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We explore space improvements in LRP, a polymorphically typed call-by-need functional core lan-
guage. A relaxed space measure is chosen for the maximal size usage during an evaluation. It
abstracts from the details of the implementation via abstract machines, but it takes garbage collection
into account and thus can be seen as a realistic approximation of space usage. The results are: a
context lemma for space improving translations and for space equivalences; all but one reduction
rule of the calculus are shown to be space improvements, and the exceptional one, the copy-rule,
is shown to increase space only moderately; several further program transformations are shown to
be space improvements or space equivalences, in particular the translation into machine expressions
is a space equivalence. These results are a step forward in making predictions about the change in
runtime space behavior of optimizing transformations in call-by-need functional languages.

1 Introduction

The focus of this paper is on providing methods for analyzing optimizations for call-by-need functional
languages. Haskell [10, 4] is a functional programming language that uses lazy evaluation, and employs
a polymorphic type system. Programming in Haskell is declarative, which avoids overspecifying imper-
ative details of the actions at run time. Together with the type system this leads to a compact style of
high level programming and avoids several types of errors.

The declarative features must be complemented with a more sophisticated compiler including opti-
mization methods and procedures. Declarativeness in connection with lazy evaluation (which is call-by-
need [1, 12] as a sharing variant of call-by-name) gives a lot of freedom to the exact execution and is
accompanied by a semantically founded notion of correctness of the compilation. Compilation is usually
a process that translates the surface program into a core language, where the optimization process can be
understood as a sequence of transformations producing a final program.

Evaluation of a program or of an expression in a lazily evaluating functional language is connected
with variations in the evaluation sequences of the expressions in the function body, depending on the
arguments. The optimization exploits this and usually leads to faster evaluation. The easy to grasp notion
of time improvements is contrasted by an opaque behavior of the evaluation w.r.t. space usage, which in
the worst case may lead to space leaks (high space usage during evaluation, which could be avoided by
correctly transforming the program before evaluation). Programmers may experience this space leak as
unpredictability of space usage, generating rumors like “Haskell’s space usage prediction is a black art”
and in fact a loss of trust into the optimization. [6, 7, 2] observed that semantically correct modifications
of the sequence of evaluation (for example due to strictness information) may have a dramatic effect on
space usage. An example is (head xs) eqBool (last xs) vs. (last xs) eqBool (head xs) where xs is
bound to an expression that generates a long list of Booleans (using the Haskell-conventions).
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Early work on space improvements by Gustavsson and Sands [6, 7] provides deep insights and
founded methods to analyze the dynamic space usage of programs in call-by-need functional languages.
Our work is a reconsideration of the same issues, but there are some differences: their calculus has a
restricted syntax (for example the arguments of function calls must be variables), whereas our calculus
is unrestricted; they investigate an untyped calculus, whereas we investigate a typed calculus. Measuring
space is also slightly different: whereas [6, 7] counts only the bindings, we count the whole expression,
but instead omit parts of the structure (for example variables are not counted). The difference in space
measuring appears to be arbitrary, however, our measure turns out to ignore the right amount of noise
and subtleties of space behavior, but nevertheless sufficiently models the reality.

The focus of this paper is to contribute to a better understanding of the space usage of lazy functional
languages and to enable tools for a better predictability of space requirements. The approach is to ana-
lyze a polymorphically typed and call-by-need functional core language LRP that is a lambda calculus
extended with the constructs letrec, case, constructors, seq, type-abstraction, and with call-by-need eval-
uation. Call-by-need evaluation has a sharing regime and due to the recursive bindings by a letrec, in fact
a sharing graph is used. Focussing on space usage enforces to include garbage collection into the model,
i.e. the core language. This model is our calculus LRPgc.

The contributions and results of this paper are: A definition (Def. 3.3) of the space measure spmax
as an abstract version of the maximally used space by an abstract machine during an evaluation, and a
corresponding definition of transformations to be max-space-improvements or -equivalences, where the
criterion is that this holds in every context. Two context lemmas (Props. 3.4 and 3.5) are proved that
ease proofs of transformations being space improvements or equivalences. The main result is a classifi-
cation in Section 4 of the rules of the calculus used as transformations, and of further transformations as
max-space improvements and/or max-space equivalences, or as increasing the space. These results, in
particular the space-equivalence (ucp) then imply that the transformation into machine expressions keeps
the max-space usage which also holds for the evaluations on the abstract machine. In addition, for the
(cp)-rule, which is not a max-space improvement, we show upper bounds for the max-space increase of
a version of (cp) not copying into abstractions. The type-dependent rule (caseId) is shown to be a max-
space improvement, which is a minimal example for the space behavior of larger class of type-dependent
transformations and which are not space-improvements if types are omitted. This is a contribution to
predicting the space behavior of optimizing transformations, which in the future may lead also to a better
control of powerful, but space-hazardous, transformations.

