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Node-selecting queries over trees lie at the core of several important XML languages for the Web,
e.g., the node-selection language XPath, the query language XQuery and the transformation
language XSLT. The main syntactic constructs of such queries are the backward predicates, e.g.,
ancestor and preceding, and the forward predicates, e.g., descendant and following. Forward
predicates are included in the depth-first, left-to-right preorder relation associated with the input
tree, whereas backward predicates are included in the inverse of this preorder relation.

This work is devoted to an expressiveness study of node-selecting queries with proven theoret-
ical and practical applicability, especially in the field of query evaluation against XML streams.
The main question it answers positively is whether for each input query with forward and back-
ward predicates there exists an equivalent forward-only output query. This question is then
positively answered for input and output queries of varying structural complexity, using LOGLIN
and PSPACE reductions.

Various existing applications based on the results of this work are reported, including query
optimization and streamed evaluation.

Categories and Subject Descriptors: H.2.3 [Database Management]: Query Languages; I.7.2
[Document Preparation]: Markup Languages

General Terms: Theory, Languages, Rewriting

Additional Key Words and Phrases: Expressiveness, Streams, XML, XPath

1. INTRODUCTION

XPath [Clark and DeRose 1999] is the major language of choice for expressing
node-selecting queries over ordered unranked trees representing XML documents.
XPath is also at the core of several important languages for the Web, e.g., the query
language XQuery [Boag et al. 2006], the transformation language XSLT [Clark
1999], the schema language XML-Schema [Fallside and Walmsley 2001], and the
language for addressing fragments of XML documents XPointer [DeRose et al.
2002]. Therefore, the study of XPath was recognized early on to be of paramount
importance and a significant body of research exists on this topic.

For selecting nodes in trees, XPath offers backward and forward navigation with
a large palette of so-called axes. The axes are binary predicates and can be classified
in forward and reverse, depending on whether they are included in the depth-first,

Author’s address: Lehrstuhl für Informationssysteme, Universität des Saarlandes, Im Stadtwald,
D-66123 Saarbrücken, Germany, olteanu@infosys.uni-sb.de.
A preliminary version of this article entitled “XPath: Looking Forward” is published in LNCS
2490, EDBT 2002 Workshops (selected papers) March 2002 [Olteanu et al. 2002].
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0362-5915/20YY/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1–0??.



2 · Dan Olteanu

left-to-right preorder relation (also called document order) or its inverse. Exam-
ples of forward predicates are descendant and following-sibling, and of reverse
predicates are ancestor and preceding-sibling.

The number as well as the relevance of these backward and forward predicates has
been challenged, e.g., in [Desai 2001; Boag et al. 2006; Kay 2004]. Additionally, the
random access to XML data enabled by the interplay of both forward and reverse
predicates, poses difficulties to efficient query evaluation against XML data being
too large (or even unbounded) to be stored and accessed in main memory. This is
the case of XML repositories encountered, e.g., in natural language processing [Ide
et al. 2000], in biology [Bry and Kröger 2003], and astronomy [NASA 2004]. This
is also the case of unbounded XML streams arising in various contexts:

—For selective dissemination of information (SDI), continuously generated streams
of XML documents have to be filtered according to complex requirements spec-
ified as XPath queries before being distributed to the subscribers [Chan et al.
2002; Altinel and Franklin 2000]. The routing of data to selected receivers is also
becoming increasingly important in the context of web service systems.

—To integrate data over the Internet, in particular from slow sources, it is desirable
to progressively process the input before the full data is retrieved [Ives et al. 2002].

—As a general processing scheme for XML, several solutions for pipelined process-
ing have been suggested, where the input is sent through a chain of processors
each of which takes the output of the preceding processor as input, e.g., Apache
Cocoon [Apache Project 2001a].

—There are efforts from the user community, e.g., Xalan [Apache Project 2001b],
and requirements from the W3C standards committees, e.g., Requirement 19 of
[Kay 2004], to support progressive XSL(T) rendering of large XML documents.

In all these contexts, sequential data access, as supported by forward-only queries, is
preferred over random access, simply because backward navigation in the stream’s
history, as required by reverse predicates, can be very expensive, unaffordable or
impossible. There are three principal options to evaluate queries with reverse pred-
icates in such contexts:

(1) Store in memory sufficient information that allows access to past events, partic-
ularly when evaluating reverse predicates. This amounts to keeping in memory
a (possibly pruned) representation of the data [Apache Project 2001b].

(2) Evaluate the queries in more than one pass over the stream, provided several
passes are possible. With this approach, it is also necessary to store additional
information to be used in successive runs. This information can be considerably
smaller than what is needed in the first approach.

(3) Find equivalent forward queries, i.e., queries containing only forward predicates.

Contributions. This paper targets the last of the three aforementioned approaches
and shows it to be possible for specific fragments of XPath. This approach is less
time consuming than the second one and does not require to buffer unnecessary
input fragments as the first approach does. More precisely, the main contributions
of this paper are as follows.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



Forward Node-Selecting Queries over Trees · 3

—We establish a robust framework for rewriting queries with reverse predicates to
equivalent forward queries.
Rather than dealing with XPath syntax, this framework uses an equivalent frag-
ment of monadic non-recursive Datalog with negation [Abiteboul et al. 1995] and
with built-in predicates for the XPath axes and nodetests. For convenience, we
call this language LGQ (logical graph queries). Our motivation for using LGQ
instead of XPath is twofold, though our study of LGQ remains also a study of
XPath. First, the XPath syntax poses many (unnecessary) technical challenges
and the rewriting rules of concern are more compact and fewer when expressed
over LGQ. Second, whereas XPath allows path, tree, and forest queries, whose
names remind of their query pattern analogues, LGQ allows also the structurally
more complex DAG and graph queries. The main restriction of our LGQ and
XPath queries is that they are absolute, that is, they are always evaluated from
the root of the input data tree (in contrast to relative queries, which can be
evaluated from any set of nodes).

—Any LGQ query can be effectively rewritten to an equivalent forward query, and
the same forward query is obtained regardless of the order of rule applications.
We support this statement by proving that our rewriting framework is sound and
complete, terminates, and is confluent.

—The last mentioned contribution is in essence an expressiveness result: LGQ is
as expressive as its forward fragment, i.e., the reverse predicates do not add to
the LGQ expressiveness. Along this line, our rewriting framework sheds light on
the equivalence of other LGQ fragments defined by the structural complexity of
their queries. In particular, paths, trees, and forests can be rewritten to forward
forests. If one additional rule is added to the framework, then arbitrary graphs
can be rewritten to forward forests. Also, by using one single rule, paths, trees,
and forests can be rewritten to a special form of forward DAGs.

—We study the complexity of rewriting for input and output queries of varying
language fragments. We find PSPACE reductions for deriving structurally less
(or equally) complex forward equivalents, e.g., forests. This case is accompanied
unavoidably by an exponential blow-up of the size of the forward queries. We
find also LOGLIN reductions (i.e., LOGSPACE reductions with linear output)
for deriving structurally more complex forward equivalents, e.g., graphs.

—To better understand the relation between the complexity of rewriting and the
structural complexity of the derived forward queries, we design the class of so-
called simple graphs, which combine the advantages of efficient rewriting and
of structurally less complex forward equivalents. Simple graphs are LOGLIN-
reducible to forward forests. Such graphs forbid co-occurrences of vertical (hori-
zontal) closure reverse predicates (immediately) after closure forward predicates
along the same path.
Because each disjunct of a simple graph is rewritten to (at most) one forward
tree, we notice an interesting query minimization byproduct: A tree query has
the number of predicates bounded only in the number of their variables, thus
independent of the number of predicates in the equivalent simple graph query.

—We report on related (theoretical and practical) work that also represents various
application scenarios for the results of this paper.
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—An implementation of our rewriting framework adapted to XPath syntax is part
of a publicly-available XPath rewriter used by the streaming XPath processor
SPEX [Bry et al. 2005].

Structure of this article. Section 2 introduces the query language LGQ and the
rewriting language LGQ→. Section 3 gives equivalence-preserving rewrite rules used
in Section 4 to define three rewriting systems. These systems form the basis of our
main expressiveness and complexity results given in Section 5. Section 6 details on
work using our rewriting framework, and Section 7 concludes this article.

2. PRELIMINARIES

2.1 Trees

We consider finite unranked ordered trees with labeled nodes and one distinguished
unlabeled root node. Such trees are abstractions of XML documents, as exemplified
in Figure 1. The text content of XML documents is modeled as special nodes with
quoted labels. All labels are words over a finite alphabet.

<journal>
  <title>db</title>
  <editor>dan</editor>
  <authors>
    <name>ana</name>
    <name>bob</name>
  </authors>
  <price>7</price>
</journal>

root

journal

title editor authors

"dan"
name name

"db"

"ana" "bob"

price

"7"

Fig. 1. Excerpt of a journal archive.

2.2 Queries

XPath is the prime language for expressing node-selecting queries on trees. In the
following, we call XPath the navigational fragment of XPath 1.0 with additional
axes (see below for the extensional predicates defining the supported axes), where
each query is an absolute path or arbitrarily nested unions or differences of absolute
paths [Olteanu 2004]. The qualifiers are restricted to only contain paths (thus no
path comparisons, disjunctions or negations of paths). Occasionally, we further
extend XPath with identity-based equality.

This language represents another syntax for a fragment of monadic non-recursive
Datalog with negation over tree structures [Olteanu 2004]. For convenience, we
call this fragment LGQ (logical graph queries). We prefer LGQ syntax over XPath
syntax, because LGQ allows us to express rewriting rules more compactly.

We assume in the following familiarity with XPath and Datalog and introduce
only some necessary technical machinery. Please refer to [Abiteboul et al. 1995] for
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Datalog, to [Gottlob et al. 2004] for monadic Datalog over tree structures, and to
[Clark and DeRose 1999] for XPath.

For defining LGQ, we restrict monadic non-recursive Datalog by (1) allowing
negation only on intensional (or user-defined) unary predicates, (2) defining our
own set of extensional (or built-in) predicates over trees, and (3) considering only
absolute formulas as bodies of query rules. We detail next on the last two points.

LGQ Predicates and Atoms. We consider the base binary predicates fstChild,
nextSibl, and self: for two nodes n and m, fstChild(n, m) holds if m is the first child
of n, nextSibl(n, m) holds if m is the immediate next sibling of n, and self(n, m)
holds if m is n.

For a base predicate α, its transitive closure α+ and its reflexive transitive closure
α∗ are defined as usual by:

α0 = self, αn+1 = αn ◦ α, α+ = ∪
n∈N\{0}

αn, α∗ = ∪
n∈N

αn.

Note that γ = α ◦ β means γ(x, z) = α(x, y) ∧ β(y, z).
For the above base predicates and their closures, we consider also their inverses

with appropriate names. Summing up, the following predicates are considered:
self (equality), nextSibl (next sibling), nextSibl+ (next siblings), nextSibl∗ (next sib-
lings or self), prevSibl = nextSibl−1 (previous sibling), prevSibl+ = (nextSibl+)−1

(previous siblings), prevSibl∗ = (nextSibl∗)−1 (previous siblings or self), fstChild
(first child), child = fstChild ◦ nextSibl∗ (children), child+ (descendants), child∗ (de-
scendants or self), par = child−1 (parent), par+ = (child+)−1 (ancestors), par∗ =
(child∗)−1 (ancestors or self).

