boxes. In: CSL 2009, Lect. Notes Comp. Sci.
5771, Springer, pp. 55-70.

Beniamino Accattoli & Claudio Sacerdoti Coen (2014): On the value of variables. In: WoLLIC 2014, Lect.
Notes Comp. Sci. 8652, Springer, pp. 36-50.

Vincent Danos & Laurent Regnier (1996): Reversible, irreversible and optimal lambda-machines. Elect.
Notes in Theor. Comp. Sci. 3, pp. 40-60.

Olivier Danvy, Kevin Millikin, Johan Munk & Ian Zerny (2012): On inter-deriving small-step and big-step
semantics: a case study for storeless call-by-need evaluation. Theor. Comp. Sci. 435, pp. 21-42.

Maribel Fernandez & Ian Mackie (2002): Call-by-value lambda-graph rewriting without rewriting. In: ICGT
2002, LNCS 2505, Springer, pp. 75-89.

Jean-Yves Girard (1987): Linear logic. Theor. Comp. Sci. 50, pp. 1-102.

Jean-Yves Girard (1989): Geometry of Interaction I: interpretation of system F. In: Logic Colloquium 1988,
Studies in Logic & Found. Math. 127, Elsevier, pp. 221-260.

Naohiko Hoshino, Koko Muroya & Ichiro Hasuo (2014): Memoryful Geometry of Interaction: from coalge-
braic components to algebraic effects. In: CSL-LICS 2014, ACM, pp. 52:1-52:10.

Aleks Kissinger (2012): Pictures of processes: automated graph rewriting for monoidal categories and
applications to quantum computing. arXiv preprint arXiv:1203.0202.

Ian Mackie (1995): The Geometry of Interaction machine. In: POPL 1995, ACM, pp. 198-208.

John Maraist, Martin Odersky, David N. Turner & Philip Wadler (1999): Call-by-name, call-by-value, call-
by-need and the linear lambda calculus. Theor. Comp. Sci. 228(1-2), pp. 175-210.

Koko Muroya & Dan R. Ghica (2017): The dynamic Geometry of Interaction machine: a call-by-need graph
rewriter. In: CSL 2017. To appear.

Gordon Plotkin (1975): Call-by-name, call-by-value and the lambda-calculus. Theor. Comp. Sci. 1(2), pp.
125-259.

Ulrich Schopp (2014): Call-by-value in a basic logic for interaction. In: APLAS 2014, Lect. Notes Comp.
Sci. 8858, Springer, pp. 428—448.

Francois-Régis Sinot (2005): Call-by-name and call-by-value as token-passing interaction nets. In: TLCA
2005, Lect. Notes Comp. Sci. 3461, Springer, pp. 386—400.

Frangois-Régis Sinot (2006): Call-by-need in token-passing nets. Math. Struct. in Comp. Sci. 16(4), pp.
639-666.

	Introduction
	A term calculus with sub-machine semantics
	Token-guided graph-rewriting machine
	Implementation of evaluation strategies
	Related work and conclusions