We discuss some previous work on time and space behavior for call-by-need functional languages.
Examples for research on the correctness of program transformations are e.g. [13, 9, 20], and examples
for the use of transformations in optimization in functional languages are [14] and the work on Hermit
[21]. A theory of (time) optimizations of call-by-need functional languages was started in [11] for a
call-by-need higher order language, also based on a variant of Sestoft’s abstract machine [22]. Clearly
there are other program transformations with a high potential to improve efficiency. An example trans-
formation with a high potential to improve efficiency is common subexpression elimination, which is
considered in [11], but not proved to be a time improvement (but it is conjectured), and which is proved
correct in [17]. Hackett and Hutton [8] applied the improvement theory of [11] to argue that optimiza-
tions are indeed improvements, with a particular focus on (typed) worker/wrapper transformations (see
e.g. [3] for more examples). The work of [8] uses the same call-by-need abstract machine as [11] with a
slightly modified measure for the improvement relation. Further work that analyses space-usage of a lazy
functional language is [2], for a language without letrec and using a term graph model, and comparing
different evaluators.

The structure of the paper is to first define the calculi LRP in Section 2.1 and a variant LRPgc with
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Syntax of expressions and types: Let type variables a,ai ∈ TVar and term variables x,xi ∈ Var. Every
type constructor K has an arity ar(K) ≥ 0 and a finite set DK of data constructors cK,i ∈ DK with an
arity ar(cK,i)≥ 0.

Types Typ and polymorphic types PTyp are defined as follows:
τ ∈ Typ ::= a | (τ1→ τ2) | (K τ1 . . . τar(K))

ρ ∈ PTyp ::= τ | ∀a.ρ
Expressions Expr are generated by this grammar with n≥ 1 and k ≥ 0:

r,s, t ∈ Expr ::= u | x::ρ | (s τ) | (s t) | (seq s t) | (cK,i::(τ) s1 . . . sar(cK,i))

| (letrec x1::ρ1 = s1, . . . ,xn::ρn = sn in t)
| (caseK s of {(PatK,1-> t1) . . . (PatK,|DK |-> t|DK |)})

PatK,i ::= (cK,i :: (τ) (x1 :: τ1) . . . (xar(cK,i) :: τar(cK,i)))

u ∈ PExpr ::= (Λa1.Λa2. . . .Λak.λx :: τ.s)

Figure 1: Syntax of expressions and types of LRP

garbage collection in Sect.2.2. Sect. 3 defines space improvements and contains the context lemmata.
Sect. 4 contains a detailed treatment of space improving transformations. Finally in Sect. 5, we comment
on the impact of some time-improvements on space usage, and argue on the the translation into machine
language and its space-usage. Missing explanations, arguments and proofs can be found in the technical
report [15].

2 Lazy Lambda Calculi, Polymorphic and Untyped

We introduce the polymorphically typed LRP, and the variant LRPgc with garbage collection, since
numerous complex transformations have their nice space improving property under all circumstances (in
all contexts) only in a typed language.

2.1 LRP: The Polymorphic Variant

We recall the polymorphically typed and extended lazy lambda calculus (LRP) [18, 17, 16] as language.
We also motivate and introduce several necessary extensions for supporting realistic space analyses.

LRP [16] is LR (an extended call-by-need lambda calculus with letrec, e.g. see [20]) extended
with types. I.e. LRP is an extension of the lambda calculus by polymorphic types, recursive letrec-
expressions, case-expressions, seq-expressions, data constructors, polymorphic abstractions Λa.s to
express polymorphic functions and type applications (s τ) for type instantiations. The syntax of expres-
sions and types of LRP is defined in Fig. 1.