We classify these predicates depending on the order and structural relations be-
tween the nodes of the contained pairs. If α(n, m) holds, then the predicate α is (1)
forward, if m appears after n in document order, (2) reverse, if m appears before
n in document order, (3) horizontal, if m is a sibling of n, or (4) vertical, if m is an
ancestor or descendant of n. Exceptionally, the predicate self is considered forward.

Remark 2.1. Using these predicates, other existent XPath axes can be defined,
e.g., foll = par∗ ◦ nextSibl+ ◦ child∗ (followings) and prec = foll−1 (precedings). Note
that fstChild, nextSibl∗, and prevSibl∗ do not have corresponding XPath 1.0 axes.
However, they can be expressed using disjunction or positional filters. 2

The unary predicates of LGQ are represented by XPath nodetests and by inten-
sional predicates. A nodetest is a construct from {n, n 6=, ‘t’, ‘t’6=, root}, where
n and ’t’ are words over a finite alphabet and root is a special keyword. The
nodetest predicate n (n 6=) holds for nodes whose label is (not) n. The root nodetest
holds only for the root node. Examples of nodetests are a, a 6=, ‘t’, ‘t’6=, where the
latter two are written in quotes and refer to text content. An intensional predicate
is defined by a rule, where the head is a unary atom with that predicate and the
body is a formula.

Example 2.2. Consider the LGQ query

Q1(v) ← root(v0) ∧ child(v0, v1) ∧ child(v1, v2) ∧ par(v2, v) ∧ journal(v1) ∧ editor(v2)

that defines the intensional predicate Q1 and makes use of three unary nodetest
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predicates (root, journal, and editor) and of two distinct binary predicates (child
and par). This query selects the parent nodes of editor nodes that are children of
journal nodes, which in turn are children of the root node. For the tree of Figure 1,
Q1 selects the journal node. 2

An LGQ formula is constructed using (nullary, unary, and binary) atoms and
the standard connectives ∧ (and), ∨ (or), and ¬ (not). LGQ only allows negation
on intensional predicates. An atom is constructed from a predicate and a set of
variables. For example, the binary atom child(v1, v2) uses the predicate child and
the variables v1 and v2. Unary atoms are constructed using nodetest and intensional
predicates. There are two nullary atoms ⊥ and ⊤ useful for proofs and formula
rewriting: ⊥ holds for no input tree, whereas ⊤ holds for any input tree.

Given a binary atom α(v1, v2), v1 is a source variable and v2 is a sink variable.
Given a conjunction of binary atoms, a non-source (non-sink) variable never ap-
pears as source (sink), and a multi-source (multi-sink) variable appears as source
(sink) more than once. For a given rule, the variable occurring in the head is (im-
plicitly) universally quantified, and all other variables in the body are (implicitly)
existentially quantified.

Absolute Formulas. A formula is absolute, if (1) it has non-sink variables and
(2) each non-sink variable has a root nodetest.

Example 2.3. Consider again the query Q1 of Example 2.2. The query body
consists of a single disjunct of binary and unary atoms. The variables v1 and v2 are
both source and sink, and the variable v is only sink. The remaining variable v0

is the only non-sink variable and has a root nodetest. This makes the query body
an absolute formula. Note that by dropping the root nodetest or any of the child
atoms we obtain a formula that is not anymore absolute. 2

Path, Tree, DAG, and Graph Formulas. A conjunction of LGQ atoms admits
an intuitive graphical representation, where the variables induce nodes and the
binary predicates directed edges with corresponding labels (in case of closure) and
orientation (vertical/horizontal). For example, nextSibl∗ induces a horizontal edge
from left to right with label *, whereas par+ induces a vertical bottom-up edge with
label +. We fill in black the nodes corresponding to variables with root nodetests,
and label each node with the nodetest (if any) of the corresponding variable.

The graphical representation of a formula with disjunction consists of the repre-
sentations of each of its disjunct in disjunctive normal form. In case one of such
conjunctions contains also a unary atom corresponding to a user-defined predicate,
then the query body of that predicate is represented separately.

By analogy to their representations, formulas can be classified based on their
structural complexities in paths, trees, forests, directed acyclic graphs (DAGs),
and graphs. We also use the non-standard notion of single-join DAG to denote
DAGs having distinct paths with at most one common sink node. Note that XPath
queries are LGQ forests, and XPath queries with identity-based equality are single-
join DAGs [Olteanu 2004].

Example 2.4. Figure 2 shows graphically three formulas:
(below k is root(v0) ∧ child(v0, v1) ∧ child(v1, v2) ∧ journal(v1) ∧ editor(v2))
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journalv1

editor

v

v2

v0

journalv1

editor

v

v2

v0 v’

*

v

v0

v1 journal

editorv2

+

*

a) Path b) Single-join DAG c) Graph

Fig. 2. Examples of graphical representations for LGQ formulas.

—the path p = k ∧ par(v2, v), which is the body of Q1 in Example 2.2,

—the single-join DAG d = k ∧ root(v′) ∧ child∗(v′, v) ∧ child(v, v2), and

—the graph with two cycles g = k ∧ child∗(v0, v) ∧ child(v, v2) ∧ par+(v2, v0).

Each of the three formulas can induce a query with the distinguished variable v. Re-
markably, although these queries have bodies with different structural complexities,
they all select the same set of nodes as the query Q1 in Example 2.2. 2

Equivalence. We next define equivalence for LGQ formulas under the restriction
that both formulas to test for equivalence have the same variables.

For a formula f and a tree T , an LGQ valuation maps each variable in f to a
node in T , such that the formula obtained by replacing the variables in f by their
mappings holds in T . A formula is unsatisfiable if for any tree it has no valuation.
For example, the formula ⊥ is unsatisfiable.

Consider two formulas l and r with the same variables. Then l is contained in
r, noted l ⊆ r, if for any input tree any valuation of l is also a valuation of r.
The formulas l and r are equivalent, noted l ≡ r, if for any input tree they have
the same valuations. It is easy to see that two formulas identical up to equivalent
subformulas are equivalent. Two queries Q1(v) and Q2(v) are equivalent if their
bodies are equivalent.

Example 2.5. Consider the equivalent formulas l and r defined as follows:

l = nextSibl(v1, v2) ∧ prevSibl(v2, v3) r = nextSibl(v1, v2) ∧ self(v3, v1)

For both formulas, any non-empty valuation maps the variables v1, v2, and v3 to
nodes n1, n2, and n1 respectively, such that n2 is the next sibling of n1. 2

This syntactically restricted equivalence mostly suffices for the present article,
because it is only used in conjunction with syntactic rewriting between equivalent
formulas with the same variables. We further need two special equivalence cases
between formulas and formulas either without variables (i.e., ⊥ and ⊤), or with
exactly one more non-sink variable. We next discuss these cases.

Example 2.6. Let l1 = nextSibl(v1, v2) ∧ prevSibl(v1, v2). Clearly, l1 is unsat-
isfiable, because a node can not be at the same time a preceding and a following
sibling of another node. Thus l1 is equivalent to ⊥.

The formula l2 ∨⊤ is equivalent to ⊤ for any l2, because ⊤ is always satisfiable.
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Finally, consider a formula l3 and v one of its variables. Then, the formula
r3 = l3 ∧ child∗(z, v) ∧ root(z), where z is a new variable not occurring in l3, is
equivalent to l3. This is because the formula child∗(z, v) ∧ root(z) just states that
v can be mapped to any node in the input tree, thus its addition does not change
the set of valuations for l3 and any input tree. 2

2.3 Rewritings

Term rewriting systems are widely used as a model of computation to relate syntax
and semantics. This article adopts the terminology for term rewriting systems used
in [Baader and Nipkow 1998].

In order to express identities and rewritings of LGQ formulas, we define a lan-
guage of rewriting rules and identities LGQ→, similar to LGQ. LGQ→ has two
kinds of variables:

—variables ranging over LGQ formulas, written in upper case, e.g., X , Y , Z,

—variables ranging over LGQ variables, written in lower case and underlined, e.g.,
x, y, z.

Note that the LGQ variables are written in lower case and not underlined, thus
different from LGQ→ variables.

In LGQ→, the LGQ predicates are function symbols and LGQ formulas ground
terms, i.e., terms without LGQ→ variables. LGQ→ has two binary predicates, the
identity ≈ and the rewrite→, both written in infix form. In the LGQ→ terms s ≈ t
and s→ t, the term s is the left-hand side (lhs) and t is the right-hand side (rhs).

A LGQ→ substitution σ is a total mapping from LGQ→ variables to LGQ for-
mulas or variables denoted by (1) {X1 7→ s1, . . . , Xn 7→ sn} indicating that the
LGQ→ variable Xi maps to the LGQ formula si, or (2) {x1 7→ s1, . . . , xn 7→ sn}
indicating that the LGQ→ variable xi maps to the LGQ variable si. If σ maps an
LGQ→ variable to an LGQ formula or variable, then that LGQ formula or variable
is the image of the LGQ→ variable under σ. If an LGQ→ variable X (or xi) is not
in the domain of σ, then σ(X) = X (and σ(xi) = xi); if f(t1, t2) is an LGQ→ term,
then σ(f(t1, t2)) = f(σ(t1), σ(t2)). A substitution σ is a matching substitution of
a LGQ→ term l to an LGQ formula t, if σ(l) = t. Under a matching substitution,
the instances of lhs and rhs of a rewrite rule are LGQ formulas.

A redex is an instance of the lhs of a rewrite rule under a matching substitution.
Contracting the redex means replacing it with the corresponding instance of the
rhs of the rule. The application of a rewrite rule lhs → rhs to an LGQ formula s
means contracting a redex σ(lhs) in s to the rhs instance σ(rhs), both under the

matching substitution σ. A term s derives other term t, written s
∗
→ t, if t can be

obtained from s after a finite (possibly empty) sequence of rewrites: s → · · · → t.
In this case, we say also that the term s is reducible (with respect to the relation

→). If there is no term t such that s
∗
→ t, then s is irreducible. If s

∗
→ t and t is

irreducible, then t is a normal form of s and we write s→! t.
A term rewriting system (LGQ→,→) is a finite set of rewrite rules and (possibly)

identities on LGQ→ terms. If identities are present, then they serve to specify
rewriting modulo these identities (we detail later on this).

Termination. A term rewriting system is terminating if there are no infinite
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derivations s0 → s1 → · · · . The basic method to prove termination of (LGQ→,→)
is to embed it into another system (A, >) that is known to terminate. This requires
a monotone mapping φ from LGQ→ to A, where lhs→ rhs implies φ(lhs) > φ(rhs).

Confluence. Two terms x and y are joinable for a relation →, written x ↓ y, if
there exists a term z such that x

∗
→ z

∗
← y. A rewrite relation (and its system) is

confluent if terms are joinable whenever they are derivable from a same term:

y1
∗
← x

∗
→ y2 ⇒ y1 ↓ y2

In other words, confluent relations lead to the same irreducible term regardless of
the order of rule applications.

A relation→ is locally confluent if terms are joinable whenever they are derivable
in one step from a same term

y1 ← x→ y2 ⇒ y1 ↓ y2

A rewrite relation is locally confluent if (but not only if) no lhs unifies with a
non-variable subterm (except itself) of any lhs, taking into account that variables
appearing in two rules (or in two instances of the same rule) are always treated
as disjoint. In cases when the above requirement is not fulfilled, we get so-called
critical pairs, i.e., pairs of different terms derivable in one step from a same term.
Local confluence can be shown now by proving joinability of all critical pairs.

