
Submitted to:
WPTE 2017

c© T. Sasano, N. Nishida, M. Sakai, and T. Ueyama
This work is licensed under the
Creative Commons Attribution License.

Transforming Dependency Chains of Constrained TRSs into
Bounded Monotone Sequences of Integers

Tomohiro Sasano
Graduate School of Information Science

Nagoya University
Nagoya, Japan

sasano@trs.cm.is.nagoya-u.ac.jp

Naoki Nishida
Graduate School of Informatics

Nagoya University
Nagoya, Japan

nishida@i.nagoya-u.ac.jp

Masahiko Sakai
Graduate School of Informatics

Nagoya University
Nagoya, Japan

sakai@i.nagoya-u.ac.jp

Tomoya Ueyama
Graduate School of Information Science

Nagoya University
Nagoya, Japan

In the dependency pair framework for proving termination of rewriting systems, polynomial interpre-
tations are used to transform dependency chains into bounded decreasing sequences of integers, and
they play an important role for the success of proving termination, especially for constrained rewrit-
ing systems. In this paper, we show sufficient conditions of linear polynomial interpretations for
transforming dependency chains into bounded monotone (i.e., decreasing or increasing) sequences
of integers. Such polynomial interpretations transform rewrite sequences of the original system into
decreasing or increasing sequences independently of the transformation of dependency chains. When
we transform rewrite sequences into increasing sequences, polynomial interpretations have negative
coefficients for reducible positions of marked function symbols. We propose four DP processors
parametrized by transforming dependency chains and rewrite sequences into either decreasing or in-
creasing sequences of integers, respectively. We show that such polynomial interpretations make us
succeed in proving termination of the McCarthy 91 function over the integers.

1 Introduction

Recently, techniques developed for term rewriting systems (TRSs, for short) have been applied to the
verification of programs written in several programming languages (cf. [10]). In verifying programs with
comparison operators over the integers via term rewriting, constrained rewriting is very useful to avoid
very complicated rewrite rules for the comparison operators, and various formalizations of constrained
rewriting have been proposed: constrained TRSs [11, 4, 23, 22] (e.g., membership conditional TRSs [24]),
constrained equational systems (CESs, for short) [5], integer TRSs (ITRSs, for short) [9], PA-based TRSs
(Z-TRSs) [6] (simplified variants of CESs), and logically constrained TRSs (LCTRSs, for short) [16, 17].

One of the most important properties that are often verified in practice is termination, and many
methods for proving termination have been developed in the literature, especially in the field of term
rewriting (cf. the survey of Zantema [25]). At present, the dependency pair (DP) method [2] and the DP
framework [13] are key fundamentals for proving termination of TRSs, and they have been extended to
several kinds of rewrite systems [5, 1, 6, 9, 22, 19, 10]. In the DP framework, termination problems are
reduced to finiteness of DP problems which consist of sets of dependency pairs and rewrite rules. We
prove finiteness by applying sound DP processors to an input DP problem and then by decomposing the
DP problem to smaller ones in the sense that all the DP sets of output DP problems are strict subsets
of the DP set of the input problem. In the DP frameworks [5, 22] for constrained rewriting, the DP
processors based on polynomial interpretations (the PI-based processors, for short) decompose a given
DP problem by using a polynomial interpretation Pol that transforms dependency chains into bounded

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Transforming Dependency Chains into Bounded Monotone Sequences of Integers

decreasing sequences of integers—roughly speaking, a dependency pair s] → t] [[ϕ]] is removed from
the given problem if the integer arithmetic formula ϕ ⇒Pol(s)> Pol(t) is valid. The processor in [22]
can be considered a simplified version of that in [5] in the sense that for efficiency, Pol drops reducible
positions—arguments of marked symbols, which may contain an uninterpreted function symbol when a
dependency pair is instantiated—and then the rules in the given system are ignored. Such a simplification
is not so restrictive when we prove termination of counter-controlled loops, e.g., for(i = 0; i < n;
i++){ . . .}. However, the simplification sometimes prevents us from proving termination of a function,
the definition of which has nested function calls.

Let us consider the following constrained TRS defining the McCarthy 91 function:

R1 =

{
(1) f(x)→ f(f(s11(x))) [[s101(0)> x]]
(2) f(x)→p10(x) [[¬(s101(0)> x)]]

}
∪
{

s(p(x))→ x
p(s(x))→ x

}
It is known that the function always terminates and returns 91 if an integer n≤ 101 is given as input, and
n−10 otherwise: ∀n ∈ Z. (n≤ 101⇒ f(n) = 91)∧ (n > 101⇒ f(n) = n−10). Termination of the Mc-
Carthy 91 function can be proved automatically if the function is defined over the natural numbers [12].
However, the method in [12] cannot prove termination of the function that is defined over the integers.
As another approach, let us consider the DP framework. The dependency pairs ofR1 are:

DP(R1) =

{
(3) f](x)→ f](f(s11(x))) [[s101(0)> x]]
(4) f](x)→ f](s11(x)) [[s101(0)> x]]

}
Unfortunately, the method in [22] for proving termination of constrained TRSs cannot prove termination
of R1 because the right-hand side of (3) is of the form f](f(s11(x))) and thus we have to drop the first
argument of f], i.e., Pol(f]) = a0 where a0 is an integer—both sides of (3) and (4) are converted by
Pol to a0 and we do not remove any of (3) and (4). To make the method in [22] more powerful, let us
allow Pol(f]) to keep its reducible positions as in [5]. Then, forR1, Pol has to be an interpretation over
the natural numbers, and for each rule `→ r [[ϕ]] in R1 the validity of the integer arithmetic formula
ϕ ⇒ Pol(`) ≥ Pol(r) is required. However, such an interpretation does not exist for R1. Note that
Ctrl [18] fails to prove termination of the LCTRS corresponding toR1.

