SPEX:
Streamed and Progressive Evaluation of XPath

Dan Olteanu

Abstract— Streams are preferable over data stored in memory

or space consuming. Emerging applications such as publish-
subscribe systems, data monitoring in sensor networks, fimeial
and traffic monitoring, and routing of MPEG-7 call for queryi ng
streams. In many such applications, XML streams are arguahy
more appropriate than flat streams, for they convey (possihl
unbounded) unranked ordered trees with labeled nodes. How-
ever, the flexibility enabled by XML streams in data modeling
makes query evaluation different from traditional settings and
challenging.

This article describes SPEX, a streamed and progressive dva
uation of XPath. SPEX compiles queries into networks of simfe
and independent transducers and processes XML streams with
polynomial combined complexity. This makes SPEX especigll
suitable for implementation on devices with low-memory and
simple logic as used, e.g., in mobile computing.

Index Terms— Query Evaluation, Streams, Transducers, XML,
XPath

. INTRODUCTION

The main contribution of this article is an evaluation metho

in contexts where data is too large or volatile, or a standard that fulfills all four above desiderata. More precisely, thomtri-
approach to data processing based on storing is too time ptions are as follows.

TREAMS are an emerging technology for data dissemination

in cases where the data throughput or size make it unfeasi-
ble to rely on the conventional approach based on storing the
data before processing it [1]. Areas where streams areeappli

include monitoring of scientific data (environments [2]{ras-

omy [3], meteorology), control data (traffic [4], networkS],[
logistics), financial data (bank transactions [6]), and NEPE
routing [7]. Streams are complementary and symmetricatii-t
tional databases. While in traditional databases datarsigtent
and queries are volatile, in stream applications data istVelbut

gueries are persistent. Streams are a hew and promisitggsett

which many conventional database methods have to be coedide

anew.

Querying XML streams without storing and without decregsin

considerably the data throughput is especially challenbecause

XML streams can convey tree structured data with unbounded

size and depth. Important desiderata for query procesgaiast

XML streams are to employ streamed and progressive evafyati

to scale in both data and query size, and to offer support

for reasonably expressive query languages. Streamedaticsiu

means here that only one pass over the XML stream is used, and

progressive evaluation means that the answers are outzaoas
as possible. Current streamed query processors, e.g[148]-

being in most cases a subset of them, possibly with addltio

We describe a streamed and progressive query evaluation
against XML streams (SPEX for short). Extended abstracts
on SPEX are given by [15]-[17].

The query language supported by SPEX is Forward Core
XPath [18] extended with path union and path difference.
This is a clean fragment of XPath [19]. XPath lies at the core
of important languages for the Web, e.g., the query language
XQuery [20], the transformation language XSLT [21], the
schema language XML-Schema [22], and the language for
addressing fragments of XML documents XPointer [23].
SPEX has polynomial combined complexity, i.e., polynomial
in boththe data and the query sizes. Chronologically, SPEX
is the first streamed Core XPath processor to enjoy polyno-
mially combined complexity [16]. This contrasts with most
approaches to streamed evaluation, which have exponential
query complexity, e.g., [8]-[11].

We show that SPEX is scalable. Our experiments show that
SPEX scales for queries of 1000 steps as well as real-
life XML documents of 700 MB (the biggest sizes in our
experiments). Further experiments confirm SPEX scalgbilit
for application-generated XML streams [17].

SPEX is extensible by design. It compiles queries into
networks of independent transducers and the addition of
transducers implementing new query constructs does not
influence the behavior of the existing ones. Note that the
aforementioned streamed XPath processors are not extensi-
ble, for they are specifically designed for very small XPath
fragments.

To further improve the evaluation time and also to give
an example of useful SPEX extensions, we introduce so-
called filters that reduce the stream traffic within trangauc
networks. We experimentally confirm that the filters are
very effective, especially for networks representing céle
queries.

SPEX is an open-source processor publicly available at
htt p: // spex. sour cef or ge. net . The prototype imple-
ments also comparisons with constants and a restricted form
of aggregation (count), which are not discussed here.

We proceed as follows. In Section Il we define annotated XML
streams and introduce the XPath fragment of concern. S$elitio
are not designed to accomplish all these desiderata, theirsf overviews the main ideas of SPEX. We show how XPath queries

e compiled into transducer networks in Section IV and éefin

desiderata, e.g., support for indexing and evaluatingelargs of various transducers in Section V. An optimization techaiqu
for reducing the stream traffic within networks is described

Section VI. The complexity study of SPEX follows in Sectiol V
and experiments are reported in Section VIII. Finally, weegi
credits to related work in Section IX and conclude in Secion

simple queries. We survey these processors in Section IX.

Dan Olteanu is with the Department of Informatics, Saarlamiversity,
66041 Saarbriicken, Germany. E-mail: olteanu@infosysiude

/ paths). If a path is preceeded by /', then it is absoluteentlise it
is relative. A query is a path, a union or a difference of patlie
semantics of a patii[p1])/.../Ln[pr] is the set of all nodesn,,
° in stream order such that there is a list of nodes), ..., mn),
wheremg is any node among a given set of (context) nodes, and
for all 1 < i <n we have(m;_1,m;) € L;, and there are nodes
e 6 6 mj; for which (m;,m}) € p;. In case of an absolute path is
by default bound to the root node.
@ Our XPath fragment is restricted in that it only considers

forward axes. A forward axis relation holds on two nodes.
andm, if m appears aften in stream order om equalsn. XPath

O] @[@[] (L (eyfa(ol] (dey(dl] (d)a) (/) also defines reverse axes, which are inverses of forward bés
Fig. 1. A tree and its corresponding XML strearfystands for stream that in the case of absolute paths the restriction to forveses
beginning and(/)for stream end). does not make our XPath fragment less expressive [15], T24.

supported forward axes are self (equality), fstChild (fokild),
child (child), child™ (descendant), chifd (descendant or self),
Il. PRELIMINARIES nextSibl (next sibling), nextSibl (next siblings), nextSiBl (next
A. Annotated XML Streams siblings or self), and foll (following).
XML streams correspond to depth-first, left-to-right, W(_e also define vertical, horizqntal, and diagonal paths and
serializations of trees. Each node is represented by anrgpand predicates. Frqm any node a v_ertlcal path selects descendants
closing tag as follows: on entering (exiting) that node oigening of n and possiblyn itself, a horizontal path selects descendants