Confluence can be reduced to local confluence only for rewrite relations that
terminate [Newman 1942]. Termination and confluence ensure the existence and
uniqueness of normal forms.

Rewriting modulo AC-theory. The LGQ predicates ∧, ∨, and self are associative
and commutative (AC). Such properties should be taken into account when applying
rewrite rules. For example, the rewrite rule

child(x, y) ∧ prevSibl(y, z) → child(x, z) ∧ nextSibl(z, y)

should rewrite not only child(a, b) ∧ prevSibl(b, c) to child(a, c) ∧ nextSibl(c, b), but
also, as highly desired, prevSibl(b, c)∧ f ∧ child(a, b) to nextSibl(c, b)∧ child(a, c)∧ f .
Note that a syntactical matching fails in the latter case. What is needed is an
equational matching that takes into account the AC properties of the ∧ predicate.

The AC properties of the LGQ predicates ∧, ∨, and self raise problems, because
they can not be oriented into terminating rewrite rules. A common technique to
accommodate them in the rewriting process is to consider rewriting modulo the
AC-theory. More specifically, this article considers rewriting systems containing
the following AC identities for ∧, ∨, and self (α is any LGQ binary predicate):

X ∧ Y ≈ Y ∧ X X ∧ (Y ∧ Z) ≈ (X ∧ Y ) ∧ Z

X ∨ Y ≈ Y ∨ X X ∨ (Y ∨ Z) ≈ (X ∨ Y ) ∨ Z

self(x, y) ≈ self(y, x) self(x, y) ∧ α(y, z) ≈ self(x, y) ∧ α(x, z)

3. EQUIVALENCE-PRESERVING REWRITE RULES

A query Q(v) ← f is rewritten to an equivalent forward query Q′(v) ← f ′ by
rewriting the formula f , which represents the body of Q, to the equivalent forward
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formula f ′, which represents the body of Q′. If f contains (possibly negated) user-
defined predicates, then their bodies are rewritten as well.

We give next equivalence-preserving LGQ→ rules for rewriting LGQ formulas.

3.1 Rule adding single-join DAG Structure

We first consider a simple yet powerful equivalence-preserving rule, which can be
used to rewrite any formula to an equivalent forward formula.

Lemma 3.1. The following rule rewrites formulas to equivalent formulas.

α(x, y) → α
−1(y, x) ∧ child∗(z, y) ∧ root(z) (1)

The variable z is a fresh LGQ variable and α is a reverse predicate.

Proof. Let s be the input formula and t the result of rule application. Let also
σ be an LGQ→ substitution, l = α(σ(x), σ(y)) and r = α−1(σ(y), σ(x)). Then,
s ≡ t because (i) l ≡ r, (ii) s and t are identical up to the equivalent formulas l and
r, and (iii) child∗(z, σ(y))∧ root(z) does not restrict the possible mappings of σ(y),
for it just states that σ(y) can be bound to any node in the input data tree.

Using Rule (1), each reverse predicate is replaced by its forward counterpart and
a dummy non-sink variable with a root nodetest is added to t to ensure that it is
absolute. Note that in case the LGQ variable substituting x is a sink of one atom
in s, then it becomes multi-sink in t. This makes that t has at least the structure
of a single-join DAG, even if s is a forest.

Example 3.2. Consider the query Q1 from Example 2.2

Q1(v) ← root(v0) ∧ child(v0, v1) ∧ child(v1, v2) ∧ par(v2, v) ∧ journal(v1) ∧ editor(v2)

According to Rule (1), Q1 is equivalent to

FQ1(v) ← root(v0) ∧ child(v0, v1) ∧ child(v1, v2) ∧ child(v, v2) ∧ child∗(v′, v)∧

root(v′) ∧ journal(v1) ∧ editor(v2).

The bodies of Q1 and FQ1 are depicted in Figures 2a) and 2b) respectively.
Using XPath syntax, Q1 is /child::journal/child::editor/parent::node() and FQ1 is

/descendant-or-self::node()[child::node() == /child::journal/child::editor]. 2

Remark 3.3. Rule (1) can also be expressed using XPath with identity-based
equality == [Olteanu et al. 2002]. Let P be a rule variable standing for a relative
path, N a nodetest holder, R a reverse axis, and F its symmetrical forward.

/P/R::N → /descendant-or-self::N [F::node() == /P ]

P [R::N ]→ P [/descendant-or-self::N/F::node() == self::node()]

The above two rules using XPath syntax are harder to grasp than Rule (1): Due
to XPath syntax, the rules have to consider (1) both cases of reverse predicates in-
side and outside filters (because XPath filters are syntactically delimited by square
brackets), and (2) additional nodetest predicates. In LGQ the subformulas corre-
sponding to XPath filters are not explicitly marked, and the nodetest predicates
are not necessary for expressing the rule and therefore not present. 2
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3.2 Rules preserving Tree Structure

We next consider equivalence-preserving rules that can be used to rewrite any
formula to an equivalent forward formula, such that the latter does not have more
multi-sink variables than the former. This ensures that forest formulas are rewritten
to forest forward equivalents.

In contrast to Rule (1), these new rules exploit the treeness of the input data
and the relationships between the various forward and reverse predicates taken
pairwise. Lemma 3.4 gives 20 such rules, representing each possible combination
of the forward predicates fstChild, child, child+, nextSibl, and nextSibl+, and the
reverse predicates par, par+, prevSibl, and prevSibl+. Note that the combinations
of the predicate self with other predicates are already covered by the AC-identities
defined in Section 2.3. The reflexive transitive closure predicates are safely left out
of discussion because they are reducible to the above cases as follows:

α
∗(x, y) → (α+(x, y) ∨ self(x, y)). (2)

Lemma 3.4. The rules of Figure 3 rewrite formulas to equivalent formulas.

Proof. Let s be the input formula and t the result of a rule application. For
an instance l → r of each Rule (3) through (22) under an LGQ→ substitution
σ = {x 7→ x, y 7→ y, z 7→ z}, we show that (i) l ≡ r, and (ii) s ≡ t, where t is
obtained by replacing l by r in s.

We use the following implications and equivalences, where h is a horizontal pred-
icate, v1, v2 ∈ {fstChild, child}, and α is any binary predicate:

v1(y, x) ∧ v2(z, x) ⇒ self(y, z) (Treeness) (a)

nextSibl(y, x) ∧ nextSibl(z, x) ⇒ self(y, z) (Treeness) (b)

h(x, y) ⇒ child(z, x) ∧ child(z, y) (Siblings) (c)

α
+(x, y) ≡ α

∗(x, z) ∧ α(z, y) (Closure) (d)

Note that the variables appearing on the left-side of ⇒ or ≡ are universally quan-
tified, whereas the others are existentially quantified.

Rules (3) and (4) are similar. We only prove Rule (3).

child(x, y) ∧ par(y, z) ≡ child(x, y) ∧ child(z, y)
a
≡ child(x, y) ∧ child(z, y) ∧ self(x, z)

≡ child(z, y) ∧ self(x, z).

Rule (5).

child+(x, y) ∧ par(y, z)
d
≡ child∗(x, p) ∧ child(p, y) ∧ child(z, y)
a
≡ self(p, z) ∧ child∗(x, z) ∧ child(z, y) ≡ child∗(x, z) ∧ child(z, y).

Rules (6) and (7) are similar. We only prove Rule (6).

nextSibl(x, y) ∧ par(y, z) ≡ nextSibl(x, y) ∧ child(z, y)
c
≡ nextSibl(x, y) ∧ child(z, y) ∧ child(p, x) ∧ child(p, y)
a
≡ nextSibl(x, y) ∧ child(z, y) ∧ child(z, x) ∧ self(p, y)

≡ nextSibl(x, y) ∧ child(z, x) ≡ nextSibl(x, y) ∧ par(x, z).
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fstChild(x, y) ∧ par(y, z) → self(x, z) ∧ fstChild(z, y) (3)

child(x, y) ∧ par(y, z) → self(x, z) ∧ child(z, y) (4)

child+(x, y) ∧ par(y, z) → child∗(x, z) ∧ child(z, y) (5)

nextSibl(x, y) ∧ par(y, z) → nextSibl(x, y) ∧ par(x, z) (6)

nextSibl+(x, y) ∧ par(y, z) → nextSibl+(x, y) ∧ par(x, z) (7)

fstChild(x, y) ∧ par+(y, z) → (fstChild(x, y) ∧ par+(x, z) (8)

∨ fstChild(x, y) ∧ self(x, z))

child(x, y) ∧ par+(y, z) → (child(x, y) ∧ par+(x, z) (9)

∨ child(x, y) ∧ self(x, z))

child+(x, y) ∧ par+(y, z) → (child+(x, y) ∧ par+(x, z) (10)

∨ child∗(x, z) ∧ child+(z, y))

nextSibl(x, y) ∧ par+(y, z) → nextSibl(x, y) ∧ par+(x, z) (11)

nextSibl+(x, y) ∧ par+(y, z) → nextSibl+(x, y) ∧ par+(x, z) (12)

fstChild(x, y) ∧ prevSibl(y, z) → ⊥ (13)

child(x, y) ∧ prevSibl(y, z) → child(x, z) ∧ nextSibl(z, y) (14)

child+(x, y) ∧ prevSibl(y, z) → child+(x, z) ∧ nextSibl(z, y) (15)

nextSibl(x, y) ∧ prevSibl(y, z) → self(x, z) ∧ nextSibl(z, y) (16)

nextSibl+(x, y) ∧ prevSibl(y, z) → nextSibl∗(x, z) ∧ nextSibl(z, y) (17)

fstChild(x, y) ∧ prevSibl+(y, z) → ⊥ (18)

child(x, y) ∧ prevSibl+(y, z) → child(x, z) ∧ nextSibl+(z, y) (19)

child+(x, y) ∧ prevSibl+(y, z) → child+(x, z) ∧ nextSibl+(z, y) (20)

nextSibl(x, y) ∧ prevSibl+(y, z) → (nextSibl(x, y) ∧ prevSibl+(x, z) (21)

∨ nextSibl(x, y) ∧ self(x, z))

nextSibl+(x, y) ∧ prevSibl+(y, z) → (nextSibl+(x, y) ∧ prevSibl+(x, z) (22)

∨ nextSibl∗(x, z) ∧ nextSibl+(z, y))

Fig. 3. Equivalence-preserving rules for paths of one forward and one reverse atom.

Rules (8) and (9) are similar. We only prove Rule (9).

child(x, y) ∧ par+(y, z)∧ ≡ child+(z, y) ∧ par(y, x)
+
≡ child∗(z, x) ∧ child(x, y)

d
≡ child+(z, x) ∧ child(x, y) ∨ self(z, x) ∧ child(x, y)

≡ par+(x, z) ∧ child(x, y) ∨ self(x, z) ∧ child(x, y).

Equivalence (+) holds due to Rule (5).
Rule (10). We next denote the left-right depth-first preorder relation by ≪.

Consider a valuation τ for child+(x, y) ∧ par+(y, z). Then, the mappings of the
variables x, y, and z are along a same path from the root and there is a partial
order between them: τ(x) ≪ τ(y), τ(z) ≪ τ(y). The possibilities for the order
between τ(x) and τ(z) are (1) τ(z)≪ τ(x), (2) τ(x) = τ(z), and (3) τ(x) ≪ τ(z).
This reads also (1) τ(z) is an ancestor of τ(x), (2) τ(x) is the same as τ(z), (3) τ(x)
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is an ancestor of τ(z). Thus τ(z) lies between τ(x) and τ(y). The LGQ encoding
of all these possibilities is:

child+(x, y) ∧ par+(x, z) ∨ child+(x, y) ∧ self(x, z) ∨ child+(x, z) ∧ child+(z, y)

≡ child+(x, y) ∧ par+(x, z) ∨ child∗(x, z) ∧ child+(z, y).