In this paper, we extend the PI-based processor in [22] by making its linear polynomial interpretation
Pol transform dependency chains into bounded monotone (i.e., decreasing or increasing) sequences of
integers. To be more precise, given a constrained TRSR,

• Pol is an interpretation over the natural numbers as in [5], while constants that are not coefficients
may be negative integers (i.e., for Pol(f) = b0 +b1x1 + · · ·+bnxn, the coefficients b1, . . . ,bn have
to be positive integers but the constant b0 may be a negative integer),

• for rules inR, we require one of the following:

(R1) ϕ ⇒Pol(`)≥ Pol(r) is valid for all `→ r [[ϕ]] ∈ R (i.e., rewrite sequences of R are trans-
formed by Pol into decreasing sequences of integers), or

(R2) ϕ ⇒Pol(`)≤ Pol(r) is valid for all `→ r [[ϕ]] ∈ R (i.e., rewrite sequences of R are trans-
formed by Pol into increasing sequences of integers), and

• for monotonicity of transformed sequences, coefficients for reducible positions have to satisfy a
sufficient condition—to be non-negative for (R1) and to be negative for (R2)—and the second
argument of the subtraction symbol (i.e., −) is an interpretable term in anywhere.

Such a polynomial interpretation transforms all dependency chains into bounded decreasing sequences
of integers, or all to bounded increasing sequences of integers. Since we have two possibilities for

T. Sasano, N. Nishida, M. Sakai, and T. Ueyama 3

transforming rewrite sequences of R, we have four kinds of PI-based processors. Then, we show an
experimental result to compare the four PI-based processors by using them to prove termination of R1
shown in this section. Although this paper adopts the class of constrained TRSs in [11, 23, 22], it
would be straightforward to adapt our results to other higher-level styles of constrained systems in,
e.g., [5, 7, 16]. It would also be straightforward to extend the results for the single-sorted case to the
many-sorted one (cf. [15]).

The contribution of this paper is to formalize linear polynomial interpretations that transform depen-
dency chains into bounded monotone (i.e., not only decreasing but also increasing) sequences of integers,
and that transform rewrite sequences of the given constrained TRS into monotone sequences of integers.

2 Preliminaries

In this section, we briefly recall the basic notions and notations of term rewriting [3, 21], and constrained
rewriting [11, 4, 23, 22].

Throughout the paper, we use V as a countably infinite set of variables. We denote the set of terms
over a signature Σ and a variable set V ⊆V by T (Σ,V). We often write f/n to represent an n-ary symbol
f . We abbreviate the set T (Σ, /0) of ground terms over Σ to T (Σ). We denote the set of variables appearing
in a term t by Var(t). A hole � is a special constant not appearing in considered signatures (i.e., � /∈ Σ),
and a term in T (Σ∪{�},V) is called a context over Σ and V if the hole � appears in the term exactly
once. We denote the set of contexts over Σ and V by T�(Σ,V). For a term t and a context C[]p with the
hole at a position p, we denote by C[t]p the term obtained from t and C[]p by replacing the hole at p by
t. We may omit p from C[]p and C[t]p. For a term C[t]p, the term t is a subterm of C[t] (at p). Especially,
when p is not the root position ε , we call t a proper subterm of C[t]. For a term s and a position p of s,
we denote the subterm of s at p by s|p, and the function symbol at the root position of s by root(s).

The domain and range of a substitution σ are denoted by Dom(σ) and Ran(σ), respectively. For
a signature Σ, a substitution σ is called ground if Ran(σ) ⊆ T (Σ). For a subset V of V , we denote the
set of substitutions over Σ and V by Sub(Σ,V): Sub(Σ,V) = {σ | Ran(σ) ⊆ T (Σ,V)}. We abbreviate
Sub(Σ, /0) to Sub(Σ). We may write {x1 7→ t1, . . . , xn 7→ tn} instead of σ if Dom(σ) = {x1, . . . ,xn} and
σ(xi) = ti for all 1≤ i≤ n. We may write tσ for the application σ(t) of σ to t. For a subset V of V , we
denote the restricted substitution of σ w.r.t. V by σ |V : σ |V = {x 7→ σ(x) | x ∈ Dom(σ)∩V}.

Let G be a signature (e.g., a subsignature of Σ) and P a set of predicate symbols, each of which has
a fixed arity, andM a structure specifying interpretations for symbols in G and P: M has a universe (a
non-empty set), and gM and pM are interpretations for a function symbol g ∈ G and a predicate symbol
p ∈ P , respectively. Ground terms in T (G) are interpreted byM in the usual way. We use > and ⊥ for
Boolean values true and false,1 and usual logical connectives ¬, ∨, ∧, and⇒, which are interpreted in the
usual way. For the sake of simplicity, we do not use quantifiers in formulas. We assume that P contains
a binary symbol ' for equality. For a subset V ⊆ V , we denote the set of formulas over G, P , and V by
Fol(G,P,V). The set of variables in a formula ϕ is denoted by Var(ϕ). Formulas in Fol(G,P,V) are
called constraints (w.r.t.M). We assume that for each element a in the universe, there exists a ground
term t in T (G) such that tM = a. A ground formula ϕ is said to hold w.r.t M, written as M |= ϕ , if
ϕ is interpreted byM as true. The application of a substitution σ ∈ Sub(G,V) is naturally extended to
formulas, and σ(ϕ) is abbreviated to ϕσ . Note that for a signature Σ with G ⊆ Σ, we cannot apply σ

to ϕ ∈ Fol(G,P,V) if σ |Var(ϕ) /∈ Sub(G,V).2 A formula ϕ is called valid w.r.t.M (M-valid, for short)

1Note that > and ⊥ are just symbols used in e.g., constraints of rewrite rules, and we distinguish them with true and false
used as values.