An expression is well-typed if it can be typed using typing rules that are defined in [16]. LRP is a
core language of Haskell and is simplified compared to Haskell, because it does not have type classes
and is only polymorphic in the bindings of letrec variables. But LRP is sufficiently expressive for
polymorphically typed lists and functions working on such data structures.

From now on we use E as abbreviation for a letrec-environment, {xg(i) = s f (i)}m
i= j for xg( j) =

s f ( j), . . . ,xg(m) = s f (m) and alts for case-alternatives. Bindings in letrec-environments can be com-
muted. We use FV (s) and BV (s) to denote free and bound variables of an expression s and LV (E) to
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(lbeta) ((λx.s)sub r)→ (letrec x = r in s)
(Tbeta) ((Λa.u)sub τ)→ u[τ/a]
(cp-in) (letrec x1 = vsub,{xi = xi−1}m

i=2,E in C[xvis
m ])→ (letrec x1 = v,{xi = xi−1}m

i=2,E in C[v])
where v is a polymorphic abstraction

(cp-e) (letrec x1 = vsub,{xi = xi−1}m
i=2,E,y =C[xvis

m ] in r)
→ (letrec x1 = v,{xi = xi−1}m

i=2,E,y =C[v] in r)
where v is a polymorphic abstraction

(llet-in) (letrec E1 in (letrec E2 in r)sub)→ (letrec E1,E2 in r)
(llet-e) (letrec E1,x = (letrec E2 in t)sub in r)→ (letrec E1,E2,x = t in r)
(lapp) ((letrec E in t)sub s)→ (letrec E in (t s))
(lcase) (caseK (letrec E in t)sub of alts)→ (letrec E in (caseK t of alts))
(seq-c) (seq vsub t)→ t if v is a value
(seq-in) (letrec x1 = (c #»s )sub,{xi = xi−1}m

i=2,E in C[(seq xvis
m t)])

→ (letrec x1 = (c #»s ),{xi = xi−1}m
i=2,E in C[t])

(seq-e) (letrec x1 = (c #»s )sub,{xi = xi−1}m
i=2,E,y =C[(seq xvis

m t)] in r)
→ (letrec x1 = (c #»s ),{xi = xi−1}m

i=2,E,y =C[t] in r)
(lseq) (seq (letrec E in s)sub t)→ (letrec E in (seq s t))
(case-c) (caseK csub of {. . .(c-> t) . . .})→ t if ar(c) = 0, otherwise:

(caseK (c #»s )sub of {. . .((c #»y )-> t) . . .})→ (letrec {yi = si}ar(c)
i=1 in t)

(case-in) (letrec x1 = csub,{xi = xi−1}m
i=2,E in C[(caseK xvis

m of {(c->r) . . .})])
→ (letrec x1 = c,{xi = xi−1}m

i=2,E in C[r]) if ar(c) = 0; otherwise:
(letrec x1 = (c #»t )sub,{xi = xi−1}m

i=2,E in C[(caseK xvis
m of {((c #»z )->r) . . .})])

→ (letrec x1 = (c #»y ),{yi = ti}ar(c)
i=1 ,{xi = xi−1}m

i=2,E in C[letrec {zi = yi}ar(c)
i=1 in r])

(case-e) (letrec x1 = csub,{xi = xi−1}m
i=2,u =C[(caseK xvis

m of {(c->r1) . . .})], E in r2)
→ (letrec x1 = c,{xi = xi−1}m

i=2,u =C[r1],E in r2) if ar(c) = 0; otherwise:
(letrec x1 = (c #»t )sub,{xi = xi−1}m

i=2,u =C[(caseK xvis
m of {. . .((c #»z )->r) . . .})],E in s)

→ (letrec x1 = (c #»y ),{yi = ti}ar(c)
i=1 ,{xi = xi−1}m

i=2,u =C[letrec {zi = yi}ar(c)
i=1 in r],E in s)

The variables yi are fresh ones in (case-in) and (case-e).