Rules (11) and (12) are similar. We only prove Rule (11).

nextSibl(x, y) ∧ par+(y, z)
b
≡ nextSibl(x, y) ∧ child(p, x) ∧ child(p, y) ∧ par+(y, z)

d
≡ nextSibl(x, y) ∧ child(p, x) ∧ child(p, y) ∧ par∗(r, z) ∧ par(y, r)

≡ nextSibl(x, y) ∧ child(p, x) ∧ child(p, y) ∧ par∗(r, z) ∧ child(r, y)
a
≡ self(p, r) ∧ nextSibl(x, y) ∧ child(r, x) ∧ child(r, y) ∧ par∗(r, z)

d
≡ self(p, r) ∧ nextSibl(x, y) ∧ child(r, y) ∧ par+(x, z)

≡ nextSibl(x, y) ∧ par+(x, z).

Rule (13) follows from the definition of fstChild(n, m): m is the first child of n,
thus fstChild(x, y) ∧ prevSibl(y, z) ≡ ⊥.

Rule (14).

child(x, y) ∧ prevSibl(y, z) ≡ child(x, y) ∧ nextSibl(z, y)
c
≡ child(x, y) ∧ nextSibl(z, y) ∧ child(p, z) ∧ child(p, y)
a
≡ self(p, x) ∧ child(x, z) ∧ nextSibl(z, y) ∧ child(x, y)

≡ child(x, z) ∧ nextSibl(z, y).

Rule (15).

child+(x, y) ∧ prevSibl(y, z)
d
≡ child∗(x, p) ∧ child(p, y) ∧ nextSibl(z, y)
c
≡ child∗(x, p) ∧ child(p, y) ∧ nextSibl(z, y) ∧ child(r, z) ∧ child(r, y)
a
≡ self(p, r) ∧ child∗(x, r) ∧ child(r, y) ∧ nextSibl(z, y) ∧ child(r, z)

d
≡ child+(x, z) ∧ nextSibl(z, y).

Rule (16).

nextSibl(x, y) ∧ prevSibl(y, z) ≡ nextSibl(x, y) ∧ nextSibl(z, y)
b
≡ nextSibl(z, y) ∧ self(x, z).

All remaining rules have proofs similar to some other rules discussed above. More
precisely, (17) is similar to (5), (18) to (13), (19) to (14), (20) to (15), (21) to (9),
and (22) to (10).

The second part of the proof follows from the fact that s and t are either identical
up to l and r respectively, or t is ⊥.

Example 3.5. Consider again the LGQ path query from Example 3.2

Q1(v) ← root(v0) ∧ child(v0, v1) ∧ child(v1, v2) ∧ par(v2, v) ∧ journal(v1) ∧ editor(v2)
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According to Rule (4), Q1 is equivalent to

FQ2(v) ← root(v0) ∧ child(v0, v1) ∧ child(v1, v2) ∧ self(v1, v) ∧ journal(v1) ∧ editor(v2)

or more compact, by replacing all occurences of v1 by v

FQ′
2(v) ← root(v0) ∧ child(v0, v) ∧ child(v, v2) ∧ journal(v) ∧ editor(v2).

Note that the path FQ′
2 is structurally simpler and smaller than the DAG FQ1

obtained by Rule (1) in Example 3.2.
Consider now the LGQ DAG query

Q3(v) ← root(v0) ∧ child+(v0, v1) ∧ child+(v0, v) ∧ nextSibl(v1, v2) ∧ par(v2, v)

∧ name(v1) ∧ name(v2) ∧ authors(v)

that selects the authors nodes descendants of the root and parents of name nodes
that immediately follow a name sibling node descendant of the root. For the tree
of Figure 1, Q3 selects the authors node. According to Rule (6), Q3 is equivalent to

FQ3(v) ← root(v0) ∧ child+(v0, v1) ∧ child+(v0, v) ∧ par(v1, v) ∧ nextSibl(v1, v2)

∧ name(v1) ∧ name(v2) ∧ authors(v)

because the parent of a sibling node (v2) of a node (v1) is also a parent of that node
(v1). Going further, Rule (5) can be applied now and yields

FQ′
3(v) ← root(v0) ∧ child∗(v0, v) ∧ child+(v0, v) ∧ child(v, v1) ∧ nextSibl(v1, v2)

∧ name(v1) ∧ name(v2) ∧ authors(v)

because the parent of a node descendant of the root is either the root or a descendant
of the root, both having a child. Also, because between v0 and v hold at the same
time the relation child∗ and a subset of it child+, FQ′

3 can be further compacted to

FQ′′
3(v) ← root(v0) ∧ child+(v0, v) ∧ child(v, v1) ∧ nextSibl(v1, v2)

∧ name(v1) ∧ name(v2) ∧ authors(v)

Note that FQ′′
3 is an LGQ path, thus expressible in XPath, whereas its equivalent

original Q3 is only expressible in XPath with identity-based equality. 2

Remark 3.6. Rules (3) through (22) can be also expressed using XPath. E.g.,
Rule (5) can be expressed as (N and M are nodetest variables)

descendant::N/parent::M→ descendant-or-self::N[child::M]

descendant::N[parent::M]→ descendant-or-self::N/child::M.

As explained in Remark 3.3 for Rule (1), two rules are necessary in XPath to express
Rule (5), for the case of reverse steps inside and outside filters. 2

3.3 Rule removing DAG Structure

Rules (1) through (22) transform formulas to equivalent formulas that have in gen-
eral more complex structure, due to additional disjunctions or multi-sink variables.
Rule (23) given next trades multi-sink variables for reverse atoms in the hope of
producing formulas with less complex structure. Section 4 shows later that any
formula (including DAGs and graphs) can be rewritten to an equivalent forest for-
ward formula, by interplaying the elimination of multi-sink variables, as done by
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Rule (23), and the rewriting of the introduced reverse atoms to forest forward
formulas, as done by Rules (3) through (22).

Lemma 3.7. The following rule rewrites formulas to equivalent formulas.

fwd1(x, y) ∧ fwd2(z, y)→ fwd1(x, y) ∧ fwd−1
2 (y, z). (23)

The predicates fwd1 and fwd2 are forward.

Remark 3.8. The rhs of Rule (23) can not be expressed in XPath, even extended
with the identity-based equality: turning the formula fwd2(z, y) into fwd−1

2 (y, z)
would mean in XPath to loose the implicit context node corresponding to the LGQ
variable instance of z. 2

Example 3.9. Consider the LGQ DAG query

Q4(v) ← root(v0) ∧ child(v0, v1) ∧ child(v1, v2) ∧ child(v, v2) ∧ journal(v1) ∧ editor(v2)

that selects the parent node of an editor node that is child of a journal node, which
is in turn a child of the root node. For the tree of Figure 1, Q4 selects the journal
node. According to Rule (23), Q4 is equivalent to Q1 of Example 3.2, which can
be rewritten further to the equivalent forward path FQ′

2.
In other words, Rule (23) helps us to find a forward path formula, which is of

course expressible in XPath, equivalent to the more complex DAG Q4, expressible
only in XPath with identity-based equality. 2

3.4 Normalization and Simplification Rules

Some of Rules (2) through (22) introduce disjunctions nested in conjunctions, al-
though these rules can only be applied to conjunctions of atoms, thus to formulas in
disjunctive normal form (DNF). Therefore, we sometimes need to bring the input
formula in DNF. Lemma 3.10 recalls the equivalence-preserving rules for DNF.

Lemma 3.10. The following rules rewrite formulas to equivalent formulas.

X ∧ (Y ∨ Z) → X ∧ Y ∨ X ∧ Z (24)

X ∨ (Y ∨ Z) → X ∨ Y ∨ Z (25)

(Y ∧ Z) → Y ∧ Z. (26)

LGQ (and XPath) allows unsatisfiable and redundant formulas. Lemma 3.12
gives next a set of straightforward simplification rules. The benefit of such sim-
plifications is twofold: They reduce the size of the formulas and usually lead to
structurally simpler formulas.

Example 3.11. The formula child(x, x) is an unsatisfiable formula, because no
node is the child of itself. In the DAG formula child(x, y) ∧ child+(x, y) the atom
child+(x, y) is redundant, because under any non-empty valuation τ , both predi-
cates child and child+ hold on (τ(x), τ(y)). 2

Lemma 3.12. Consider the pairs of different nodetests (l, r) and (l 6=,r6=) and the
non-reflexive predicates vh, reverse r, and forward f . Then, the following rules
rewrite formulas to equivalent formulas.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



16 · Dan Olteanu

(Un)satisfiability Detection

vh(x, x) → ⊥ (27)

l(x) ∧ r(x) → ⊥ l6=(x) ∧ r 6=(x) → ⊥ (28)

self(x, x) → ⊤ (29)

root(x) ∧ r(x, y) → ⊥ (30)

root(x) ∧ f(y, x) → ⊥ (31)

(Un)satisfiability Propagation

X ∧ ⊥ → ⊥ (32)

X ∨ ⊥ → X (33)

X ∧ ⊤ → X (34)

X ∨ ⊤ → ⊤ (35)

Duplicate elimination

X ∧ X → X (36)

X ∨ X → X (37)

Note that more complex redundancies can be detected and eliminated by an
interplay of the rules given in Section 3 and the rules of Lemma 3.12.

Remark 3.13. Several other rules for navigation compaction and (un)satisfiability
detection can be derived using the already introduced rules:

α1(x, y) ∧ α2(x, y) → α1(x, y) (38)

refl(x, x) → ⊤ (39)

v(x, y) ∧ h(x, y) → ⊥ (40)

v(x, y) ∧ h(y, x) → ⊥ (41)

vh(x, y) ∧ vh(y, x) → ⊥ (42)

The above rules use the non-reflexive predicates vh, vertical v, and horizontal h, and
the reflexive predicate refl . Additionally, (α1, α2) ∈ {(self, child∗), (self, nextSibl∗),
(child, child+), (child, child∗), (child+, child∗), (nextSibl, nextSibl+), (nextSibl, nextSibl∗),
(nextSibl+, nextSibl∗)}.

We next show how Rule (38) can be inferred using the existing ones, for the case
that (α1, α2) = (child, child+).

child(x, y) ∧ child+(x, y)
(23)
→ child(x, y) ∧ par+(y, x)

(9)
→ child(x, y) ∧ par+(x, x) ∨ child(x, y) ∧ self(x, x)

(27)
→ child(x, y) ∧ ⊥ ∨ child(x, y) ∧ self(x, x)

(32)
→ ⊥∨ child(x, y) ∧ self(x, x)

(33)
→ child(x, y) ∧ self(x, x)

(29)
→ child(x, y) ∧ ⊤

(34)
→ child(x, y).

Additionally, the following rule for navigation compaction can not be derived from
the existing ones and proves useful in practical cases

α1(x, y) ∨ α2(x, y) → α2(x, y) (43)
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4. THREE REWRITING SYSTEMS

Using the rewrite rules defined in Section 3, we can rewrite LGQ formulas to forward
LGQ formulas. These rules are distributed non-disjunctively in three sets that
define three term rewriting systems:

—TRS1 is defined by LGQ→ and Rule (1),

—TRS2 is defined by LGQ→ and Rules (2) through (22) and (24) through (37),

—TRS3 is TRS2 extended with Rule (23).