2When considering formulas in Fol(G,P,V), we force σϕ to be in Fol(G,P,V).

4 Transforming Dependency Chains into Bounded Monotone Sequences of Integers

if M |= ϕσ for all ground substitutions σ ∈ Sub(G) with Var(ϕ) ⊆ Dom(σ), and called satisfiable
w.r.t. M (M-satisfiable, for short) if M |= ϕσ for some ground substitution σ ∈ Sub(G) such that
Var(ϕ)⊆Dom(σ). A structureM for G and P is called an LIA-structure if the universe is the integers,
every symbol g ∈ G is interpreted as a linear integer arithmetic expression, and every symbol p ∈ P is
interpreted as a Presburger arithmetic sentence over the integers, e.g., binary comparison predicates.

Let F and G be pairwise disjoint signatures (i.e., F ∩G = /0),3 P a set of predicate symbols, and
M a structure for G and P . A constrained rewrite rule over (F ,G,P,M) is a triple (`,r,ϕ), de-
noted by `→ r [[ϕ]], such that `,r ∈ T (F ∪G,V), ` is not a variable, ϕ ∈ Fol(G,P,V), and Var(`) ⊇
Var(r)∪Var(ϕ). We usually consider M-satisfiable constraints for ϕ . When ϕ is >, we may write
`→ r instead of `→ r [[>]]. A constrained term rewriting system (constrained TRS, for short) over
(F ,G,P,M) is a finite set R of constrained rewrite rules over (F ,G,P). When ϕ = > for all rules
` → r [[ϕ]] ∈ R, R is a term rewriting system (TRS, for short). The rewrite relation →R of R is
defined as follows: →R= {(C[`σ]p,C[rσ]p) | `→ r [[ϕ]] ∈ R, C[] ∈ T�(F ∪G,V), σ ∈ Sub(F ∪
G,V), σ |Var(ϕ) ∈ Sub(G,V), ϕσ isM-valid}. To specify the position p where the term is reduced, we
may write→p,R or→>q,R where p > q. A term t is called terminating if there is no infinite reduction
sequence t→R t1→R t2→R · · ·. R is called terminating if every term is terminating. For a constrained
TRS R over (F ,G,P,M), the sets DR and CR of defined symbols and constructors, respectively, are
defined as follows: DR = { f ∈ F ∪G | f (t1, . . . , tn)→ r [[ϕ]] ∈R} and CR = (F ∪G)\DR.

Example 2.1 Let GLIA = {0/0,s/1,p/1}, PLIA = {',>,≥}, and MLIA an LIA-structure for GLIA and
PLIA such that the universe is Z, 0MLIA = 0, sMLIA(x) = x+1, pMLIA(x) = x−1, and > and ≥ are inter-
preted as the corresponding comparison predicates in the usual way. Then, we have that (s(s(0)))MLIA =
2, (s(p(p(s(0)))))MLIA = 0, and so on. R1 in Section 1 is over ({f/1},GLIA,PLIA,MLIA), and we have
e.g., f(s100(0))→R1 f(f(s

111(0)))→R1 f(p
10(s111(0)))→∗R1

f(s101(0))→R1 p
10(s101(0))→∗R1

s91(0).

We assume that R is locally sound forM [23, 22], i.e., for every rule `→ r [[ϕ]] ∈ R, if the root
symbol of ` is in G, then r and all the proper subterms of ` are in T (G,V), and the formula ϕ⇒ (`'r) is
M-valid. Local soundness forM ensures consistency for the semantics and further that no interpreted
ground term is reduced to any term containing an uninterpreted function symbol. This property is implic-
itly assumed in other formalizations of constrained rewriting by e.g., rules for constructors are separated
from user-defined rules [4, 5], or rules are defined for uninterpreted function symbols only [16].

3 The DP Framework for Constrained TRSs

In this section, we recall the DP framework for constrained TRSs [22], which is a straightforward exten-
sion of the DP framework [13, 5] for TRSs to constrained TRSs.

In the following, we let R be a constrained TRS over (F ,G,P,M) unless noted otherwise. We
introduce a marked symbol f] for each defined symbol f of R, where f] /∈ F ∪G. We denote the set of
marked symbol by D]

R. For a term t of the form f (t1, . . . , tn) in T (F ∪G,V) with f/n ∈ DR, we denote
f](t1, . . . , tn) (a marked term) by t]. To make it clear whether a term is marked, we often attach explicitly
the mark] to meta variables for marked terms. A constrained marked pair over (F∪D]

R,G,P) is a triple
(s], t],ϕ), denoted by s] → t] [[ϕ]], such that s and t are terms in T (F ∪G,V), both s and t are rooted
by defined symbols of R, and Var(s) ⊇ Var(t)∪Var(ϕ). When ϕ is >, we may write s]→ t] instead
of s]→ t] [[ϕ]]. A constrained marked pair s]→ t] [[ϕ]] is called a dependency pair of R if there exists

3A signature Σ is explicitly divided into F and G (i.e., Σ = F]G) where F is the set of uninterpreted symbols and G the
set of interpreted symbols. To make this distinguish clear, we always separate F and G, e.g., we write (F ,G) but not F]G.

T. Sasano, N. Nishida, M. Sakai, and T. Ueyama 5

a renamed variant s→C[t] [[ϕ]] of a rewrite rule in R. We denote the set of dependency pairs of R by
DP(R). In the following, we let S be a set of dependency pairs related toR unless noted otherwise.