Figure 2: Basic LRP-reduction rules [16]

denote the binding variables of a letrec-environment. Furthermore we abbreviate (cK,i s1 . . . sar(cK,i))
with c #»s and λx1. . . .λxn.s with λx1, . . . ,xn.s. The data constructors Nil and Cons are used to represent
lists, but we may also use the Haskell-notation [] and (:) instead. A context C is an expression with
exactly one (typed) hole [·τ ] at expression position. A surface context, denoted S, is a context where
the hole is not within an abstraction, and a top context, denoted T , is a context where the hole is not in
an abstraction or a case alternative. A reduction context is a context where reduction may take place,
and it is defined using the labeling algorithm of [16]. Reduction contexts are for example [·], ([·] e),
(case [·] . . .) and letrec x = [·],y = x, . . . in (x True). Note that reduction contexts are surface as well
as top-contexts. A value is an abstraction λx.s, a polymorphic abstraction u or a constructor application
c #»s .

The classical β -reduction is replaced by the sharing (lbeta). (Tbeta) is used for type instantiations
concerning polymorphic type bindings. The rules (cp-in) and (cp-e) copy abstractions which is needed
when the reduction rule has to reduce an application ( f g) where f is an abstraction defined in a letrec-
environment. The rules (llet-in) and (llet-e) are used to merge nested letrec-expressions; (lapp), (lcase)
and (lseq) move a letrec-expression out of an application, a seq-expression or a case-expression;
(seq-c), (seq-in) and (seq-e) evaluate seq-expressions, where the first argument has to be a value or a
value which is reachable through a letrec-environment. (case-c), (case-in) and (case-e) evaluate case-
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expressions by using letrec-expressions to realize the insertion of the variables for the appropriate
case-alternative.

The following abbreviations are used: (cp) is the union of (cp-in) and (cp-e); (llet) is the union of
(llet-in) and (llet-e); (lll) is the union of (lapp), (lcase), (lseq) and (llet); (case) is the union of (case-c),
(case-in), (case-e); (seq) is the union of (seq-c), (seq-in), (seq-e).

Normal order reduction steps and termination are defined as follows:
Definition 2.1 (Normal order reduction). A normal order reduction step s LRP−−→ t is performed (uniquely)
if the labeling algorithm in [16] terminates on s inserting the (superscript) labels sub (subexpression)

and vis (visited) and the applicable rule (i.e. matching also the labels) of Fig. 2 produces t.
LRP,∗−−−→ is the

reflexive, transitive closure,
LRP,+−−−→ is the transitive closure of LRP−−→ and

LRP,k−−−→ denotes k LRP−−→-steps.
In Fig. 2 we omit the types in all rules with the exception of (TBeta) for simplicity. Note that the

normal-order reduction is type safe.
Definition 2.2. A weak head normal form (WHNF) in LRP is a value, or an expression letrec E in v,
where v is a value, or an expression letrec x1 = c #»t ,{xi = xi−1}m

i=2,E in xm. An expression s converges

to an expression t (s↓t or s↓ if we do not need t) if s
LRP,∗−−−→ t where t is a WHNF. Expression s diverges (s↑)

if it does not converge. The symbol ⊥ represents a closed diverging expression, e.g. letrec x = x in x.
Definition 2.3. For LRP-expressions s, t of the same type τ , s ≤c t holds iff ∀C[·τ ] : C[s]↓ ⇒C[t]↓, and
s∼c t holds iff s≤c t and t ≤c s. The relation≤c is called contextual preorder and∼c is called contextual
equivalence.

The following notions of reduction length are used for measuring the time behavior in LRP.
Definition 2.4. For a closed LRP-expression s with s↓s0, let rln(s) be the sum of all (lbeta)-, (case)- and
(seq)-reduction steps in s↓s0, let rlnLCSC(s) be the sum of all a-reduction steps in s↓s0 with a ∈ LCSC,
where LCSC = {(lbeta),(case),(seq),(cp)}, and let rlnall(s) be the total number of reduction steps,
but not (TBeta), in s↓s0.

2.2 LRPgc: LRP with Garbage Collection

As extra reduction rule in the normal order reduction we add garbage collection (gc), which is the union
of (gc1) and (gc2), but restricted to the top letrec (see Fig. 3).
Definition 2.5 (LRPgc). We define LRPgc, which employs all the rules of LRP and (gc) (see Fig. 3) as

follows: Let s be an LRP-expression (see [19, 16]). A normal-order-gc (LRPgc) reduction step s
LRPgc−−−→ t

is defined by two cases:

1. If a (gc)-transformation is applicable to s in the empty context, i.e. s
gc−→ t, then s

LRPgc−−−→ t, where
the maximum of bindings in the top letrec-environment is removed.