Recall from Section 2.3 that these systems use AC-rewriting, because of the iden-
tities expressing the associativity and commutativity properties of ∧, ∨, and self.

The three rewriting systems enjoy properties like termination, soundness and
completeness, and confluence. Before elaborating on these properties, we demon-
strate the benefits of such systems by means of an example.

4.1 Rewriting Example

We show how a complex graph formula is rewritten to equivalent forward formulas
using each of the three rewriting systems. To help the reader, we use the graphical
representation of formulas introduced in Section 2.2.

Consider the LGQ graph formula g

root(v0) ∧ child+(v0, v1) ∧ nextSibl∗(v1, v2) ∧ par+(v2, v0) ∧ prevSibl(v2, v3)

∧ prevSibl(v3, v1) ∧ child(v3, v4) ∧ prevSibl(v5, v4) ∧ child+(v0, v5).

Figure 4 shows a possible sequence of rule applications for rewriting g to equiva-
lent forward formulas d and t. The thick edges represent the predicates that are
considered next in the rewriting process. Each thick rewrite arrow between repre-
sentations of formulas is accompanied by the reference to the rule to apply next.

TRS2 rewrites g to d (see the box labeled d and TRS2)

root(v0) ∧ child+(v0, v1) ∧ nextSibl(v1, v3) ∧ nextSibl(v3, v2) ∧ child(v3, v4)

∧ nextSibl(v4, v5) ∧ child+(v0, v5).

The formula d is forward, but still a (single-join) DAG. Using the additional rewrite
rule of TRS3, we obtain the forward tree formula t (see the box labeled t and TRS3)

root(v0) ∧ child+(v0, v1) ∧ nextSibl(v1, v3) ∧ nextSibl(v3, v2) ∧ child(v3, v4)

∧ nextSibl(v4, v5)

It is worth noting that t is variable-preserving minimal, i.e., the amount of its binary
atoms is exactly the number of its variables minus one. Also, the redundancies of
g, mainly due to repeated up-down and left-right navigations, are detected and
eliminated partly by TRS2 and completely by TRS3.

The Seq references on the rewrite arrows stand for sequences of rule applications,
and they represent the compacted rules given at the bottom of Figure 4. Such
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Seq 1 child+(x, y) ∧ par+(y, x) → child+(x, y)

Seq 2 nextSibl(x, y) ∧ prevSibl(y, x) → nextSibl(x, y)

Seq 3 nextSibl∗(x, y) ∧ prevSibl(y, x) → nextSibl(x, y)

Fig. 4. Rewriting of the LGQ graph given in Section 4.1 using TRS2 and TRS3.

compacted rules can be derived from existing ones, as shown next for Seq 1.

child+(x, y) ∧ par+(y, x)
(10)
→ child+(x, y) ∧ par+(x, x) ∨ child∗(x, x) ∧ child+(x, y)

(27)
→ child+(x, y) ∧ ⊥ ∨ child∗(x, x) ∧ child+(x, y)

(32)
→ ⊥∨ child∗(x, x) ∧ child+(x, y)

(33)
→ child∗(x, x) ∧ child+(x, y)

(39)
→ ⊤∧ child+(x, y)

(34)
→ child+(x, y).
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TRS1 rewrites g to the following forward graph formula (each of lines 2 through
5 represent a subformula derived from one reverse atom of g):

root(v0) ∧ child+(v0, v1) ∧ nextSibl∗(v1, v2) ∧ child(v3, v4) ∧ child+(v0, v5)

∧ child+(v2, v0) ∧ child∗(v′2, v2) ∧ root(v′2)

∧ nextSibl(v3, v2) ∧ child∗(v′3, v3) ∧ root(v′3)

∧ nextSibl(v1, v3) ∧ child∗(v′1, v1) ∧ root(v′1)

∧ nextSibl(v4, v5) ∧ child∗(v′4, v4) ∧ root(v′4).

4.2 Termination

We first define some necessary measures and terminating orders on LGQ formulas.
The size |e| of a formula e is the sum of sizes of all its constituent connectives and

atoms, where the size of each boolean connective is one, and the size of an atom is
given by its arity. The function #paren applied to a formula e returns the multiset
containing the amount of parentheses nesting each atom of e.

The connection from variable a to variable b via a sequence of binary predicates

p in a formula e is a 4-ary relation a
p

;e b defined as follows:

—a
α

;e b, if α(a, b) is included in e,

—a
p.q
;e b, if a

p
;e1

v
q

;e2
b, and e1 ∧ e2 is included in the DNF of e.

For a given connection a
p

;e b, the connection length is defined by the number of
predicates in the connection sequence p, and denoted |p|.

The position-set posα(e) of α-atoms in a formula e is the multiset of all lengths
of connections from a non-sink variable and with its sequence ending in an α-atom
(x is a possibly empty sequence of predicates):

posα(e) = {l | a, b variables in e, root(a) included in e, a ;
x.α
e b, l = |x.α|}

Example 4.1. The position-set of child-atoms poschild(e) in

e = root(v1) ∧ child(v1, v2) ∧ (child(v2, v3) ∨ child(v2, v4)) ∧ child+(v3, v4)

is {1, 2, 2}, because e has three connections ending in child: v1
child
;e v2 with connec-

tion length 1, v1
child.child

;e v3 and v1
child.child

;e v4 with connection length 2. 2

The reverse position factor posrev(e) of a formula e is the union of position-sets
of all its reverse atoms:

posrev(e) =
⋃

α reverse

(posα(e)).

For a formula e, let br be the number of its base reverse predicates, tcr the
number of transitive closure reverse predicates, and trcr the number of reflexive
transitive closure reverse predicates. The reverse type factor typerev(e) of e is a
multiset containing the number 1 br times, the number 2 tcr times, and number 3
trcr times.
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Example 4.2. Consider the formulas

e =root(v) ∧ child(v, v1) ∧ (par(v1, v2) ∧ par+(v2, v3) ∨ child+(v1, v2) ∧ self(v2, v3))

∧ par∗(v2, v4)

e′ =root(v) ∧ par∗(v, v1) ∧ par∗(v, v2).

The reverse factors for e and e′ are

posrev(e) = {|child.par|, |child.par.par+|, |child.par.par∗|, |child.child+.par∗|}

= {2, 3, 3, 3}

typerev(e) = {1, 2, 3}

posrev(e′) = {|par∗|, |par∗|} = {1, 1}

typerev(e′) = {3, 3}.

2

The forward sink-arity of a variable is the number of forward binary atoms that
appear in the same disjunct and have that variable as sink. The dag type factor
typedag(e) of a formula e is the multiset containing the forward sink-arity of each
multi-sink variable in e.

Example 4.3. Consider the formula

e =root(v1) ∧ child(v1, v3) ∧ root(v2) ∧ child(v3, v5)

∧ (child+(v2, v3) ∨ child+(v2, v4) ∧ nextSibl(v4, v3))

that has one multi-sink variable v3. The dag factor is the multiset containing the
forward sink-arity of v3 in each of the two disjuncts of e: typedag(e) = {2, 2}. 2

We next recall standard definitions of strict and terminating orders on multisets
of natural numbers and lexicographic products of such orders. Let M(N) denote
the set of all finite multisets over N. The order >mul is defined by

M >mul N ⇔ ∃X,Y ∈ M(N), ∅ 6= X ⊆ M, N = (M − X) ∪ Y,∀y ∈ Y : ∃x ∈ X : x > y.

The lexicographic product >1 × . . .× >n of strict orders >i (1 ≤ i ≤ n) is

(x1, . . . , xn) >1 × . . .× >n (y1, . . . , yn)⇔ ∃k ≤ n : (∀i < k : xi = yi), xk >k yk.

Using the above measures on LGQ formulas, we define the orders >rev
pos, >rev

type,

>dag
type, >dnf , and >size as follows (s and t are LGQ formulas):

s >rev
pos t ⇔ posrev(s) >mul posrev(t)

s >rev
type t ⇔ typerev(s) >mul typerev(t)

s >
dag
type t ⇔ typedag(s) >mul typedag(t)

s >dnf t ⇔ #paren(s) >mul #paren(s)
s >size t ⇔ |s| > |t|

These orders are terminating because they are embeddings either into the strict
and terminating order >mul on multisets over natural numbers, or into > on natural
numbers.

Lemma 4.4. TRS1, TRS2, and TRS3 are terminating.
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Proof. An order ω holds for a rule if s ω t holds for all formulas s and t such
that t is derived by that rule from s. It can be easily seen that >rev

type holds for

Rule (1), >rev
type × >rev

pos holds for Rules (2) through (22), >dag
type holds for Rule (23),

>dnf holds for Rules (24) through (26), and >size holds for Rules (27) through
(43). Additionally, applications of Rules (24) through (26) do not influence the
order >rev

type × >rev
pos, applications of Rules (27) through (43) do not influence the

order >rev
type × >rev

pos × >dnf , and applications of Rule (23) does not influence the
order >rev

type × >rev
pos × >dnf × >size.

The rewriting system TRSi is terminating if there is a terminating order >trs
i

that holds for all its rules (1 ≤ i ≤ 3). We define the orders >trs
i as follows:

—the order >trs
1 is >rev

type,

—the order >trs
2 is >rev

type × >rev
pos × >dnf × >size,

—the order >trs
3 is >dag

type × >trs
2 .

4.3 Soundness and Completeness

A term rewriting system (LGQ→,→) is sound, if for any LGQ formula s, any
derivable LGQ formula t from s is equivalent to s, and if t is a normal form, then
t is a forward LGQ formula.

A term rewriting system (LGQ→,→) is complete, if for any equivalent LGQ
formulas s and forward t, s is rewritten to a normal form forward LGQ formula t′

that is equivalent to t.

Lemma 4.5. TRS1, TRS2, and TRS3 are sound and complete.

Proof. Let s be the input formula and t the result of rule application. The
rewriting systems are defined by rules of lemmata in Section 3, where l ≡ r and s ≡ t
hold for any rule instance l→ r. Thus, s derives in one step an equivalent formula
t: s → t ⇒ s ≡ t. It easily follows by complete induction that s

∗
→ t′ ⇒ s ≡ t′.

Thus, if s ≡ t, then t ≡ t′.
We next show for each rewriting system that if s→! t, then t is forward.
TRS1 consists of Rule (1) that rewrites any reverse atom to an equivalent forward

formula. Thus only a forward formula is irreducible.
TRS2 consists of Rules (2) through (22) and (24) through (37). There are three

cases concerning the type of binary atoms in s.
(A) s is already forward. Then simplification rules of Lemma 3.4 may apply, and

yield an irreducible equivalent forward t, because no reverse binary atom appears
on rhs but not on lhs of a rule.

(B) s has no forward atom. Then there must be paths from non-sink variables
to each reverse atom, and each non-sink variable has a root atom (recall that we
only consider absolute formulas). Applying repeteadly Rule (30) for unsatisfiability
detection and Rules (32) and (33) for unsatisfiability propagation, the obtained
normal form is ⊥.

(C) s has reverse and forward atoms. Then, along a path in s, there are forward
atoms occurring before reverse atoms, or no forward atoms occur before a reverse
atom. The latter case is treated as no forward binary atoms appear in s (case
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B above). In the former case, s has paths of one forward and one reverse atom
matching lhs of one rule of Lemma 3.4. Such paths are rewritten either to (1)
paths of two forward atoms, or to (2) trees of size two with one forward and one
reverse branch, or to (3) forests of trees as in (2) and paths as in (1). In cases (2)
and (3), some paths to reverse atoms change and become shorter. Next, cases (A),
(B), or (C) apply.