(closing) tag is appended to the stream. For our purpose egé the parent of», and a diagonal path selects descendants of the
opening tag is followed by an annotation, cf. Fig.1. Anniotad root. Because we consider here only forward axes, the select

are used to mark selected nodes during query evaluation. ﬂ%ies follow or equak in all three cases. Syntactically, if we
annotations of particular nodes of interest are marked afibad \ghore the occurences of self, a vertical path §tarts W@m' .
flag. This is the case of the nodes that can be in the answer @B‘Jd- or their c_losures, and can al_so contain nexFS|bI a8d |
called answer candidates). closures. A horizontal path starts with nextSibl or its oles,

An annotation is expressed as a list of positive integers ﬂpd can cznteur:_ aTy r?m_s butt lfog'. A dlalgonal dpat? cgr;xscolrl tain
ascending order, e.g., [1,2]. There are two special arinotat any axis. A vertical (horizontal, diagonal) predicate detsso

the empty annotation, noted [], corresponding to the empY)?rt'Cal (horizontal, diagonal respectively) paths.

list, and the full annotation, noted [0], corresponding he ftist
containing all positive integers. There are three openatitefined I1l. OVERVIEW OF SPEX PROCESSING
for annotations: unionJ, intersectr1, and inclusionC, whose SPEX evaluatesone XPath query againstone XML
semantics resemble that of standard set operations, andC. stream (seehttp://ww. pns.ifi.l nu. de/forschung/
For example, the operatian.s denotes the union of annotationsspex/ ng. ht m for a SPEX extension coping with large query
c and s with duplicate removal, like in [1,2][2,3]=[1,2,3]. Any sets). This section discusses the processing strategyEX
annotation contains the empty annotation and is contaimedei a query of the general formL{[pi)/.../Ln[pn]. SPEX uses a
full annotation. We write a stream containing the message compact data structure to encode matchings of eachistemd
before the message, asmims. one buffer for possible answer candidates. A candidate isda n
Although a node is not a stream message, for the sake ro&tched by the last stef, before the nodes required to evaluate
conciseness we may often speak about streams made up of noalépredicatesp,; are encountered in the stream. For each gtgp
Thus, the wordings (1) “all children of a nodeare annotated in we construct a listS;, whose entries represent all matchings of
the output stream with the annotationofrom the input stream” L, at any instant. An entry;; representing a node is added
and (2) “all opening tags of children of a nodeare immediately to S;;; when the stepl;;.; matchese from a node previously
followed in the output stream by the annotation that immeetija matched byL; and represented by an enty. In this case, we
follows the opening tag of. in the input stream” are equivalent.also have a link frome;; to e;. Note that there can be several
nodes matched by,;; from a node matched by,; and also
B. The Query Language XPath the same node can be matched by, _from diffgrent nodes
. . . . matched byL; (both cases can happen if, e.g,,.1 is a closure
This ar'ucle_ considers a clean fragment of XPath [19] definedis |ike descendant or next siblings). This implies theae be
by the following abstract EBNF: many-to-many links between the entries of two successsts. li
Besides adding new entries to our lists, we may also replace o
query: /' path| path| query ‘union’ query| query ‘except’ query remove existing entries. An entey is replaced bytrue when the
path: step (/' step)* o predicatep; is satisfied at the matching node represented;bif
step: axis "' nodetest ([’ pred 7')? L; has no predicate, then is true by default. The instant whesy
pred: pred ‘and’ pred pred ‘or’ pred| ‘not’ ‘(pred ‘)’ _Z !)
| ¢ pred *y | path is removed depends on the rest of the quenyp{f/.../Ln[pn]
is vertical (horizontal or diagonal), then; is removed when the
A path is a sequence of steps and each step has an axis (tlesing tag of the matching nodg it represents (the parent of
a binary relation on nodes), a nodetest (i.e., wildcard & the matching node, or the end of the stream respectively) is
node label), and possibly a predicate (i.e., a boolean flarrover encountered in the stream. The reason whis removed at that

instant is that the paths ip;]/ ... /Ln[pn] can only match nodes transducers is to compute matchings for several input natite

that are descendants gfor y itself (descendants of the parent ofsame time and manage such matchings using only a stack. Later

y or of the root node respectively). in this section we define our new notion of SPEX transducet, an
Each entrye,, of S, represents a candidate. By following theSection V gives SPEX transducers for all XPath forward axes.

links back frome,, to entries ofS;, we discover all dependencies The transducers use their stacks to model the lists disgdusse

of a candidate represented by. A dependency of a candidateabove. Also, they use their tapes to communicate with other

is thus a sequence(,...,e;) of linked entries with one entry transducers. The communication of two transducers,3agnd

from each listS;. When at least one dependency of a candidat®_ ;, for subsequent steds andL;, 1, is realized by making the

¢ becomes a sequence wfie values, thenc is in the answer. output tape off; be the input tape of;, ;. The communication

This is the case when each predicateis satisfied at the entry is necessary to inforri;; of the matchings ofl; and happens

e; of that dependencyl(< 7 < n). When at least one entry of along the stream as node anotations. By interconnectingyahs-

each dependency afis removed before becomintgue, thenc ducers for the steps constituting a query, we construct \ankt

is removed as well. This is the case when there is at least am@resenting that query. Section IV defines the compilatbn

predicate that is not satisfied for each of the dependendies o queries into transducer networks.

A natural choice for processing a stream with a transducer

a2 -a2- (Ucuze) -a2- ("cuze) network is to let the stream flow through the network one ngsssa
at a time. By default, SPEX enforces that the entire network
al cl al €1 al -1 dl
(true) (true) @ue)| |ue) |@ue)| processes a stream message before the next stream message
s1 s2 s3 s1 s2 s3 s1 s2 s3 IS processed. Section VI gives a SPEX extension that departs
(a) after first(c) (b) after second/c) (c) after (d) from this rule and allows each message to be processed only

by transducers that can potentially use it to create or vesal
candidate dependency.

. Example 3.1:Consider a query that selects the d-node from thepey yransducers and transducer networRsishdown trans-
input stream of Fig. 1: /chil@i::a[child::d]/child" ::c/nextSibi"::*. ducers are automata with pushdown store and output tape.