2. If (1) is not applicable and s LRP−−→ t, then s
LRPgc−−−→ t.

A sequence of LRPgc-reduction steps is called a normal-order-gc reduction sequence or LRPgc-

reduction sequence. A WHNF without
LRPgc,gc−−−−−→-reduction possibility is called an LRPgc-WHNF. If the

LRPgc-reduction sequence of an expression s halts with a LRPgc-WHNF, then we say s converges w.r.t.
LRPgc, denoted as s ↓LRPgc, or s ↓, if the calculus is clear from the context.

The extension of LRP-normal-order reduction by garbage collection steps does not change the con-
vergence and correctness:
Theorem 2.6. The calculus LRP is convergence-equivalent to LRPgc. I.e. for all expressions s: s↓ ⇐⇒
s↓LRPgc. Contextual equivalence and preorder for LRP coincide with the corresponding notions in
LRPgc.
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(gc1) letrec {xi = si}n
i=1,E in t→ letrec E in t if ∀i : xi 6∈ FV(t,E),n > 0

(gc2) letrec x1 = s1, . . . ,xn = sn in t→ t if for all i : xi 6∈ FV(t)

Figure 3: Garbage collection transformation rules for LRPgc

(cpx-in) (letrec x = y,E in C[x])→ (letrec x = y,E in C[y]) where y is a variable and x 6= y
(cpx-e) (letrec x = y,z =C[x],E in t)→ (letrec x = y,z =C[y],E in t) (same as above)
(cpcx-in) (letrec x = c #»t ,E in C[x])→ (letrec x = c #»y ,{yi = ti}ar(c)

i=1 ,E in C[c #»y ])
(cpcx-e) (letrec x = c #»t ,z =C[x],E in t)→ (letrec x = c #»y ,{yi = ti}ar(c)

i=1 ,z =C[c #»y ],E in t)
(abs) (letrec x = c #»t ,E in s)→ (letrec x = c #»x ,{xi = ti}ar(c)

i=1 ,E in s) where ar(c)≥ 1
(abse) (c #»t )→ (letrec {xi = ti}ar(c)

i=1 in c #»x ) where ar(c)≥ 1
(xch) (letrec x = t,y = x,E in r) → (letrec y = t,x = y,E in r)
(ucp1) (letrec E,x = t in S[x])→ (letrec E in S[t])
(ucp2) (letrec E,x = t,y = S[x] in r)→ (letrec E,y = S[t] in r)
(ucp3) (letrec x = t in S[x])→ S[t] where in the three (ucp)-rules, x has at most

one occurrence in S[x], no occurrence in E, t,r; and S is a surface context.

Figure 4: Extra transformation rules

(case-cx) (letrec x = (cT, j x1 . . .xn),E in C[caseT x ((cT, j y1 . . .yn)->s) alts])
→ letrec x = (cT, j x1 . . .xn),E in C[(letrec y1 = x1, . . . ,yn = xn in s)]

(case-cx) letrec x = (cT, j x1 . . .xn),E, y =C[caseT x ((cT, j y1 . . .yn)->s) alts] in r
→ letrec x = (c x1 . . .xn),E, y =C[(letrec y1 = x1, . . . ,yn = xn in s)] in r

(case-cx) like (case) in all other cases
(case*) is defined as (case) if the scrutinized data expression is of the form (c s1 . . .sn),

where (s1, . . . ,sn) is not a tuple of different variables, and otherwise it is (case-cx)
(cpS) is (cp) restricted such that only surface contexts S for the target context C are permitted
(cpxT) is (cpx) restricted such that only top contexts T for the target context C are permitted
(cpcxT) is (cpcx) restricted such that only top contexts T for the target context C are permitted
(caseId) (caseK s (pat1-> pat1) . . .(pat|DK |-> pat|DK |))→ s

Figure 5: Some special transformation rules

3 Space Improvements

From now on we use the calculus LRPgc as defined in Definition 2.5. We define an adapted (weaker) size
measure than the size of the syntax tree, which is useful for measuring the maximal space required to
reduce an expression to a WHNF. The size-measure omits certain components. This turns into an advan-
tage, since this enables proofs for the exact behavior w.r.t. our space measure for a lot of transformations.
Definition 3.1. The size size(s) of an expression s is defined in Fig. 6. It does not count variables,
and also counts bindings of a letrec only by the size of the bound expressions. Also, it ignores the type
expressions and type annotations in the expressions.