The rules of Lemma 3.12, without (30) and (31), are simplification rules based
on navigation compaction and unsatisfiability detection and propagation and can
be left out without jeopardizing the reachability of an equivalent forward normal
form. They are, however, relevant for removing cycles.

TRS3 extends TRS2 with Rule (23) that rewrites DAGs of two forward atoms
to a path of one forward and one reverse atom. Therefore, a (forward) normal form
for TRS2 is not irreducible for TRS3, if it contains multi-sink variables. There are
two main cases for the elimination of multi-sink variables:

(A) A disjunct of s contains root(y)∧ fwd(x, y) or v(x, y)∧h(x, y) with v vertical
and h horizontal predicates and is simplified to ⊥, cf. Rules (27) through (35).

(B) Otherwise, Rule (23) is applied and yields a formula with one reverse atom,
which is then rewritten by TRS2 to a TRS2 normal form without additional multi-
sink variables. The procedure continues until s has no multi-sink variables.

4.4 Confluence

Lemma 4.6. TRS1 and TRS3 are confluent for LGQ graphs. TRS2 is confluent
for LGQ forests, and not confluent for LGQ DAGs and graphs.

Proof. The rewriting systems are confluent if they are terminating and locally
confluent [Newman 1942]. From Lemma 4.4 it follows that all three rewriting
systems are terminating. Thus it only remains to show local confluence, i.e., that
all critical pairs are joinable.

TRS1 consists only of Rule 1, whose lhs is a single atom. There is no critical
pair created by this rule with itself or the AC-identities.

TRS2. We first show that for single-join DAGs (and also graphs), TRS2 is not
locally confluent. Consider the single-join DAG

root(a) ∧ child+(a, b) ∧ prevSibl(b, d) ∧ root(e) ∧ child+(e, c) ∧ nextSibl(c, b)

We follow the two different rewriting sequences A and B (underlined subformulas
are rewritten in the next step)

A. root(a) ∧ child+(a, b) ∧ prevSibl(b, d) ∧ root(e) ∧ child+(e, c) ∧ nextSibl(c, b)

→ root(a) ∧ child+(a, d) ∧ nextSibl(d, b) ∧ root(e) ∧ child+(e, c) ∧ nextSibl(c, b).

B. root(a) ∧ child+(a, b) ∧ prevSibl(b, d) ∧ root(e) ∧ child+(e, c) ∧ nextSibl(c, b)

→ root(a) ∧ child+(a, b) ∧ self(c, d) ∧ root(e) ∧ child+(e, c) ∧ nextSibl(c, b).

The final formulas can not be rewritten anymore and are different.
This concludes one half of the proof for TRS2. We now prove that TRS2 is locally

confluent for LGQ forests (and trees and paths).
We next consider systematically all cases of interactions between various forward

and reverse atoms that can lead to critical pairs. These are the cases when the lhs
of each rule of Lemma 3.4 unifies with a subterm of the lhs of the built-in A-identity
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for ∧. The most general terms under consideration have a tree shape:

α1(a, b) ∧ α2(b, c) ∧ α3(b, d)

where α1 is forward and α2 and α3 are reverse. DAGs are excluded by definition
and forests are not considered, as their trees can be rewritten independently.

The following interactions are to be considered (note that ∧ is commutative and
therefore the symmetric cases for α2 and α3 are not necessary, as they are covered
by identities):

Case α1 α2 α3

1 horizontal forward vertical reverse vertical reverse
2 horizontal forward horizontal reverse vertical reverse
3 vertical forward horizontal reverse horizontal reverse
4 vertical forward horizontal reverse vertical reverse

To easier follow the rewritings in each case, we rename the predicates α1, α2, α3 to
(a composition of) abbreviations of their type, e.g., v/h for vertical/horizontal, f/r
for forward/reverse. We define the sets HF, HR, VF, VR containing the formulas
that are horizontal forward, horizontal reverse, vertical forward, and horizontal
reverse respectively.

Case 1. hf = α1, vr1 = α2, vr2 = α3. Then,

A. hf(a, b) ∧ vr1(b, c) ∧ vr2(b, d) → hf(a, b) ∧ vr1(a, c) ∧ vr2(b, d).

B. hf(a, b) ∧ vr1(b, c) ∧ vr2(b, d) → hf(a, b) ∧ vr1(b, c) ∧ vr2(a, d).

Both branches are now reducible to hf(a, b) ∧ vr1(a, c) ∧ vr2(a, d).
Case 2. Initially, interactions HF-VR (branch A) or HF-HR (branch B) are

considered. Let hf = α1, hr = α2, vr = α3. Then,

A. hf(a, b) ∧ hr(b, c) ∧ vr(b, d) → hf(a, b) ∧ hr(b, c) ∧ vr(a, d).

For both branches A and B, interactions HF-HR can be further considered for
rewriting hf(a, b) ∧ hr(b, c). This term is contracted to a term t containing only
horizontal atoms. Interactions HF-VR of Case 1 are next considered, and after
several rewritings either a or c become the source variable of vr, depending on the
same predicate pair (hf ,hr) for both branches A and B.

Case 3. Initially, interactions VF-HR are considered. Let vf = α1, hr1 = α2,
hr2 = α3. In case vf = fstChild, we have

A. vf(a, b) ∧ hr1(b, c) ∧ hr2(b, d) → ⊥∧ hr2(b, d) → ⊥.

B. vf(a, b) ∧ hr1(b, c) ∧ hr2(b, d) → ⊥∧ hr1(b, c) → ⊥.

In case vf ∈ {child, child+}, we have

A. vf(a, b) ∧ hr1(b, c) ∧ hr2(b, d) → vf(a, c) ∧ hr
−1
1 (c, b) ∧ hr2(b, d).

B. vf(a, b) ∧ hr1(b, c) ∧ hr2(b, d) → vf(a, d) ∧ hr1(b, c) ∧ hr
−1
2 (d, b).

In case hr1 = hr2 = prevSibl, we have

A. vf(a, c) ∧ nextSibl(c, b) ∧ prevSibl(b, d) → vf(a, c) ∧ self(c, d) ∧ nextSibl(d, b).

B. vf(a, d) ∧ prevSibl(b, c) ∧ nextSibl(d, b) → vf(a, d) ∧ self(d, c) ∧ nextSibl(c, b).

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



24 · Dan Olteanu

Both derived formulas are identical up to the variable equality c = d, which is
ensured by the A-identity of self: self(v1, v2) ∧ α(v2, v3) ≈ self(v1, v2) ∧ α(v1, v3).

In case hr1 = prevSibl+, hr2 = prevSibl, we have

A. vf(a, c) ∧ nextSibl+(c, b) ∧ prevSibl(b, d)

→ vf(a, c) ∧ nextSibl∗(c, d) ∧ nextSibl(d, b)

→ vf(a, c) ∧ (nextSibl+(c, d) ∨ self(c, d)) ∧ nextSibl(d, b)

→ vf(a, c) ∧ nextSibl+(c, d) ∧ nextSibl(d, b) ∨ vf(a, c) ∧ self(c, d) ∧ nextSibl(d, b).

B. vf(a, d) ∧ prevSibl+(b, c) ∧ nextSibl(d, b)

→ vf(a, d) ∧ (prevSibl+(d, c) ∧ nextSibl(d, b) ∨ self(d, c) ∧ nextSibl(d, b))

→ vf(a, d) ∧ prevSibl+(d, c) ∧ nextSibl(d, b) ∨ vf(a, d) ∧ self(d, c) ∧ nextSibl(d, b)

→ vf(a, c) ∧ nextSibl+(c, d) ∧ nextSibl(d, b) ∨ vf(a, d) ∧ self(d, c) ∧ nextSibl(d, b).

Again, both derived formulas are identical up to c = d in the second conjunct.
The remaining two cases with hr1 = prevSibl, hr2 = prevSibl+ and hr1 = hr2 =

prevSibl+ are similar to the last two cases. Case 4 is similar to Case 3..
TRS3. Because TRS3 includes TRS2, the above discussion applies to TRS3 as

well. The new interaction cases are

A. α1(a, b) ∧ α2(c, b) ∧ α3(d, b) with α1, α2, α3 forward

B. α1(a, b) ∧ α2(c, b) ∧ α3(b, d) with α1, α2 forward, α3 reverse.

We discuss case A (B is similar). There are three possible distinct contractions:

I. α1(a, b) ∧ α
−1
2 (b, c) ∧ α3(d, b) → α1(a, b) ∧ α

−1
2 (b, c) ∧ α

−1
3 (b, d). (1) or

→ α
−1
1 (b, a) ∧ α

−1
2 (b, c) ∧ α3(d, b). (2)

II. α1(a, b) ∧ α2(c, b) ∧ α
−1
3 (b, d) → α1(a, b) ∧ α

−1
2 (b, c) ∧ α

−1
3 (b, d). (1) or

→ α
−1
1 (b, a) ∧ α2(c, b) ∧ α

−1
3 (b, d). (3)

III. α
−1
1 (b, a) ∧ α2(c, b) ∧ α3(d, b) → α

−1
1 (b, a) ∧ α2(c, b) ∧ α

−1
3 (b, d). (3) or

→ α
−1
1 (b, a) ∧ α

−1
2 (b, c) ∧ α3(d, b). (1).

The terms (I) to (III) are pairwise joinable (the Arabic numbers on the right
represent identical formulas).

4.5 Structural Complexity of Derived Formulas

This section states the relationship between the structural complexities of the input
formulas and the derived normal forms for each of our three rewriting systems.

Lemma 4.7. TRS1 rewrites any single-join DAG to a forward single-join DAG,
and any graph to a forward graph.

Proof. TRS1 consists of Rule (1) that can create multi-sink variables. From
Lemma 4.5 it follows that TRS1 is sound and complete for graphs. Let s be the
formula to rewrite and t the derived formula.

(A) If s is a forest, i.e., it has no multi-sink variables, then t is a single-join DAG
with as many multi-sink variables as reverse atoms in s.
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(B) If s is a single-join DAG, then t is a single-join DAG with at least as many
multi-sink variables as there are in s plus the number of reverse atoms in s.

(C) If s is a graph, then t is a graph, because Rule (1) does not remove cycles.

Lemma 4.8. TRS2 rewrites any forest to a forward forest, any single-join DAG
to a single-join DAG, and any graph to a forward graph.

Proof. TRS2 consists of Rules (2) through (22) and (24) through (37) that
preserve the (non-)sinkness of variables. From Lemma 4.5 it follows that TRS2 is
sound and complete for graphs. Let s be the formula to rewrite and t the derived
formula.

(A) If s is a forest, i.e., it has no multi-sink variables, then t does not have
multi-sink variables, hence t is a forest.

(B) If s is a single-join DAG, then t is a single-join DAG with the same multi-sink
variables as there are in s.

(C) If s is a graph, then t is in general a graph, because multi-sinks and cycles
are not necessarily removed.

Lemma 4.9. TRS3 rewrites any graph to a forward forest.

Proof. TRS3 extends TRS2 with Rule (23). From Lemma 4.5 it follows that
TRS3 is sound and complete for graphs and that the normal forms of TRS3 do not
contain multi-sink variables, hence they are forests.