The partial matchings created for our query and stream@t@iit oo formally, a pushdown transducer [25] is an eight-tuple
processing instants are shown in Fig. 2: (a) after procgstia
. ; ‘ ' Q,2, T, A6, q0, Zo, F), where
first opening tag(c), (b) after processing the second closing ta
(lc), and (c) after processing the first opening tay

There are three listS1, S2, andSs corresponding to our three
steps. In case (aj; has two entries; andasy corresponding to
the two a-nodes already reagh has one entry; corresponding
to the first c-node, ands is empty. Note that; is true and
linked with botha; andas, because the first c-node is descendant
of both a-nodes. In case (b), the entiyis removed (on reading 7 T is the bott hd bol
the closing tag of the first c-node), because the correspgndi * FOCG 1S the obor? prS ovxé_n symf_o .I tat
c-node has no next sibling. Alsay is removed on reading the ° *_Q_ 'S_ € subset of accepling or final states.)
closing tag of the second a-node, because this node has Ido cfideterministic pushdown transducer allows at most onesitian
d-node. For clarity, we still represent the removed enttias from any of its states. In this case, the transition relatienomes
marked as deleted. A new entry (set totrue) is created for the @ function from@Q x (SU{e}) x (TU{e}) to @ x I x (AU{e}).
descendant of the first a-node. In case ¢g)is replaced bytrue, We call SPEX transducers. _ _ _
because the first predicate is satisfied on the first a-nodsm, Al Definition 3.2: A SPEX transducer is a single-state determin-
there is a new entry; (set totrue) in Ss corresponding to the iStic pushdown transduce_r, where the_lnput and output hkm_sa
answer candidate represented by the d-node and linkegl ive are the set\/ of all opening and closing tags and annotations,
can now decide that this candidate is in the answer, becélite a the stack alphabet is the set of all annotations, the bottom
dependencies are resolvedttoe. We then output this candidate Pushdown symbok is the empty annotation [], and the transi-
and, on reading its closing tag, we remoye from Ss. After tion function§ is canonically extended to the configuration-based

closing the first a-node, we can safely remayeandc,. [transition function: M x A* — A" x M”. N 0

At any instant the size of5; is bounded in the number of Section V gives the configuration-based transitions of SPEX
matchings off.;. Note that there can be exponentially ijnmany transducers for all our XPath axes. _
dependencies, although our partial matching structureesepts ~ Example 3.3:Consider the SPEX transducer defined by the
them polynomially. The size of the candidates buffer is fomeh following transitions

Fig. 2. Partial matchings are encoded using an efficient stateture.

e Q is a finite set of states.

o X, T, andA are the input, pushdown, and respectively output
alphabets.

o 0 is a relation fromQ x (X U {e}) x (I' U {e}) to 29 x
I'* x (A U{e}) called the transition table, whose elements
are called transition rules.

e qo € Q is the initial state.

in the stream size (though the answer size can be quadratic in 1. ([d , ¥) F ([| v, €)
the stream size). Also, the buffer is kept as small as passipl 2.((m) [s1) = ([s] [y, (m)[s])
discarding candidates as soon as their predicates areata@lu B/ sl IMEC v m)

In addition to the memory-conscious data structures for can We use the notationc] | v to express that the stack of our
didates and step matchings, SPEX has efficient algorithms teansducer is split in its topc] and the resty. We also use to
the structural joins represented by XPath forward axess&hedenote that no symbol is output.
algorithms are realized as basic automata with output tapeOn receiving an annotatiorr][the first transition pushes that
also called transducers. The main challenge in definingethesymbol onto the stack and outputs nothing.

On receiving an opening ta@;), and with [s] the top of the 1. Query Preparation Phasé\Ve first add a new stepead at
stack, the second transition keeps the same stack conf@urathe end of the query (or of each operand, if the query is a set
and outputs(n) followed by [s]. operation with several operands). The semantics of hedwhif

On receiving a closing tag/n), and with [] the top of the a self step with a wildcard nodetest (thus, by adding it to @rgu
stack, the third transition outputs the input symbol andspthig we do not change the query semantics). Second, we annotdte ea
top annotation off the stack. predicate with an identifier and with the type of the predicand

It can be checked that the annotation of each node is movedofothe paths following that predicate in the query. Recadiir
its children. Section V shows indeed that this SPEX transducSection Il that XPath paths and predicates can be vertic&r(v
implements the child axis. O short), horizontal (h), or diagonal (d).

Transducer networks are obtained by composing transdircers Example 4.1:The predicate [child::a] in the query
sequence and parallel. If two transducarsindt, are composed /child::b[child::a)/nextSibf ::c becomes [child::§], because
in sequence, noted; - t2, then the output stream af is the the predicate is vertical and the path following it is horita 0
input stream ofs. If two transducerg; andt¢, are composed in
parallel, noted; + t2, then they receive the same input stream.

For boolean (and, or) and set (union, except) operators we Ip1/p2] = [p1] - [p2]
specify transducers with several input tapes. Such a tumesd Ty _ x
unifies the streams received on its input tapes by outputting [p1lp2]n] = [[pi]] 'i[[m]"ﬂ -
each opening and closing tag from the original stream oneon [lp]n] = scope,, - ([p]) - scope,,
and after it reads that tag from all its input tapes. Addidn [p1 op p2] = ([p1] + [p2]) - Op
according to the semantics of the implemented operatoisas u [not(»)] = [p] - not
the annotations of each opening tag from all received stseam
compute and output a new annotation. The transducers féedmo [= [l
and set operators are given in Section V-C. [oezn] =a-n