A (possibly infinite) derivation s]0σ0→ε,S t]0σ0→∗>ε,R s]1σ1→ε,S t]1σ1→∗>ε,R · · ·with σ0,σ1,σ2, . . .∈
Sub(F ∪G,V) is called a dependency chain w.r.t. S (S-chain, for short). The chain is called infinite if it
contains infinitely many→ε,S steps, and called minimal if t]i σi is terminating w.r.t. R for all i ≥ 0. We
deal with “minimal chains” only, and chains in this paper are minimal unless noted otherwise.

Theorem 3.1 ([22]) R is terminating iff there is no infinite DP(R)-chain.
A pair (S,R) of sets of dependency pairs and constrained rewrite rules is called a DP problem. We

denote a DP problem (S,R) by S because in this paper, we do not modify R. A DP problem S is
called finite if there is no infinite S-chain, and called infinite if the DP problem is not finite or R is not
terminating. Note that there are DP problems which are both finite and infinite (see [14]). A DP problem
S is called trivial if S = /0. A DP processor is a function which takes a DP problem as input and returns
a finite set of DP problems. A DP processor Proc is called sound if for any DP problem S , the DP
problem is finite whenever all the DP problems in Proc(S) are finite. Proc is called complete if for any
DP problem S, the DP problem is infinite whenever there exists an infinite DP problem in Proc(S). The
DP framework is a method to prove/disprove the finiteness of DP problems:4 given a constrained TRS
R, if the initial DP problem DP(R) is decomposed into trivial DP problems by sound DP processors,
then the framework succeeds in proving termination ofR.

In the rest of this section, we briefly introduce the DP processor based on polynomial interpretations
(PI, for short), which is an extension of those in the DP framework for TRSs.

The PI-based processor in [22] is defined for constrained TRSs with an LIA-structure MZ with
binary predicate symbols > and ≥. Given a signature Σ = F]GZ with GZ ⊇ {+,−}, we define a
linearpolynomial interpretation Pol for a subsignature F ′ ⊆F , n-ary function symbol f in F ′, Pol(f) is
a term in T (GZ,{x1, . . . ,xn}) that represents a linear polynomial. Note that GZ andMZ may be different
from GLIA and MLIA in Example 2.1. For readability, we use usual mathematical notions for terms in
T (GZ,V)—e.g., 100 for s100(0), 2x for x+ x, and so on—and, given an n-ary symbol f in F ′, we write
a0 + a1x1 + · · ·+ anxn for Pol(f). We apply Pol for F ′ to arbitrary terms in T (F ∪GZ,V) as follows:
Pol(x) = x for x ∈ V; Pol(f (t1, . . . , tn)) = Pol(f){xi 7→ Pol(ti) | 1 ≤ i ≤ n} if Pol(f) is defined (i.e.,
f ∈ F ′), and otherwise, Pol(f (t1, . . . , tn)) = f (Pol(t1), . . . ,Pol(tn)). In the following, we use R as a
constrained TRS over (F ,GZ,PZ,MZ) without notice. To simplify the presentation, we introduce a
weaker version of the PI-based processor in [22].

Definition 3.2 ([22]) Let Pol be a linear PI for D]
R

5 such that Pol(s]),Pol(t]) ∈ T (GZ,V) for all s]→
t] [[ϕ]] ∈ S,6

(A1) for any s]→ t] [[ϕ]] ∈ S, Var(Pol(t]))⊆ Var(ϕ)∪Var(Pol(s])), and

(S1) for any s]→ t] [[ϕ]] ∈ S, ϕ ⇒Pol(s])≥Pol(t]) isMZ-valid.

Then, the PI-based processor ProcPI is defined as follows:
ProcPI(S) = { S \S>, S \Sbound, S \Sfilter }where

• S> = {s]→ t] [[ϕ]] ∈ S | ϕ ⇒Pol(s])> Pol(t]) isMZ-valid},
• Sbound = {s]→ t] [[ϕ]] ∈ S | ϕ ⇒Pol(s])> c0 isMZ-valid for some c0 ∈ T (GZ)}, and

4In this paper, we do not consider disproving termination, and thus, we do not formalize the case that DP processors return
“no” [14].

5Pol is not defined for any symbols in F .
6This condition ensures that all the uninterpreted function symbols in S are dropped by applyingPol to pairs in S. However,

the application of Pol to an instance of a pair in S may contain an uninterpreted function symbol.

6 Transforming Dependency Chains into Bounded Monotone Sequences of Integers

• Sfilter = {s]→ t] [[ϕ]] ∈ S | Var(Pol(s]))⊆ Var(ϕ)}.

To make S smaller via ProcPI, we need S> 6= /0, Sbound 6= /0, and Sfilter 6= /0. The idea of the PI-based
processor in Definition 3.2 is that an infinite S-chain which contains each pair in S>∪Sbound∪Sfilter in-
finitely many times can be transformed into an infinite bounded strictly-decreasing sequence of integers,
i.e., all the elements in the sequence is greater than or equal to a lower bound. Pairs in S≥ ensures that the
sequence is decreasing; Pairs in S> ensures that in focusing on them, the sequence is strictly decreasing;
Pairs in Sbound ensures the existence of the lower bound; Pairs in Sfilter ensures the existence of a pair
which is reduced by Pol to an interpreted ground term (i.e., an integer); (A1) ensures that all pairs in the
sequence appeared after those in Sfilter can be reduced by Pol to integers.

Theorem 3.3 ([22]) ProcPI is sound and complete.