Remark 4.10. For graphs with (without) closure predicates, TRS3 yields for-
ward forests with (without) closure predicates. Similar results are stated in [Benedikt
et al. 2005] for forests restricted to vertical predicates. 2

4.6 Analytical Complexity

This section studies the complexity of rewriting LGQ formulas for each of our three
rewriting systems.
Complexity of AC-matching for LGQ→ rules. Although AC-matching is NP-complete
in general [Lincoln and Christian 1989], is polynomial for the restricted case of
TRS1,2,3, as explained next.

The lhs of LGQ→ rewrite rules defining TRS1,2,3 are of three kinds:

(1) a single binary LGQ→ atom with variables ranging over LGQ variables,

(2) an LGQ→ path made out of two atoms with different function symbols and
with variables ranging over LGQ variables,

(3) an LGQ→ formula with two or three variables ranging over LGQ formulas.

In the first case, AC-matching boils down to syntactic matching, which is linear in
the size of both participating terms. In the second case, AC-matching is reducible
to syntactic matching, followed by checking whether the variable appearing in both
atoms matched the same constant. This procedure takes at most quadratic time in
the matched term. In the third case, the LGQ→ variables can match any subterms
of an LGQ formula. The number of possible combinations of variable matchings is
exponential in the number of variables, where the basis is the size of the matched
term. Because the number of the LGQ→ variables is bounded in a constant (≤ 3),
the time for AC-matching is at most cubic in the size of the term to match.
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The aforementioned polynomial cases for AC-matching can be further reduced
to linear, if the formulas and rules are represented more compactly. Consider the
LGQ formulas given by their graphical representations. Then, rule applications can
be performed in linear time as, e.g., matchings of paths of fixed length in graphs.
The quadratic time of the second case is needed then only once for the construction
of the graphical representation of the LGQ formula to rewrite.

The complexity results given next for rewriting LGQ formulas using TRS1,2,3

ignore the complexity of AC-matching.

Lemma 4.11. TRS1 is a LOGLIN reduction.

Proof. TRS1 is complete for graphs. It consists of Rule (1) that rewrites locally
each reverse predicate to two forward predicates and a root nodetest. To traverse
the input graph, TRS1 needs only a pointer to the current atom.

Lemma 4.12. TRS2 is a PSPACE reduction and for input forests derives for-
ward forests with exponentially many trees.

Proof. Let s be the input graph and t the derived forest.
The exponential blow-up is due to repeated applications of Rules (10) and (22)

or simpler variants that create disjunctions and double the size of rewritings. The
other rules do not increase the size of rewritings.

The trees of s are rewritten independently of each other. We consider the rewrit-
ing of one tree of s with R reverse predicates and treat first the case of one path
in the graph of s containing r ≤ R reverse atoms. Later we generalize to several
paths containing all R reverse atoms.

The reverse atoms are intertwined with forward atoms. Consider that ni forward
atoms appear before the ith reverse atom (1 ≤ i ≤ r), where the reverse atoms are
indexed based on their appearance from right-to-left in the formula (thus, ni > nj

for i < j). For each set of rules that behave similarly, we define a family of functions
φi, whose computation simulate a rewriting sequence where the rules are applied
such that the first reverse atom is considered first. The time complexity of rewriting
s is the number of steps required to compute φr, and the value computed by φr is
the number of trees obtained by rewriting one tree of s.

Case 1. The applications of Rules (10) and (22) are simulated by

φi(ni, . . . , n1) =



















φi(ni − 1, . . . , n1 − 1) + φi−1(ni−1, . . . , n1) , i > 1 and ni > 1

φi−1(ni−1, . . . , n1) , i > 1 and ni = 1

1 + φ1(n1 − 1) , i = 1 and ni > 0

0 , i = 1 and ni = 0.

The first branch leads to the exponential blow-up and encodes the creation of two
trees. The first tree contains still the reverse atom i but has one forward atom
fewer for all reverse atoms j ≤ i along the same path. The second tree does not
contain anymore the reverse atom i.

The number of trees in t obtained from one tree in s, as also the number of
computation steps, is exponential in r:

φr(nr, . . . , n1) =
nr

Σ
ir=0

(
nr−1

Σ
ir−1=ir

(. . .
n2

Σ
i2=i3

φ1(n1 − i2))) ≈
r

Π
i=1

ni

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



Forward Node-Selecting Queries over Trees · 27

Case 2. The applications of Rules (3)-(5) and (13)-(20) are simulated by

φi(ni, . . . , n1) =











φi−1(ni−1, . . . , n1) , i > 1

0 , i = 1 and for Rules (13) and (18)

1 , i = 1 and for the other rules.

The computation of φr requires r steps and the number of trees in t obtained by
rewriting one tree in s is 0 for Rules (13) and (18) and 1 otherwise. The entire
formula s is traversed once and only one pointer to the current atom is needed,
thus it requires extra logarithmic space in s.

Case 3. The applications of Rules (6), (7), (11), and (12) are simulated by

φi(ni, . . . , n1) =



















φi(ni − 1, . . . , n1 − 1) , i > 1 and ni > 0

φi−1(ni−1, . . . , n1) , i > 1 and ni = 0

φ1(n1 − 1) , i = 1 and ni > 0

1 , i = 1 and ni = 0.

The number of steps required for the computation of φr is

r + nr +
r−1

Σ
i=1

(ni − ni+1) = r + n1

The number of trees in t obtained from one tree in s is φr(nr, . . . , n1) = 1. As for
the second case, only extra logarithmic space in s is needed.

Case 4. The applications of Rules (8), (9), and (21) are simulated by

φi(ni, . . . , n1) =

8

>

>

>

<

>

>

>

:

φi(ni − 1, . . . , n1 − 1) + φi−1(ni−1 − 1, . . . , n1 − 1) , i > 1 and ni > 0

φi−1(ni−1, . . . , n1) , i > 1 and ni = 0

1 + φ1(n1 − 1) , i = 1 and ni > 0

0 , i = 1 and ni = 0.

This case can be treated similarly to the first case above.
If r < R, then there are other reverse atoms along another path, containing, say,

r′ reverse atoms with ni (r < i ≤ r′ + r ≤ R) forward atoms before them. This new
path is to be considered in each of the already derived trees. The number of trees
in t, derived from the tree in s with R reverse atoms, becomes exponential in R.

The confluence of TRS2 for forests ensures that any rewriting strategy leads to
the same result (see Lemma 4.6). We consider the following rewriting strategy. We
apply always first the second and third cases if possible. If not possible, we apply
once the first or the last case. This leads to the creation of two trees. We continue
rewriting only the tree with one reverse atom fewer and postpone the rewriting
of the second one. After a number of rule applications linear in the number of its
reverse atoms, this tree derives a forward tree. We output it and release the memory
required to store it. Now, we rewrite the tree whose rewriting we postponed last. It
is easy to see that at any time we need only space for polynomially many trees.

Remark 4.13. The trees in the yield of TRS2 have linear size in the maximal
size of a tree of the input forest, because (1) the rules do not introduce new variables
nor unary predicates, and (2) the number of binary predicates of a tree is bounded
in the number of its variables minus one. 2
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We now extend the result of Lemma 4.12 to graphs.

Lemma 4.14. TRS3 is a PSPACE reduction.

Proof. Let s be the input graph and t the derived forest.
TRS3 contains TRS2 and Rule (23). Let us consider that Rule (23) is applied

until no other applications are possible. This does not have influence on the shape
of t, because TRS3 is confluent for graphs. Then, each variable sink of n forward
atoms creates n − 1 reverse atoms. Thus, the number of reverse atoms remains
linear in s. We further continue as for TRS2.

5. MAIN EXPRESSIVENESS AND COMPLEXITY RESULTS

This section finally gathers our main results concerning the expressiveness of LGQ
(and XPath) with and without reverse predicates and relates the analytical com-
plexity of rewriting queries and the structural complexity of the derived forward
equivalents.

Theorem 5.1. LGQ and its fragment of forward forests are equally expressive.

Proof. From Lemma 4.9 it follows that TRS3 rewrites any LGQ graph to an
equivalent forward forest.

The result of Theorem 5.1 applies also to the particular case of LGQ forests, which
correspond to XPath.

Corollary 5.2. XPath and its forward fragment are equally expressive.

Theorem 5.1 and its Corollary 5.2 state that the reverse predicates do not increase
the expressive power of LGQ and XPath. However, forward LGQ forests admit in
general exponentially more succinct equivalent LGQ graphs with reverse predicates.
As stated by Theorem 5.3, this holds even for LGQ trees with reverse predicates,
thus also for XPath.

Theorem 5.3. There is an LGQ tree that does not admit an equivalent forward
forest of polynomial size.

Proof. Consider the following LGQ tree Q having only vertical predicates

Q = root(r) ∧ child+(r, c) ∧ l(c) ∧

n
∧

i=1

(par+(c, vi) ∧ li(vi))

Consider the set of labels L = {l1, . . . , ln, l}. Let PS(n) denote the tree in Figure 5
with n! different root-to-leaf paths over the alphabet L obtained by appending l
to the permutations of {l1, . . . , ln}. It is easy to see that Q admits exactly one
valuation on each of the paths in PS(n).

We first prove by contradiction there is no forward tree formula T ⊆ Q that
admits more than one valuation on PS(n).

We assume there is a forward tree T with (a) T ⊆ Q and with (b) more than one
valuation in PS(n). The formula T uses only forward vertical predicates and must
have at least as many variables as Q (see Lemma 7.2 of [Gottlob et al. 2006]). There
are two cases concerning the structure of T : T is (1) either a path (thus without
multi-source variables), or (2) a tree (thus with multi-source variables). In the first
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•

l1 l2
... ln

l

+

+ +

+

•

l1 l2
... ln

l2 l1 ln−1

l3 l3 ln−2

... ... ...

ln ln l1

l l l

Fig. 5. Query Q (left) and PS(n) tree structure (right) used in the proof of Theorem 5.3.

case, the variable mappings, under any valuation of T , lie on the same path in
PS(n), due to the semantics of forward vertical predicates. This is a contradiction
with (b). In the second case, there are valuations that map variables to nodes not
necessarily on the same path in PS(n). This contradicts (a), because Q only admits
one valuation on each of the paths in PS(n).

In the remainder, the claim of the theorem is proven by contradiction. We assume

Q admits an equivalent forward forest Fm =
m
∨

j=1

(Tj) with m polynomial in n.

There are n! paths in PS(n) and there is exactly one valuation of Q on each
of them. Because Fm consists of polynomially many tree formulas, there must be
at least one tree formula Tj ⊆ Fm that admits valuations on exponentially many
paths in PS(n). However, this contradicts the first part of the proof, which states
that a forward tree formula Tj ⊆ Q ≡ Fm has at most one valuation on PS(n).

We further obtain an upper bound for rewriting LGQ graphs to equivalent LGQ
forward forests.

Theorem 5.4. LGQ graphs are PSPACE-reducible to equivalent LGQ forward
forests of exponential size.

Proof. From Lemma 4.14 it follows that TRS3 is a PSPACE reduction and
yields forward forests of exponential size. From Lemma 4.9 it follows that TRS3

rewrites any graph to a forward forest.

The above results concern the rewriting of LGQ graphs to the structurally less
complex LGQ forward forests. The effort of both eliminating reverse predicates and
reducing the structural complexity of the derived forward formulas has a rather high
analytical complexity. Theorem 5.5 ensures that only the elimination of reverse
predicates is not the source of this high complexity.