Example 3.4:Consider the following two input streams that [head =

differ only in their annotations

(N[0 @[] @[2] (©)[]1 (cyday(c)[] (ey(dy[3] (/d)(/a){/r) Fig. 3. Query compilation phase.
(N[o] (a1] (a[1] (c)[2] (/c)(/ay(c)[] (fe){d)[] (/d)(/a){/r)
The output of the transducer after reading the streams is 2. Query compilation phas@&he compilation is given in Fig. 3
by the function[] defined using pattern matching on the structure
(N[0l AL @11.2] (2] Ve)daicl] (o) (d)I3] (d)ie) of XPath queries. The operatop is one ofunion, except, and,
Note that each opening and closing tag appears only onceoin For each predicate with identifier and typex we create a
the output. Also, each opening tag is annotated with theruofo block (scope.., scope,.) in the network. The XPath operators */
the annotations of that tag in the input streams. O and " are translated into sequential compositions, adefich
Finally, there are three special transdudersut, and. operatorop we compose in parallel the networks for its operands.
The transducerin is the first transducer in a network andNote that we overload the names of operators, axes, andastslet
its task is to annotate the nodes from the input stream. Figtd also denote transducers. Also, while the operators dibeim
gives the output stream of transdudar where the root node queries, their corresponding transducers are postfix iworks.
is assigned a full annotation, and the other nodes are &skign
empty annotations. This annotation scheme correspondketo t

evaluation of absolute paths, i.e., paths that are alwagkhiated (X -op” H+Y)-op" — (X H+H Y)-op’ Q)
from the root node. To evaluate paths from a given set of nodes XYHX-Z-X-(Y+H2) 2
these nodes are assigned a full annotation (this correspibiech X+HX-Z—-X-Z (3)

to the evaluation of relative paths).
The transduceout is the last transducer in a network and it
simple task is to manage the candidates, i.e., to storeuutp
and discard them as soon as possible (as previously distirssefig- 4. Network rewriting phase.
Section Il1). For this task, the transduaaut has a random-access
buffer. We skip here the specification of this transducer. 3. Network rewriting phaselhe transducer networks produced
The transduc is positioned in a network immediately in the compilation phase can be further minimized using énent
after the transducer for the last query step and marks ngtyemrewriting system defined in Fig. 4, where the variahlesy’, and
annotations with &eadflag. Because the transducer for the last stand for arbitrary networks. Although not shown here, it ca
query step annotates answer candidates, the transfinead| be checked that the system is terminating and confluent.
ensures that the candidates are distinguished from the otides Rule (1) eliminates redundant commutative and associative

Sscgpez - X scgpez Y — scgpezcZ (X H+Y)-and- scgpez 4

in the stream. operators @¢p’ is and, or, or union). For example,
IV. QUERY COMPILATION ((child ++ child") - and + nextSibl) - and —
SPEX compiles an XPath query into a transducer network (child ++ child® ++ nextSibl) - and

that mirrors the structure of the query. The compilation foas
distinct simple phases, which are detailed next. Rules (2) and (3) factor out common prefixes of subnetworks

composed in parallel. For example, it is output followed by the top of the stack; (3) if a closiragt
) .)) is received, then it is output and the stack is popped.
child - a - nextSibl™ -+ child - b - child™ —

1. ([c] , F ([|,
child - (a - nextSibl™ + b - child™) 2. §[<77]> s [s] |3§ - E{s} |3 <n>[§§
3/ Lsl M EC v (/)

Rule (4) composes in parallel the subnetworks for predscate

and for their following subqueries. For example, Recall that the annotation of a nodefollows its opening tag.
Y Y When receiving a node annotated with], [c] is pushed onto

scopey - child - a - scope, - — the stack. The following two cases can then appear:
scope; - (child - a ++) -and - scope, (1) the closing tag of: is received, andd is popped off the

stack. This corresponds to the case when there are no other
4. Network fixup phaseNe finally compose in sequence the children ofn left in the input stream.
transducerin, the outcome of the previous rewriting phase, anq2) the opening tag of a child node of n is received, and it

the transduceout. is output followed by §]. Thus, the noden is annotated
Example 4.2:Consider a query that selects all d children of correctly with], which was the annotation of.

a-nodes that are children of the root and have descendamtd b
children c: /child::a[child ::b and child::c]/child::d.
After the preparation phase, the query becomes

fh the second case, a new annotation, say, [is received
afterwards, pushed onto the stack, and used to annotatierhil
p of m. Only when the closing tag of is received, {'] is popped

/child::a[child*::b and child::c}/child::dhead and k] becomes again the top of the stack. At this time, siblings
o _ of m can be received and annotated with ({the above cases 2),
The compilation phase yields or the closing tag of: is received (the above case 1).

. o - . - v . The transducefstChild moves the annotations of nodes to their
child-a-scope, -(child™-b + Ch"d'c)'and'SCOPel'Ch”d'd'~ first children. This transducer is a simplification of the Ighi
) . . .) _, v transducer, by restricting a stored annotatiehdf a noden to
Finally, the rewriting and fixup phases yieill- child - a- scope;- mark at most one node. This node is necessarily the first ohild
(child™ - b ++ child - (¢ + d-)) -and - scope; -out O n, as ensured by the stream’s sequence. This restriction €an b
realized by replacings| with the empty annotation as soon as a
child of n and its annotation, say][is received. Below, we give
the first transition modified accordingly. The other trapsit are
This section defines SPEX transducers that implement tae for the transducer child.
XPath forward axes and nodetests. Seql_Jentla_I composm_bns L(qd 511 F A 1T 17 €)
SPEX transducers implement then queries without predicate)])
For queries with predicates and set operators, we giveiaddit | he transducemextSibl moves the annotations of nodes to their

: : I immediate next sibling, if any. The transitions of this sdocer
tsr:tn(sygg?aetfrsfor handling predicates, as well as for boo are the same as for the transducer child, except for the fist o

given below. In the first transition, the top of the stack is
replaced with the received annotatiafj §f a noden and pushes

A. SPEX Transducers for Forward Axes and Nodetests an empty annotation [] onto the stack. The annotation [] &th
used to annotate children aof. When the closing tag of: is

Given a treel” and a set of context nodes i, the evaluation received, the annotation [] is popped and its next siblingeno
of a forward axisa yields the set of all nodes i that stand in m can be annotated witle][The other next siblings can not be
relation o with at least one context node. Provided the contegnnotated with d], because d] is replaced by the annotation of
nodes are marked with non-empty annotations in the inpaastr 7. Say F'l, and now the immediate next sibling ofi can be
conveying 7', the transducer implementing outputs a stream annotated with {.
that also conveyd” and where the nodes that stand in relation L (e, [s]1v)F {111 |, €)
o with some context nodes are assigned_the annotations of theiThe transducechild™ moves the annotations of nodes to their
corresponding context nodes. Note that in general therebean yegcendants. The transitions of this transducer are the aarfor
several nodes that stand in relatiarwith the same context node the child-transducer, except for the first one given belowthie
(for any axis relation but self and nextSibl), and even wehesal first transition, this transducer pushes onto the stackebeived
context nodes (for closure relations like child It is crucial annotation §] togetherwith the top annotations]: [c]u[s]. The
for the efficiency of our approach that a SPEX transducer fordifference to the transducer child is that also the anrmnatis]
forward axisa can annotate correctly iane passover the input ©f the ancestors,, of n are used to annotate children of n,