Example 3.4 Consider R1 and its dependency pairs DP(R1) in Section 1 again. Let us try to apply
ProcPI to the DP problem DP(R1). Let Pol be a linear PI such that Pol(f]) = a0 +a1x1. To satisfy the
condition “Pol(s]),Pol(t]) ∈ T (GZ,V) for all s] → t] [[ϕ]] ∈ S”, a1 has to be 0 since f /∈ D]

R. Thus,
Pol(f]) = a0, and hence S> = /0. Therefore, ProcPI(DP(R1)) = { DP(R1) } and ProcPI does not work
for the DP problem DP(R1). Note that the other DP processors based on strongly connected components
or the subterm criterion (cf. [22]) do not work for this DP problem, either.

4 From Dependency Chains to Monotone Sequences of Integers
PIs satisfying the conditions in Definition 3.2 transform S-chains into bounded decreasing sequences of
integers. Focusing on such PIs, we obtain the following corollary from Definition 3.2 and Theorem 3.3.

Corollary 4.1 Let Pol be a linear PI for D]
R such that Pol(s]),Pol(t]) ∈ T (GZ,V) for all s]→ t] [[ϕ]] ∈

S, and both (A1) and (S1) in Definition 3.2 hold. Then, every S-chain s]0σ0→ε,S t]0σ0→∗>ε,R s]1σ1→ε,S

t]1σ1→∗>ε,R · · · starting with s]0→ t]0 [[ϕ0]] satisfying Var(Pol(s]0))⊆ Var(ϕ0) can be transformed into a

decreasing sequence Pol(s]0σ0)≥Pol(t]0σ0)≥Pol(s]1σ1)≥Pol(t]1σ1)≥ ·· · of integers such that

• > appears infinitely many times if s] → t] [[ϕ]] ∈ S> in Definition 3.2 appears in the S-chain
infinitely many times, and

• the sequence is bounded (i.e., there exists an integer n such that Pol(s]i) ≥ n for all i) if s] →
t] [[ϕ]] ∈ Sbound in Definition 3.2 appears in the S-chain infinitely many times.

In this section, we show sufficient conditions of a linear PI for transforming dependency chains
into monotone sequences of integers, strengthening the PI-based processor ProcPI. The difference from
ProcPI is to takeR into account.

4.1 The Existing Approach to Transformation of Chains into Decreasing Sequences
As the first step, we follow the existing approach in [5]. To this end, we recall the notion of reducible
positions [5]. A natural number i is a reducible position of a marked symbol f] w.r.t. S if there is a
dependency pair s]→ f](t1, . . . , tn) [[ϕ]] ∈ S such that ti /∈ T (G,Var(ϕ)).7

To extract rewrite sequences of R in transforming chains into sequences of integers, for f/n and
Pol(f]) = a0 +a1x1 + · · ·+anxn, ProcPI requires the coefficient ai of any reducible position i of f] w.r.t.
S to be 0. Due to this requirement, in applying ProcPI, we do not have to take into account rules in
R. However, as seen in Example 3.4, this requirement makes ProcPI ineffective in the case where all

7In [5], ti /∈ T (G,V) is required but in this paper, we require a stronger condition “ti /∈ T (G,Var(ϕ))” that is more essential
for this notion.

T. Sasano, N. Nishida, M. Sakai, and T. Ueyama 7

arguments of marked symbols are reducible positions. For this reason, we relax this requirement as in [5]
by making a linear PI Pol for D]

R∪F satisfy the following conditions:

(A2) Any reduction ofR for uninterpreted symbols in F does not happen in the second argument of the
subtraction operator—for any u→ v [[ϕ]] ∈ R∪S and any subterm v′ of v, if v′ is rooted by the
subtraction symbol “−”, then v′|2 ∈ T (GZ,Var(ϕ));

(A3) bi ≥ 0 for all 1≤ i≤ n and for any f/n ∈ F with Pol(f) = b0 +b1x1 + · · ·+bnxn;

(R1) ϕ ⇒Pol(`)≥Pol(r) isMZ-valid for any `→ r [[ϕ]] ∈R;

(P1) ai≥ 0 for any reducible position i of f] and for any f/n∈DR withPol(f])= a0+a1x1+· · ·+anxn.

The first three conditions ensure that for any term s, t ∈ T (F ∪G), if s→R t, then Pol(s) ≥ Pol(t).
The first and last conditions ensure that for any term s, t ∈ T (F ∪G) with root(s) ∈ DR, if s] →R
t], then Pol(s]) ≥ Pol(t]). Note that (A1) and Sfilter are no longer required because Pol interprets all
uninterpreted symbols.

Example 4.2 Let Pol be a linear PI such that Pol(f]) = a0 + a1x1 and Pol(f) = b0 + b1x1 with a1 ≥ 0
and b1 ≥ 0. To transform DP(R1)-chains into decreasing sequences of integers, both s101(0) > x⇒
Pol(f(x)) ≥ Pol(f(f(s11(x)))) (i.e., 101 > x⇒ b0 + b1x ≥ b0 + b1(b0 + b1(x+ 11))) and ¬(s101(0) >
x)⇒ Pol(f(x)) ≥ Pol(p10(x)) (i.e., 101 ≤ x⇒ b0 + b1x ≥ x− 10) have to be MLIA-valid. However,
there is no assignment for a0,a1,b0,b1 ensuing the validity of the two formuas.

4.2 Transforming Rewrite Sequences into Increasing Sequences of Integers
As seen in Example 4.2, for R1, it is impossible for any linear PI to ensure (R1). To transform depen-
dency chains into decreasing sequences, the coefficient for a reducible position (i.e., ai of Pol(f]) =
a0 + a1x1 + · · ·+ anxn with reducible position i) has to be a non-negative integer because any rewrite
sequences appears below the reducible position is transformed into a decreasing sequence. However, for
that purpose, all coefficients for reducible positions may be negative if rewrite sequences are transformed
into increasing sequences, i.e., we require that

(R2) ϕ ⇒Pol(`)≤Pol(r) isMZ-valid for any `→ r [[ϕ]] ∈R, and

(P2) ai≤ 0 for any reducible position i of f] and for any f/n∈DR withPol(f])= a0+a1x1+· · ·+anxn.