The reason for defining size(x) as 0 is that the let-reduction rules do not change the size, and that it
is compatible with the size in the machine language. For example, the bindings x = y do not contribute
to the size-measure. This is justified, since the abstract machine ([5]) does not create x = y bindings, (not
even implicit ones) and instead makes an immediate substitution.
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size(x) = 0
size(s t) = 1+size(s)+size(t)
size(λx.s) = 1+size(s)
size(case e of alt1 . . .altn) = 1+size(e) +∑

n
i=1 size(alti)

size((c x1 . . .xn) -> e) = 1+size(e)
size(c s1 . . .sn) = 1+∑size(si)
size(seq s1 s2) = 1+size(s1)+size(s2)
size(letrec x1 = s1, . . . , xn = sn in s) = size(s)+∑size(si)

Figure 6: Definition of size

Definition 3.2. The space measure spmax(s) of the reduction of a closed expression s is the maximum

of those size(si), where si
LRPgc−−−→ si+1 is not a (gc), and where the reduction sequence is s = s0

LRPgc−−−→
s1

LRPgc−−−→ . . .
LRPgc−−−→ sn, and sn is a WHNF. If s↑, then spmax(s) is defined as ∞.

For a (partial) reduction sequence Red = s1 → . . .→ sn, we define spmax(Red) = maxi{size(si) |
si→ si+1 is not a (gc)}.

Counting space only if there is no LRPgc-gc possible is consistent with the definition in [7].

Definition 3.3. Let s, t be two expressions with s ∼c t and s↓. Then s is a space-improvement of t,
s ≤spmax t, iff for all contexts C: if C[s], C[t] are closed then spmax(C[s]) ≤ spmax(C[t]). The ex-
pression s is space-equivalent to t, s ∼spmax t, iff for all contexts C: if C[s], C[t] are closed then
spmax(C[s]) = spmax(C[t]). A transformation trans−−→ is called a space-improvement (space-equivalence)
if s trans−−→ t implies that t is a space-improvement of (space-equivalent to, respectively) s.

Note that ≤spmax is a precongruence, i.e. it is transitive and s≤spmax t implies C[s]≤spmax C[t], and
that ∼spmax is a congruence. Note also that s≤spmax t implies size(s)≤ size(t).

Let s, t be two expressions with s∼c t and s↓. The relation s≤R,spmax t holds, provided the following
holds: For all reduction contexts R and if R[s], R[t] are closed, then spmax(R[s]) ≤ spmax(R[t]). The
relation s∼R,spmax t holds, provided the following holds: For all reduction contexts R and if R[s], R[t] are
closed, then spmax(R[s]) = spmax(R[t]).

Lemma 3.4 (Context Lemma for Maximal Space Improvements). If size(s)≤ size(t), FV(s)⊆ FV(t),
and s≤R,spmax t, then s≤spmax t.

Lemma 3.5 (Context Lemma for Maximal Space Equivalence). If size(s) = size(t), FV(s) = FV(t),
and s∼R,spmax t, then s∼spmax t.

Proofs of the contetx lemmata are in [15] and are induction proofs using the LRPgc-normal-order
reduction sequence and the syntax of contexts.

The context lemmas for max-space improvement and max-space equivalence also hold if the condi-
tion s≤X ,spmax t, or s∼X ,spmax t, respectively, holds where X means surface-contexts, and also if X means
top-contexts.

4 Space Improving Transformations

For most of the proofs will use complete sets of forking and commuting diagrams between transformation
steps and the normal-order reduction steps (see [20] for more explanations). These cover all forms of
overlaps of a normal-order-reduction and a transformation where also the context-class is fixed, and come
with joining reduction and transformation steps (see [15]).
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An overview of the results for max-space improvements and max-space equivalences is in the fol-
lowing table, where further transformations are in Figs 3, 4, 5.

Improvement rules
�spmax (lbeta), (case), (seq), (lll), (gc), (case*), (caseId)
∼spmax (cpx), (abs), (abse), (xch), (ucp), (case-cx), (cpxT), (gc=)
6�spmax (cpcx), (cpS)
space-increase O(1) (T,(cpcxT))
space-increase O(A) (T,(cpT))
space-increase high (cp), (cse)

Two further translations are mentioned: (cse) means common subexpression elimination; and s
gc=−−→ s′

is a specialization of (gc) where a single binding x = y in s is removed, where y is not free, and there is a
binding for y that cannot be garbage collected after the removal of x = y.