. . . for the nodesn are also descendants of the nodgs

stream the nodes i while using only a stack to keep track of
the depth of the nodes in the stream and to store annotataas r L ([el, [s] [v) = ([eUls] | [s] | v, €)

from the input stream. » N When receiving a node annotated withd], [] is pushed onto
Configuration-based transitions defining SPEX transdulters yhe stack together with the current togk:[[JL[s]. The following
forward axes are given next. Initially, an empty annotatigns
pushed onto the stack of each transducer. These transdudgrs
differ in their first transitions, which are compactions ahpler the stack. This corresponds to the case when there are no
transitions that do only one stack operation. ' . . .
The transducechild moves the annotations of nodes to their other de;cendants of Igft N the_ incoming S”ea.m:
children. The transitions of this transducer read as faitog) if (2) the opening tag of a chilgh of » is received, and it is output
an annotation d) is received, thend is pushed onto the stack followed by [c]u[s]. Thus, the children of:, which are also
and nothing is output; (2) if an opening tdg) is received, then descendants of, are annotated correctly.

V. EVALUATION WITH TRANSDUCERNETWORKS

two cases can then appear:
(1) the closing tag of: is received, anddU[s] is popped off

[input [(@ [(@ 2 & B () {(a)y) TI (1b) (la) |
child::b (@ [1 (@ [1 o 2 () {a) () [1] o) ()
child¥::b (@ [1 (@ [1) [12]) (a) (b)) [1] (/b) (la)
nextSibl b | (a) (@) (b) Wy oy B 21 (b la)
foll b @) ()) Wy oy (B 231 (b (a)

Fig. 5. Processing example with SPEX transducers.

In the second case, a new annotation, saYy, [is received 1. [c] is output as soon as it is read. Thed), i used to mark

afterwards, the annotationr’JL[c]u[s] is pushed onto the stack alson.

and used to annotate childregnof m. Thus, the annotationc] 2. [c] is pushed onto the stack. Ther] [s used to mark also
is also used to annotate childrerof m (), hence descendants the children ofn.

of n. Only when the closing tag af is received, §]U[c]U[s] is 3. [c] is pushed one level below the top. Then] is used to

popped andd]L[s] becomes again the top of the stack. At this mark also the next sibling of.

time, siblings ofm can be received and annotated with_[[s] 4. [s] is onto the stack. Then,s] is used to mark also the
(the above case 2), or the closing tagrois received (the above descendants of.

case 1). 5. [s] is pushed one level below the top. Thenr] [s used to

The transducenextSibl™ moves the annotations of nodes to mark also the next siblings of.

their next siblings. The transitions of this transducertheesame s .
as for the child-transducer, except for the first one givelovihe By mixing the above behaviors 1 to 5, one can get a transducer

In the first transition, this transducer adds to the top of tHEF @ny axis. For example, combining behaviors 1 and anyrothe
stack [] the received annotationc] of the source node: and €nsures the reflexivity of the axis. Combining behaviors d an
pushes an empty annotation []. The annotation [] is then us2dor 5 and 3, ensures the transitivity of the axis. Combiring

to annotate children af. When the closing tag af is received, and 2 and 4, or 1 and 3 and 5, ensures both the transitivity and
the annotation [] is popped and its next sibling nodescan reflexivity of the axis.

be annotated with the top annotatias). [Because the old top of There are, of course, other possible combinations. For plam
the stack §] is kept together with the newly received annotatioghe combination of 2 to 5 gives the implementation of the com-
[c]. the annotations of preceding siblings ofare also used 10 pjex relation child -or-nextSibl™ = childt U nextSibl". These
annotate the following siblings of. combinations are reflected in the following changed tréorsit

1 (. [l = A1 ddle] | €) L (el [s] [7) F ([uls] | [uls] |, €)
The transducechild® moves the annotations of each nod&
its descendants and to the nodéself. This transducer is defined
below similar to the transducer chifd with the difference that a
noden keeps its own annotatior][together with the annotations
[s] of its ancestors

We next define the transducéoll. In the first transition, it
replaces the old top annotatior] [with the new annotationc]
and then pushes also the old ta). Because the nodes following
a noden are all nodes reachable in the further stream after closing
n, the annotationd becomes part of the top of the stack and

1.([d ,[s]]v)F ([culs] | [s] |, [e]uls]) used to annotate incoming nodes as soon as the maslelosed
2. ({n) , v Y, n (transition 3). In contrast to the transducers defined presly,
3.({/n), [s]|v) F(v, {/n) once an annotation becomes part of the stack, it remaing,ther

. . because the following sibling nodes of the ancestor nodes of
The transducenextSibl* moves the annotations of each nodegiow also n. 9 9

n to its next siblings and to the nodeitself. 1. ([
. (lef

L([el o [s1~) = ([T Teuls] [, [Uls]) 2. ((n), sIUEC 1] v)ls))
2.(fm) o) v) 3. (M), [| [s]| v) F ([uls] | v, ()
3.({/m), Tl 1) = (7 {fm) Al
])) though pushdown transducers are not closed under com-
A nodetestn is a unary relation. For a given set of contexposition, the composition of pushdown and finite transdsicer
nodes, it returns a subset of this set consisting of the naiths is possible and even beneficial. In this sense, one can create
that nodetest. This means that the initial and returnedasetthe transqucers implementin_g_ composition of axes ar_1d nodetest
same in the case of a wildcard nodetest. We therefore create\Me give below the transitions of the transducer child::a tho
transducer for a wildcard nodetest. composition of the child axis and the a nodetest defining tbe s

A transducer for a nodetestreplaces the annotations of node&hild::a.