Example 4.3 Let Pol be a linear PI such that Pol(f]) = 209−2x1 and Pol(f) =−10+x1. Then, all (A2),
(A3), (R2), and (P1) are satisfied, and S> = Sbound = { (3), (4) }. This means that every DP(R1)-chain
can be transformed into a decreasing sequence of integers such that

• > appears infinitely many times if (3) or (4) appears in the chain infinitely many times, and

• the sequence is bounded if (3) or (4) appears in the chain infinitely many times.

Therefore, there is no infinite DP(R1)-chain, and henceR1 is terminating.

4.3 Transforming Dependency Chains into Increasing Sequences of Integers
The role of PI Pol in ProcPI is to transform dependency chains into bounded decreasing sequences of
integers, and to drop a dependency pair s]→ t] [[ϕ]] ∈ S such that ϕ ⇒Pol(s])> Pol(t]) isMZ-valid.
Since transformed sequences are bounded, the sequences do not have to be decreasing, i.e., they may be
bounded increasing sequences. To transform dependency chains into increasing sequences, we invert ≥
in (S1) and > of S> as follows:

• S> = {s]→ t] [[ϕ]] ∈ S | ϕ ⇒Pol(s])< Pol(t]) isMZ-valid}, and

(S2) for any s]→ t] [[ϕ]] ∈ S , ϕ ⇒Pol(s])≤Pol(t]) is valid.

8 Transforming Dependency Chains into Bounded Monotone Sequences of Integers

For rewrite sequences, we have two ways to transform them (into either decreasing or increasing se-
quences) and thus, we have the following two combinations to transform dependency chains into in-
creasing sequences.

• When we transform rewrite sequences into decreasing sequences as in Section 4.1, we require
(A2), (A3), (R1), (P2), and (S2).

• When we transform rewrite sequences into increasing sequences as in Section 4.2, we require (A2),
(A3), (R2), (P1), and (S2).

For the both cases above, to ensure the existence of an upper bound, we need a dependency pair s]→
t] [[ϕ]] ∈ S such that ϕ ⇒Pol(s])≤ c0 isMZ-valid for some c0 ∈ T (GZ).

4.4 Improving the PI-based Processor
Finally, we formalize the ideas in previous sections as an improvement of the PI-based processor ProcPI.

Definition 4.4 Suppose that (A2) for any u→ v [[ϕ]] ∈R∪S and any subterm v′ of v, if v′ is rooted by
the subtraction symbol “−”, then v′|2 ∈ T (GZ,Var(ϕ)). Let (./1,./2,./3) ∈ {(>,≥,≥),(<,≥,≤),(>
,≤,≤),(<,≤,≥)}, and Pol a linear PI for D]

R∪F such that

• bi ≥ 0 for all 1≤ i≤ n and for any f/n ∈ F with Pol(f) = b0 +b1x1 + · · ·+bnxn,

• ϕ ⇒Pol(`) ./2 Pol(r) isMZ-valid for any `→ r [[ϕ]] ∈R,

• ai ./3 0 for any reducible position i of f] and for any f/n ∈ DR with Pol(f]) = a0 +a1x1 + · · ·+
anxn, and

• ϕ ⇒ (Pol(s]) ./1 Pol(t])∨Pol(s])'Pol(t])) isMZ-valid for any s]→ t] [[ϕ]] ∈ S .

Then, the PI-based processor Proc(./1,./2,./3) is defined as follows:

Proc(./1,./2,./3)(S) = { S \S./, S \Sbound }
where

• S./ = {s]→ t] [[ϕ]] ∈ S | ϕ ⇒Pol(s]) ./1 Pol(t]) isMZ-valid}, and

• Sbound = {s]→ t] [[ϕ]] ∈ S | ϕ ⇒Pol(s]) ./1 c0 isMZ-valid for some c0 ∈ T (GZ)}.

Theorem 4.5 Proc(>,≥,≥), Proc(<,≥,≤), Proc(>,≤,≤), and Proc(<,≤,≥) are sound and complete.

By definition, it is clear that Proc(>,≥,≥) and Proc(<,≥,≤) are the same functions from theoretical
point of view, and Proc(>,≤,≤) and Proc(<,≤,≥) are so. For example, given a DP problem S and a linear
PI Pol1 satisfying the conditions of Proc(>,≥,≥), we can construct a linear PI Pol2 such that Pol2 satisfies
the conditions of Proc(<,≥,≤) and Proc(>,≥,≥)(S) = Proc(<,≥,≤)(S).

4.5 Implementation and Experiments
We implemented the new PI-based processors Proc(>,≥,≥), Proc(<,≥,≤), Proc(>,≤,≤), and Proc(<,≤,≥) in
Cter, a termination prover based on the techniques in [22]. Those processors first generate a template of
a linear PI such as Pol(f) = a0 + a1x1 + · · ·anxn with non-fixed coefficients a0,a1, . . . ,an, producing a
non-linear integer arithmetic formula that belongs to NIA, a logic category of SMT-LIB8. Satisfiability of
the generated formula corresponds to the existence of the PI satisfying the conditions that the processors
require. Then, the processors call Z3 [20], an SMT solver, to find an expected PI—if Z3 returns “unsat”,
then there exists no PI satisfying the conditions.