Theorem 5.5. LGQ graphs are LOGLIN-reducible to equivalent LGQ forward
graphs. LGQ single-join DAGs are LOGLIN-reducible to equivalent LGQ forward
single-join DAGs.

Proof. From Lemma 4.11 it follows that TRS1 is a LOGLIN reduction. From

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



30 · Dan Olteanu

Lemma 4.7 it follows that TRS1 rewrites any graph to a forward graph and any
single-join DAG to a forward single-join DAG.

Since LGQ single-join DAGs capture XPath with identity-based equality, it follows
immediately that

Corollary 5.6. XPath with identity-based equality is LOGLIN-reducible to its
forward fragment.

The exponential lower bound of Theorem 5.3 is in essence bad news. To better
delimit the source of this exponentiality, we define the class of so-called simple LGQ
graphs, which admit equivalent forward forests of linear size, and thus polynomial
evaluation [Gottlob et al. 2002].

Definition 5.7. A simple graph is an LGQ graph in disjunctive normal form
with no path having vertical (horizontal) closure reverse predicates (immediately)
after vertical (horizontal) forward predicates. Additionally, no variable is sink of
several paths with vertical (horizontal) closure forward predicates.

Proposition 5.8. Simple graphs are LOGLIN-reducible to equivalent LGQ for-
ward forests.

Proof. It immediately follows from the proof of Lemma 4.14. To rewrite simple
graphs, it suffices to apply locally only rules that keep the size of rewritings linear
in the size of the input formulas.

The reduction of simple graphs to forward forests of linear size exhibits a mini-
mization aspect. The number of predicates is bounded in the number of variables
for trees in the resulting forests, and in the number of all possible different binary
predicates times the square of the number of variables for disjuncts of the input
simple graphs.

6. RELATED WORK AND APPLICATIONS

Our initial results on the equal expressiveness of XPath with or without identity-
based equality and its forward fragment [Olteanu et al. 2002] found applications
to query evaluation and optimization in various contexts. This section overviews
some work that relates to and/or uses the proposed rewriting systems.

Streamed Query Evaluation. The initial motivation of our work stems in the inher-
ent difficulty to evaluate queries with reverse predicates against XML streams, as
also explained in Section 1. Trading queries with reverse predicates for equivalent
forward queries is primarily used by SPEX [Olteanu et al. 2002; Olteanu et al.
2004]. Other XPath processors use TRS1, e.g., [Barton et al. 2003], and TRS2,
e.g., [Helmer et al. 2002; Schott and Noga 2003; Marian and Siméon 2003].

XPath Optimization. [Grust et al. 2004] proposes efficient index-based access meth-
ods to XML data stored in relational databases and shows how TRS2 rules can be
used to further optimize query evaluation in such contexts by pruning index re-
gions or trading queries for their (forward or even reverse) equivalents. For exam-
ple, the optimized access to descendant nodes favors descendant(child) over ances-
tor(parent) predicates, as considered also by TRS2. However, the optimized access

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



Forward Node-Selecting Queries over Trees · 31

to text nodes can favor parent over child predicates, as in
descendant::n/child::text()→ descendant::text()[parent::n].

[Grust et al. 2004] points also out that TRS2 can be used to establish the space of
equivalent XPath queries out of which a cost-based optimizer would pick candidates
based on cost measures. This idea is considered by the VAMANA XPath query
processor [Raghavan et al. 2005].

Coping with Ordering and Duplicates. XPath semantics requires that the answers
to XPath queries are sets of nodes (thus without duplicates) sorted in document
order. This requirement renders some well-known XPath evaluation techniques,
e.g., Xalan [Apache Project 2001b], very inefficient, because they can accumulate
exponentially many duplicates to be removed at later evaluation stages (see the
discussion of [Gottlob et al. 2002]). For example, a possible evaluation of the
XPath query /descendant:a/ancestor::b would first compute the set of b-nodes
in wrong order and, if several a-nodes have common b-ancestors, with duplicates.

A possibility to overcome this exponentiality is to sort intermediate results and
prune duplicates after the evaluation of each subquery. However, there are queries
that do not require to sort and do not create duplicates. For example, the set of
nodes selected by the equivalent forward query /descendant:b[descendant::a],
as obtained by TRS2, is already in document order and has no duplicates. Static
inference of these properties is investigated in [Hidders and Michiels 2003]. A
technique largely based on TRS2 is proposed in [Helmer et al. 2002], where queries
are translated to sequences of algebraic operations that do not generate duplicate
nodes. [Olteanu et al. 2004] proposes a streaming evaluation for XPath forward
queries that does not require sorting and avoids the creation of duplicates.

XPath Expressiveness. By proposing TRS1 and TRS2, our previous work [Olteanu
et al. 2002] gives two important expressiveness results: XPath is as expressive as
its forward fragment augmented with identity-based equality, as ensured by TRS1,
and even without identity-based equality, as ensured by TRS2. Indirectly, [Olteanu
et al. 2002] points out the exponential succinctness of forward XPath with identity-
based equality (captured by LGQ forward single-join DAGs) over forward XPath.

TRS2 is used by [Gottlob et al. 2006] to show that the language of conjunctive
queries over the LGQ predicates is as expressive as XPath. Motivated by prelimi-
nary versions of [Gottlob et al. 2006], this article shows how the rewriting framework
of [Olteanu et al. 2002] extended only with the trivial Rule (23) can rewrite arbi-
trary LGQ graph queries (not directly expressible in XPath) to LGQ forest forward
queries (expressible in XPath).

The work [Benedikt et al. 2005], subsequent to ours [Olteanu et al. 2002], in-
vestigates closure properties of various fragments of XPath restricted to vertical
predicates, focusing on the ability to perform basic Boolean operations while re-
maining within the fragments. In particular, it refinds the expressiveness results
of [Olteanu et al. 2002] for the case of queries with vertical predicates. Additionally,
[Benedikt et al. 2005] shows the equal expressiveness of XPath with closure (non-
closure) vertical predicates and XPath with closure (non-closure) forward vertical
predicates. Note that this expressiveness result can be also inferred directly from
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the rewrite rules of our term rewriting systems.

Complexity of Graph Queries over Trees. Although the evaluation of graph queries
is NP-hard in general, there are non-trivial classes of graph queries that admit
polynomial evaluation. [Gottlob et al. 2006] characterizes some polynomial classes
depending on the presence of particular predicates in the queries. The current
article gives the strictly larger polynomial class of simple graph queries, charac-
terized by co-occurrences of closure predicates in a particular order along a same
path in the query. More precisely, Proposition 5.8 states that simple graph queries
are LOGLIN-reducible to LGQ forward forest queries, which admit linear XPath
equivalents and thus polynomial evaluation [Gottlob et al. 2002]. Moreover, the
polynomial evaluation of LGQ forward single-join DAG queries [Olteanu et al. 2004]
implies there is an even larger polynomial class of graph queries, containing those
queries polynomially-reducible to LGQ forward single-join DAG queries.

Schema-Aware Queries. TRS3 can be used to rewrite queries under constraints
using a technique similar to the chase&backchase of [Popa et al. 1999]. First,
structural constraints, as specified, e.g., by schemata of XML documents to be
queried, can be expressed as new binary predicates on the already existing variables
of the query (the chase). Then, the enriched query, possibly a big graph, is rewritten
by TRS3 to a forward forest query (the backchase).

journal

name

v0

title

#’dm’ v4

authors v5

v2

v1

v3
+

+

+

+

name

v0

#’dm’ v4

authors v5

v2

v1

v3
+

+

+

+

journal

title

+

journal

v0

title

#’dm’ v4

authors v5

v2

v3

name v1

+

(a) Query Q (b) Query Q and Constraints (c) Forward Query FQ

Fig. 6. Query Rewriting under Schema Constraints.

Example 6.1. Consider the LGQ tree query Q asking for names appearing
within journals whose titles are different from dm (Data Mining), only if the XML
document speaks about authors. Figure 6 (a) shows Q using our graphical repre-
sentation, where additionally the node corresponding to the distinguished variable
v1 is represented by a box.

Q(v1)←root(v0) ∧ child+(v0, v1) ∧ name(v1) ∧ par+(v1, v2) ∧ journal(v2) ∧ child+(v2, v3)

∧ title(v3) ∧ child(v3, v4) ∧ ’dm’6=(v4) ∧ child+(v0, v5) ∧ authors(v5)

Consider now given a schema with the content models authors(name+) and
journal(title, editor, authors, price?) and text content for the other nodes.

From this schema we infer that (1) authors nodes can appear only as children
of journal nodes, (2) title nodes can appear only as children of journal nodes and
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precede authors nodes, and (3) name nodes can appear only as children of authors
nodes. Formulated in LGQ and using the variables of Q, these constraints become
child(v2, v3) ∧ child(v2, v5) ∧ nextSibl+(v3, v5) ∧ child(v5, v1). Figure 6 (b) shows Q
together with these constraints displayed as dashed edges. The new obtained query
is a graph with cycles. By rewriting it, we obtain the forward tree query FQ from
Figure 6 (c).

The new query FQ is simpler and more efficient than Q, because it does not
contain child+ predicates and it restricts considerably the search space for possible
name node answers. More important, the evaluation of FQ requires no buffer-
ing, because all other query constraints must be met before the name nodes are
encountered in the stream. 2

More principled investigation of query rewriting under constraints in our framework
is subject to future research.

Query Minimization. The query minimization problem is to find for a given query
a minimal-sized equivalent one. Current approaches to query minimization, e.g.,
[Wood 2001; Amer-Yahia et al. 2002; Flesca et al. 2003], consider tree queries
with child and child+ predicates and wildcard nodetests, and have at their core the
observation that for such restricted queries minimal-sized equivalents can be found
among their subqueries. Thus, the minimal query is obtained by pruning redundant
subqueries until no subquery can be removed while preserving equivalence.

The query minimality aspect touched by the present article complements the
above efforts by removing semantic redundancies of graph queries. The “minimal”
query is not necessarily a subquery of the original one, and, besides dropping on
some predicates, it may contain new ones. More precisely, the current article finds
that simple graph queries are LOGLIN-reducible to forward forest queries, whose
trees have the number of predicates independent of the number of predicates of the
original queries and bounded in the number of variables minus one.

ReXP. An implementation of TRS2 adapted to XPath syntax and called ReXP is
hosted at http://spex.sourceforge.net as part of the publicly available stream-
ing XPath processor called SPEX. In addition to a library dedicated to query
rewriting and the specification of rewriting rules, ReXP offers a Java 1.5 API for
parsing XPath queries and accessing their abstract syntax trees. A useful feature
of ReXP is its graphical interface that allows to visualize the input and outcome of
each rule application (see http://spex.sourceforge.net for ReXP snapshots).

7. CONCLUSION

This work has been primarily motivated by the need to enable on-the-fly (or
streamed) evaluation of node-selecting queries on large XML repositories and un-
bounded XML streams. For this, (1) it identifies the reverse predicates as problem-
atic for on-the-fly query evaluation, and (2) it proposes a robust rewriting frame-
work for finding forward queries equivalent to queries with “problematic” reverse
predicates. Properties of the proposed rewriting framework, like soundness and
completeness, termination, confluence, and complexity of rewriting are also inves-
tigated. The second point above is essentially an expressiveness result and inves-
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tigating along the same line, this work identifies various classes of queries equally
expressive to their forward fragments.

Finally, various applications of the rewriting framework to streaming, main-
memory, and RDBMS-based query evaluation are presented.
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