sl) E s el | v €)

without that nodetest by the empty annotation. The traosstiof 1. ([¢] ¥) E ([| v, €)

this transducer are given next. For simplification, eachditaon 2.(@ L[s1lv)E sl]y, @Is])

can consider two input symbols at a time. The nodetgsstands 3. ((—a) , VEC oy =al])

for any nodetest buy from our finite set of nodetests. 4.((/a) ,[s1|vEC v (/&)
1. ([) F () 5. ((/=a), [s] |v) F (v (/@)
2. ((-n) F ([]) Example 5.1:Figure 5 gives the output streams of the SPEX
3.((/m YEC {/m) transducershild™::b, nextSibl™*::b, andfoll::b after processing
4 ((/=m))= (/=) an input stream. We explain how the transdudgid::b processes

Variations of Transducers for Forward Axé&le can summarize incrementally that input stream.
the transitions of the previously defined transducers daaisl([c] Recall that the stack is initialized with an empty annotatio

is the annotation of. currently read ands] is the current top of []. The stack configuration changes only on receiving artimta
the stack): and closing tags. On receiving opening tags matching itetesd,

<a>[1]<a>[2][3][4][5]<d>[]</d> <a>[]<a>[1][2][2][1]<d>[5]</d>

+
nextSibl - b

<a>[J<a>[J[J[J<h>[2]<d>[2]</d> <a>[J<a>[J[J[2][1]<d>[J</d>

Fig. 6. Evaluating the query child::*/nextSibl:b/foll::* with network child - nextSibl* - b - foll.

the transducer outputs that opening tag followed by the fdtso []- The stack configuration becomes|[1]|[]-

stack. (/by It pops the top [] off the stack, meaning that there are no

(a) is output followed by its top annotation []. Thus, the first children of the second b-node left in the stream. The stack
a-node does not have in the input stream a parent with a configuration becomes [f{]].
non-empty annotation. The stack configuration remains [/@) It pops the top [1] off the stack, meaning that there are

[1] is pushed onto the stack, This way, it is instructed to no children of the first a-node left in the stream. The stack
mark all b-children of the first a-node with [1]. The stack configuration becomes [] and the processing is finisted.
configuration becomes [[[]] (the top is at the left).

(a) is output followed by []. Although the top annotation is [1],B. Transducer Networks for Location Paths without Predisat

Lh;/eoztg?r:olge?g;e(':rtr’lebzgzglfiot:f?gL?;Eg:?err]rgﬁg?ﬁ?s noEPEX compiles a query without predicates into a network
.)) R representing a sequence of transducers for the constitgatton

(2] is pushe_d onto the stack. This way, it |s_|nstructed tokmar teps. The network processes then the input stream and dies no
all b-children of the second a-node with [2]. The Staannotated in the output stream represent the answer toubay.q

b _confi?ur?t]jol? bec;obmefh[g%ﬂ[]. tati 21 Thi out | Example 5.2:Consider the query child::*/nextSibl:b/foll::*
(b) is output followed by the top annotation [2]. This outpu 'Shat selects from any context node all nodes that follow the b

correct, because the received node does have a b-nodglgghie sipings of its children. SPEX compiles this quemoi
and is a child of the second a-node. The stack configuratifi, |\ .. crin - child - nextSibl™ - b - foll - out. Consider thain

remains [2J{1]|[]. annotates the in i i i

. . Lo put stream as given in the top-left tree @f i
[3] is pll(,lsl‘};ag ohrjltg the fstthaCk];_ -I;hl')s V\:jay, |_tth|53|ns_|'_t:]uctetd Phe stream of the bottom-left tree of Fig. 6 represents thpuiu

mark all b-children of the first b-node with [3]. The s ad%f the transducefoll, where only the last two nodes have the

b lctonfigurtahtio? becsomgstlﬁf@]h[l]l([]. ing that th non-empty annotations. This means that only these two nodes
{fb) 1t pops the top [3] 0 € stack, meaning that there aré N, \4 in ‘relation child::*nextSibl::b/foll::* with nodes from

Ehlldren otfhthef'flrts tbb-nco)lde dleft n thtehstrean;l._lghls lstco\l',lre_(l:_ he input stream. By inspecting their annotations, we adafel
ecause the Tirst b-node does not have children at all. i hoih of them are selected from the second a-node. The

stack configuration becomes [R[[] . transducerout outputs these two nodes in stream order. Fig. 6

(fa) It pops the top [2] off the stack, meaning that there are rgl(so shows as annotated trees and streams the intermeskaltsr
chlld_ren O.f the second a-node left in the stream. The stag the transducershild, nextSibl™::b, andfoll, albeit they are not
configuration becomes [[{]].

iali i ing. O
(b) It outputs the tag, followed by the top annotation [1]. Thismaten"jl ized during processing

output is correct, because the received node does have a)

b-nodetest and is a child of the first a-node. The sta& Handling Set Operators

configuration remains [1]. The transducersinion and except have several input tapes.
[1 is pushed onto the stack. This way, it is instructed to mafk Their common task is to unify the streams received on thetinpu

b-children of the second b-node with []. Because the othé&pes by outputting each opening and closing tag from thggnaii

children are also marked with [], we can conclude that th&ream only once and when it is read from all input tapes. A

transducer will mark all children of the second b-node withon-empty annotation is output if it appears in at least ompeii

in O o @ [1 @ [I (& [1I () {(a (& [1I () (d [I d (&)
union 0 @ [0 (@ [0] () [0] (c) (/& () [0] (e (d) [I (d) (& (/)
child - child | () @ [1 (@ [0 (o [1 o (a (o [0 (o (& [0 {d (& ()
except 0 @ [0 @ [1I (& [0 (g (& (& [1 () (d [I (d (& (/)

Fig. 7. Processing example with transducers for set opsrato

stream (forunion), or in the first stream and not in the otherslosing tag of the parent of for a horizontal scope, and the end
(for except); otherwise, it is replaced by the empty annotation.of the stream for a diagonal scope. Annotations and the answe
Example 5.3:Consider a query that selects all nodes lasandidates depending on them can be discarded as soon ras thei
beled a or c¢ without the second-level nodes in thecope is exhausted. The implication of discarding the atioots
stream: /child ::a union /child ::c except /child::*/child::*. For as soon as possible is twofold. First, SPEX only buffers at
the stream given in Fig. 1, this query selects the first a-reoutk any instant answer candidates with unresolved dependgncie
the first c-node in stream order. The corresponding netwsrk i candidates with resolved dependencies are discarded fnem t
buffer as soon as possible. Second, at any instant the ambunt

- 4t - ; ; 2) .
in-(child™ - (& ++ ¢)-union +- ch|Id~ch|Id)-except--out. annotations alive foscope,, is bounded in (a) the maximum tree

The output streams of some transducers from the network Q@Pth for a vertical scoper(= v), (b) the sum of the maximum

given in Fig. 7. tree depth and breadth for a horizontal scape-(h), and (c) the
The entire network processes each stream message at a tif{g/Per of nodes in the tree for a diagonal scape-(d).