Table 1 illustrates the results of experiments to prove termination ofR1 using one of the new proces-
sors. In the third case, Proc(>,≤,≤) was applied twice—it first decomposes the initial problem to {(3)}

8http://smtlib.cs.uiowa.edu

http://smtlib.cs.uiowa.edu

T. Sasano, N. Nishida, M. Sakai, and T. Ueyama 9

Table 1: the result of experiments to prove termination ofR1 using the new PI-based processors
Used processor Chains Rewrite sequences Result Time (sec.) Output of Z3 Pol(f) Pol(f]) c0

Proc(>,≥,≥) decreasing decreasing fail 37 unsat — — –
Proc(<,≥,≤) increasing decreasing fail 22 unsat — — –

Proc(>,≤,≤) decreasing increasing success 82 sat
sat

−10+ x1
−10+ x1

1120−11x1
200−2x1

21
0

Proc(<,≤,≥) increasing increasing success 176 sat −10+ x1 −702+7x1 −2

and then solves {(3)}. Experiments are conducted on a machine running Ubuntu 14.04 LTS equipped
with an Intel Core i5 CPU at 3.20 GHz with 8 GB RAM. Surprisingly, for each pair of processors with
the same power, (Proc(>,≥,≥),Proc(<,≥,≤)) and (Proc(>,≤,≤),Proc(<,≤,≥)), the running times are quite
different. The reason of these differences might be caused by how Z3 searches assignments that sat-
isfy given formulas. Note that we improved the original PI-based processor in [22]—not the simplified
version introduced in this paper—and thus the bounds do not fit Definition 4.4 while they are correct.

5 Conclusion
In this paper, we showed sufficient conditions of PIs for transforming dependency chains into bounded
monotone sequences of integers, and improved the PI-based processor proposed in [22], providing four
PI-based processors. We showed that two of them are useful to prove termination of a constrained TRS
defining the McCarthy 91 function over the integers.

The execution time of the proposed processors are larger than we expected, and we would like to
improve efficiency. Given a DP problem, the current implementation produces a single large quanti-
fied non-linear formula of integer arithmetic expressions, and passes the formula to Z3—Z3 may spend
much time to solve such a complicated formula. One of our future work is to improve efficiency of the
implementation by simplifying formulas passed to Z3.

One of the important related work is the method in [8]—our PI-based processors would be simplified
variants of the method while it has to be extended to constrained rewriting. We will extend the method
to our setting and compare our processors with the extended method from theoretical point of view.

Acknowledgement We thank the anonymous reviewers for their useful remarks for further develop-
ment of our PI-based processors.

References
[1] Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl Gutiérrez, Salvador Lucas, Peter

Schneider-Kamp & René Thiemann (2008): Improving Context-Sensitive Dependency Pairs. In: Proc. LPAR
2008, Lecture Notes in Computer Science 5330, Springer, pp. 636–651, doi:10.1007/978-3-540-89439-1 44.

[2] Thomas Arts & Jürgen Giesl (2000): Termination of term rewriting using dependency pairs. Theor. Comput.
Sci. 236(1-2), pp. 133–178, doi:10.1016/S0304-3975(99)00207-8.

[3] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press,
doi:10.1145/505863.505888.

[4] Adel Bouhoula & Florent Jacquemard (2008): Automated Induction with Constrained Tree Automata. In:
Proc. IJCAR 2008, Lecture Notes in Computer Science 5195, Springer, pp. 539–554, doi:10.1007/978-3-
540-71070-7 44.

[5] Stephan Falke & Deepak Kapur (2008): Dependency Pairs for Rewriting with Built-In Numbers and Semantic
Data Structures. In: Proc. RTA 2008, Lecture Notes in Computer Science 5117, Springer, pp. 94–109,
doi:10.1007/978-3-540-70590-1 7.

[6] Stephan Falke & Deepak Kapur (2009): A Term Rewriting Approach to the Automated Termination Analysis
of Imperative Programs. In: Proc. CADE 2009, Lecture Notes in Computer Science 5663, Springer, pp.
277–293, doi:10.1007/978-3-642-02959-2 22.

http://dx.doi.org/10.1007/978-3-540-89439-1_44
http://dx.doi.org/10.1016/S0304-3975(99)00207-8
http://dx.doi.org/10.1145/505863.505888
http://dx.doi.org/10.1007/978-3-540-71070-7_44
http://dx.doi.org/10.1007/978-3-540-71070-7_44
http://dx.doi.org/10.1007/978-3-540-70590-1_7
http://dx.doi.org/10.1007/978-3-642-02959-2_22

10 Transforming Dependency Chains into Bounded Monotone Sequences of Integers

[7] Stephan Falke & Deepak Kapur (2012): Rewriting Induction + Linear Arithmetic = Decision Procedure. In:
Proc. IJCAR 2012, Lecture Notes in Computer Science 7364, Springer, pp. 241–255, doi:10.1007/978-3-
642-31365-3 20.

[8] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann & Harald Zankl
(2008): Maximal Termination. In: Proc. RTA 2008, Lecture Notes in Computer Science 5117, Springer,
pp. 110–125, doi:10.1007/978-3-540-70590-1 8.

[9] Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp & Stephan Falke (2009): Proving Termi-
nation of Integer Term Rewriting. In: Proc. RTA 2009, Lecture Notes in Computer Science 5595, Springer,
pp. 32–47, doi:10.1007/978-3-642-02348-4 3.

[10] Carsten Fuhs, Cynthia Kop & Naoki Nishida (2017): Verifying Procedural Programs via Constrained Rewrit-
ing Induction. ACM Trans. Comput. Log. 18(2), pp. 14:1–14:50, doi:10.1145/3060143.