The translation
(T,(cpcxT ))−−−−−−→ means (cpcxT) applied in a top-context,

(T,(cpT ))−−−−−→ is (cp) applied in a top
context, and A is the size of the copied abstraction by cp. The mention of “space increase high” means
that in the worst case it is exponential or worse.

Note that a majority of the reasoning and proofs is done in the untyped calculi LR,LRgc (see [15]).

5 Optimizations Respecting Space Usage

Our proposal for controlled program optimization in the call-by-need calculus LRPgc is as follows:

1. Consider an input program P that is to be optimized by transformations.

2. Use only program transformations that are correct w.r.t. contextual equivalence.

3. As a filtering criterion: use only program transformations that are (also) space improvements. As
analyzed in this paper, there is a sufficiently large set of such program transformations: First, these
are all the reduction rules in Fig. 2 with the exception of (cp), as proved in [15]. Second, there
are further transformation rules in Figs. fig:extra-transformation-rules-LRPgc, 4 and 5, which can
be used, since we proved that all these rules are space-improvements. Future work may exhibit
more such transformations. Since only space-improvements are applied, the guarantee is that the
program itself is also not enlarged.

4. Further time-improving transformations can be applied that are not guaranteed to be space im-
provements, but there is an upper bound on the maximal space increase, as for example (T,(cpT )),
and (T,(cpcxT ).

5. Common subexpression elimination is a time improvement as shown in [17], but it comes with
a higher risk of size explosion, hence further information on the max-space-effect is required for
safe optimizations.

Some program transformations that are used for optimizing running time may increase the size of
the programs but also the max-space used during evaluation. The symmetric disadvantage of max-space
improving program translation is that these may increase the running time. An example is common
subexpression elimination: If the list generating expression [1..n] occurs twice in a program and is only
used for scanning, then the required space may be constant, whereas after applying common subexpres-
sion elimination, the complete list is generated in the first run and kept until the second use is finished.
The required additional space is now linear in n.
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Associativity of append: In [7], the re-bracketing of ((xs ++ ys) ++ zs) was analyzed, and the results
had to use several variants of their improvement orderings; in particular their observation of stack and
heap space made the analysis rather complex. We got easier to obtain and grasp result due to our relaxed
measure of space:

Our analysis of applying the associative law to the recursively defined append function ++ shows
that ((xs ++ ys) ++ zs) ≥spmax (xs ++ (ys ++ zs)), where xs,ys,zs are variables. We know that the two
expressions are contextually equivalent. The exact analysis uses the context lemma for space improve-
ment and in particular the space-equivalence of (ucp) which allows to inline uniquely used bindings. The
proof itself uses an induction argument. The exact analysis shows that within reduction contexts, the
spmax-difference is exactly 4.

Typed Transformations The rule (caseId) is also the heart of other type-dependent transformations,
which are also only correct under typing. Examples for such transformations are: (map λx.x)→ id,
filter (λx.True)→ id, and foldr (:) []→ id, where we refer to the usual Haskell-functions and
constructors. Note that these transformations are not correct in the untyped calculi.

Translating into Machine Language An efficient implementation of the evaluation of programs or
program expressions first translates expressions into a machine format that can be executed by an abstract
machine. We consider a translation into a variant of the Sestoft machine [22, 11] extended by (eager)
garbage collection. The translation ψ into machine expressions (see also [17]) in particular translates
ψ(s t) as letrec y = ψ(t) in (ψ(s) y), which is the same as an inverse (ucp). Our results, in particular
the results on (ucp), show that the complete translation ψ is a space-equivalence.

6 Conclusion and Future Research

We successfully derived results on the space behavior of transformations in lazy functional languages,
by defining a space measure and reasoning about space improvements.
Future work is to extend the analysis of transformations to larger and more complex transformations in
the polymorphic typed setting. A generalisation from copy target positions and application context from
top contexts to surface contexts is also of value for several transformations. To develop methods and
justifications for space-improvements involving recursive definitions is also left for future work.

Acknowledgements We thank David Sabel for lots of discussions and helpful hints, and reviewers for
their constructive comments.
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