The root node is marked by the transducer in with the full Example 5.4:Fig. 8 shows howscope; andscope; reannotate

annotation [0]. The opening tag of the root node reaches tAediven stream. L]

—

. s v
transducers chiftl and child, which record its annotation to_ Scope Transducersie give next the definition ofcope,,.
later mark the descendants, respectively children of tha. rolN€ Stack of the transducer is used as a counter that insrease

The second node has an empty annotation when it reaches \é\fgh every received annotation and decreases with evesjvext

. . %ing tag. The counter is initialized with 1. For a recdive
transducers chifl and child. Both these transducers match th&nnotation, this transducer creates a fresh annotatioegepting

node and annotate it with [0]. Among the remaining transtijcea singleton list containing the current value of the counter
only the nodetest transducer a matches the node and sendddteover, the transducer inserts in the stream a mappingeleet
further with the same annotation. The transducer unionivese the received annotation, say],[and the fresh annotation, say
then this node on both its input tapes, one time with the emplisl: [c] = [s]. At the end of its lifetime, the annotation][is
annotation (from nodetest transducer ¢) and one time wigh teiscarded by inserting in the stream a mappifng™ [s]. Two of

full annotation (from nodetest transducer a). Similar toanthe the transition rules ofcope,, are given below. The transitions for
transducer except receives this node on both its input tapes the other message types simply copy the messages from thie inp
time with full annotation (from the transducer union) ane:¢ime t© the output stream and are skipped here. As an optimiztioin

. . defined by our simplified transitions below), we may creagstir
with the empty annotation. The transdu marks then the ,nnotations if the received annotation is non-empty.

node as answer candidate and the transducer out decideanit is "

answer node and starts outputting it. Until the second nabieléd L. s)F(s+1, [s1[c] = [sD)

c is read, no other candidate is encountered. When this node 2. (), s) F (s =1, (I)([1 < [s —1]))

reaches the_ transdu_cer out, it becomes an answer node. blowgv_-rhe transduceséEpeZ replaces each non-empty annotatiah [
because this node is a descendant of the first answer node, Li-quntered in the stream with the unior f all annotations
buffered until the first answer node is completely outputefh ot are mapped to subsets of. [It also creates the mapping

it is also output. O [s] & [d]-
Boolean Transducers.ike the transducers for set operators, the
D. Transducer Networks for Queries with Predicates transducersaind and or have several input tapes. Their common

task is to unify the streams received on the input tapes by
outputting each opening and closing tag from the originadash

ith fresh ! h des that h only once and when it is read from all input tapes. A non-empty
reannotate with fresh annotations the nodes that have mplye ,,nqtation s output only if it appears in at least one inpreesn

annotations in the stream and to create mappings between ({‘}&e or), or it already appeared in all input streams (ford).
received annotations and the fresh ones. These fresh &oneta * Thetransduceor behaves precisely as the transdugaron.

are used by the subnetwofi] to evaluate the logic of the cor- The definition of and is given below as a modified SPEX
responding predicate. Finallycope, uses the mappings createdransducer without stack, but with an array, whose sizeeryi

by scope,, to map back the received annotations to the originQI]Y t?ﬁ nltmeerk of i':s input tap%s. The transittiotr;]s for tmetssagles
ones. This reannotation allows SPEX to evaluate predidates © Other types simply copy such messages to the output. Below

As specified |gp Section 1V, a predicat ¥ is compilmed into
a network scope,, - [X] - scope,,. The purpose ofscope,, is to

modular way. X stands for fs1], ..., [sx]) andY for ([s1]Ufe1], ..., [sk]U[ck]).
Annotation ScopesEach annotation created byope,, has a 1. (([e1], - - [ex)), X) F (Y, ﬁ([szl U [e]))

scope or lifetime that depends an The scope of an annotation 2 (e) X) (X i= o)

tarts with th ing t f th de, having that BV PATEREAY/ VA ; n

starts wi e opening tag of the node, say having tha 3 (U X F (X i)

annotation and it ends with the first closing tag after the las
possible node that can be matched by the pathX dfom the The transducemot uses the mappings created byope to
context node:. This is the closing tag af for a vertical scope, the invalidate annotations. An annotation is forwarded by tlaeg-

Input 1 <a>[2] <a>[2] [3] [3] [3] <d>[4] </d>
Output: <a@>[1] [21->[1] <a>[2] [2]->[2] [3] [3]->[3] [3] [3]->[3] [2] [3]->[2] <d>[3] [4]->[3] </d>

Input I <a>[2] <a>[] [3] [3] [3] <d>[4] </d>
Output: <a>[1] [2]->[1] <a>[2] [2]->[2] [3] [3]->[3] [4] [3]->[4] [3] [3]->[3] <d>[4] [4]->[4] </d>

Fig. 8. Examples with vertical and horizontal scopes.

ducernot immediately before it gets invalidated, and only if thaype of X is x)

transducemot does not receive it during its lifetime.) -
Example 5.5:Consider the horizontal predicate N child™ - book-

[(child™::a and child ::c) or nextSibl::b]. From a given set scope, - (child - authors - + [X]) - and - scope; - out

of context nodes, this predicate selects only those thae hav

descendants labeled a and c, or have an immediate sibliatpthb When the transducdrook encounters a book-node, then the node

b. For the tree with annotated nodes given in Fig. 9, the first sent further to the successor transducers, with an addlti

b-node and the first a-node in stream order satisfy the patedichon-empty annotation signaling a match. In the case of nodes