[11] Yuki Furuichi, Naoki Nishida, Masahiko Sakai, Keiichirou Kusakari & Toshiki Sakabe (2008): Approach to
Procedural-program Verification Based on Implicit Induction of Constrained Term Rewriting Systems. IPSJ
Trans. Program. 1(2), pp. 100–121. In Japanese (a translated summary is available from http://www.trs.

css.i.nagoya-u.ac.jp/crisys/).
[12] Jürgen Giesl (1997): Termination of Nested and Mutually Recursive Algorithms. J. Autom. Reasoning 19(1),

pp. 1–29, doi:10.1023/A:1005797629953.
[13] Jürgen Giesl, René Thiemann & Peter Schneider-Kamp (2005): The Dependency Pair Framework: Combin-

ing Techniques for Automated Termination Proofs. In: Proc. LPAR 2004, Lecture Notes in Computer Science
3452, Springer, pp. 301–331, doi:10.1007/978-3-540-32275-7 21.

[14] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp & Stephan Falke (2006): Mechanizing and Improving
Dependency Pairs. J. Autom. Reasoning 37(3), pp. 155–203, doi:10.1007/s10817-006-9057-7.

[15] Cynthia Kop (2013): Termination of LCTRSs (extended abstract). In: Proc. WST 2013, pp. 1–5. Available
at http://www.imn.htwk-leipzig.de/WST2013/papers/paper_12.pdf.

[16] Cynthia Kop & Naoki Nishida (2013): Term Rewriting with Logical Constraints. In: Proc. FroCoS 2013,
Lecture Notes in Artificial Intelligence 8152, pp. 343–358, doi:10.1007/978-3-642-40885-4 24.

[17] Cynthia Kop & Naoki Nishida (2014): Automatic Constrained Rewriting Induction towards Verifying Pro-
cedural Programs. In: Proc. APLAS 2014, Lecture Notes in Computer Science 8858, pp. 334–353,
doi:10.1007/978-3-319-12736-1 18.

[18] Cynthia Kop & Naoki Nishida (2015): Constrained Term Rewriting tooL. In: Proc. LPAR-20, Lecture Notes
in Computer Science 9450, pp. 549–557, doi:10.1007/978-3-662-48899-7 38.

[19] Salvador Lucas & José Meseguer (2014): 2D Dependency Pairs for Proving Operational Termination
of CTRSs. In: Proc. WRLA 2014, Lecture Notes in Computer Science 8663, Springer, pp. 195–212,
doi:10.1007/978-3-319-12904-4 11.

[20] Leonardo Mendonça de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In: Proc. TACAS
2008, Lecture Notes in Computer Science 4963, Springer, pp. 337–340, doi:10.1007/978-3-540-78800-3 24.

[21] Enno Ohlebusch (2002): Advanced Topics in Term Rewriting. Springer, doi:10.1007/978-1-4757-3661-8.
[22] Tsubasa Sakata, Naoki Nishida & Toshiki Sakabe (2011): On Proving Termination of Constrained Term

Rewrite Systems by Eliminating Edges from Dependency Graphs. In: Proc. WFLP 2011, Lecture Notes in
Computer Science 6816, Springer, pp. 138–155, doi:10.1007/978-3-642-22531-4 9.

[23] Tsubasa Sakata, Naoki Nishida, Toshiki Sakabe, Masahiko Sakai & Keiichirou Kusakari (2009): Rewriting
Induction for Constrained Term Rewriting Systems. IPSJ Trans. Program. 2(2), pp. 80–96. In Japanese (a
translated summary is available from http://www.trs.css.i.nagoya-u.ac.jp/crisys/).

[24] Yoshihito Toyama (1987): Confluent Term Rewriting Systems with Membership Conditions. In: Proc. CTRS
1987, Lecture Notes in Computer Science 308, Springer, pp. 228–241, doi:10.1007/3-540-19242-5 17.

[25] Hans Zantema (2003): Termination. In: Term Rewriting Systems, chapter 6, Cambridge Tracts in Theoretical
Computer Science 55, Cambridge University Press, pp. 181–259, doi:t10.1017/S1471068405222445.

http://dx.doi.org/10.1007/978-3-642-31365-3_20
http://dx.doi.org/10.1007/978-3-642-31365-3_20
http://dx.doi.org/10.1007/978-3-540-70590-1_8
http://dx.doi.org/10.1007/978-3-642-02348-4_3
http://dx.doi.org/10.1145/3060143
http://www.trs.css.i.nagoya-u.ac.jp/crisys/
http://www.trs.css.i.nagoya-u.ac.jp/crisys/
http://dx.doi.org/10.1023/A:1005797629953
http://dx.doi.org/10.1007/978-3-540-32275-7_21
http://dx.doi.org/10.1007/s10817-006-9057-7
http://www.imn.htwk-leipzig.de/WST2013/papers/paper_12.pdf
http://dx.doi.org/10.1007/978-3-642-40885-4_24
http://dx.doi.org/10.1007/978-3-319-12736-1_18
http://dx.doi.org/10.1007/978-3-662-48899-7_38
http://dx.doi.org/10.1007/978-3-319-12904-4_11
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-1-4757-3661-8
http://dx.doi.org/10.1007/978-3-642-22531-4_9
http://www.trs.css.i.nagoya-u.ac.jp/crisys/
http://dx.doi.org/10.1007/3-540-19242-5_17
http://dx.doi.org/t10.1017/S1471068405222445

	Introduction
	Preliminaries
	The DP Framework for Constrained TRSs
	From Dependency Chains to Monotone Sequences of Integers
	The Existing Approach to Transformation of Chains into Decreasing Sequences
	Transforming Rewrite Sequences into Increasing Sequences of Integers
	Transforming Dependency Chains into Increasing Sequences of Integers
	Improving the PI-based Processor
	Implementation and Experiments

	Conclusion