(the predicate is satisfied for the a-node even twice becausdVith different labels and preceeding all book-nodes in theasn,

has descendants a and ¢ and also an immediate sibling b). there is no need to send them further, as they are not cribcal
the query (the answers to our query against the streams with o

. . _ . h

Ohe +p055|ble ngtviork corresponding t(_) this predlcaﬁfap}Le1~ without these nodes respectively are the same). We caneeduc
((child™ -a ++ child™ - ¢) - and + nextSibl - b) - or scoper-the stream traffic between transducers in (at least) two ways

FigiL 9 shows the input and output streams sebpe; and (A). Because all transducers following the transduseok in
scope; . The output stream of the network contains the annotatiof¥e network are always interested in nodes following booéles,
of those input nodes that satisfy the predicate. Also, thetite query evaluation is not altered, if the transducer bamids
annotations appear in the output stream as soon as posHilige. further only the nodes following the opening tag of the firstie
means that before encountering the opening tag of c, it is rlenok, and the other transducers do the same for the nodes they
known whether any of the context nodes satisfy the preditateare instructed to find relative to nodes found by their presio
transducers.

(B). Assume the transducers positioned after the transduce
book in the network are only interested in descendants of book-
nodes. Then, the transduckook can safely send further only

The transducers introduced in Section V receive, proces$, ghe stream fragments corresponding to book-nodes.
forward all nodes from the input stream, although this is by Both aforementioned stream traffic reductions can be easily
far not necessary. Ideally, for a given query, a node from thepported by SPEX extended at compile-time with so-callégt fi
input stream should only be processed if it is critical foe thpushdown transducers. For example, in case (Bleréical filter
correct evaluation of that query. Using SPEX terminolodiese (vfilter for short) placed immediately after the transdubepk,

are the nodes that create or resolve candidate depende\MBeS sends further 0n|y stream fragments Corresponding to me.s
next introduce so-called filter transducers to reduce theb®n The network with Vfilter is

of nodes communicated between transducers in networks.

Vertical, Horizontal, and Diagonal FiltersVe exemplify filters in - child™ - book - Vfilter-
on a (DBLP-like) stream containing articles possibly foled =V ehild . . . L U
at the very end of the stream by books. Consider the quer;jco]?e1 (child - authors + [XD)-and - scope, - out
[child™::book[X]/child::authors asking for authors of books within case (A), this filter is aliagonal filter (dfilter for short) and
given properties X stands for the XPath encoding of theseends further only stream fragments starting with an ogetag
properties). The SPEX network for this query is (we assumge thook. Clearly, vertical filters make more sense for our c&e (

VI. REDUCING THE STREAM TRAFFIC IN TRANSDUCER
NETWORKS

STREAMS
S1:
[1] <a>[2] <a>[2]
<c>[3] </c> <la> []
s2: [1]
[1] [1]->[1] <a>[2] [2]->[2] <a>[3] [2]->[3] <la> |
<c>[4] [3]->[4] </c> <la> []
S3:
[][1]->[1] <a>[][2]->[2] <a>[] [2]->[3] <la>
<c>[1,2] [3]->[4] </lc> [2]
S4:
[] <a>[] <a>[] <la>
<c>[1,2] [1,2]<-[1,2] <lc> <la> [2] [2]<-[2] | [l

— h) . . — h
Fig. 9. Processing with networkcope; - ((child* - a + child™ - ¢) - and -+ nextSibl- b) - or - scope; .

because they always forward smaller (or equally large)astre Efficiency of Filters. The improvement achieved by filters
fragments than diagonal filters. In general, diagonal §ltare depends tremendously on the selectivity of the query etedua
not always superseded by vertical filters. It is enough tcsictan by the network. In the previous example, the selectivityaiher
that the subquenkX refers to nodegollowing book-nodes. The high, because the transducer book, positioned near theftibe o
subnetwork][X] must then check for such nodes until the end afetwork, finds book-nodes only at the end of a possibly large
the stream, and not only inside book-nodes. stream. In such cases, the usage of filters is fully rewareimd)

If the subqueryX refers to following siblings of book-nodes, the evaluation resumes to mere parsing. However, in caseswh
then it is sufficient to forward only all following siblingsnd the the query is not selective, the additional effort to run thers
descendants of book-nodes. This can be achieved by placingaa be reflected in worse evaluation time. Section VIII shows

horizontalfilter (hfilter for short) after the transducéook. that the average time for the evaluation of hundreds of geeer
Remark 6.1:As illustrated above, the type of filters (vertical,queries is improved by filters up to several times.
horizontal, or diagonal) can be inferred from the query agibe- Implementation of Filterskig. 10 gives the configuration-based

time, as it is the case of the transducerspe. A filter of typez transition function of the diagonal and vertical filters.r Fnore
is placed above a subnetwofK], if the subqueryX has only compact definitions, we let stand for any annotation and may
paths of typezr. O read two input symbols at once. Note that this relaxatiors

Sl 2o W g

. , , € . , , €

3. (<77;7[], [s) F ([s], (m[]) 3. (<77;7[c],)= e | — (me)

4.((/m) [s]) = ([s], {/m) 4. (Ll —[v) =11 ml])

5. ((mIsl, —) (sl (ms]) 5.((/m 17 F(v (/)
(a) Diagonal filter. (b) Vertical filter.

Fig. 10. Configuration-based transitions for diagonal aedical filter transducers.

make the filters more expressive than SPEX transducerillipit | Fragment]| predicates| closure axeg annotation size; |

there is an empty annotation on their stacks. XPath none + o(1)
The transition rules of the diagonal filter read as followfs. | | XPath vertical - o(1)
only empty annotations have been received (stated by théyemg Xpath, vertical + 0(d)
annotation as the only stack entry), then no message igtetgh. XPath, horizontal + O(d +b)
As soon as the stack consists of a non-empty annotation, Jifypaih, diagonal T O(n)

subsequent messages are let through. Finally, in casedbiwed
node has a non-empty annotatios] & []), then it is sent through
and the annotation becomes the stack content.

The vertical filter uses its stack to remember the smallgsthde gyream influences both the time and the space complexities of
of a received node with a non-empty annotation. Therefang; o

)) X - query evaluation. Third, a transducer stack can store at mos
if the stack consists of an empty annotation, then the ogeantl ;. iations as shown next.

closing tags of nodes with empty annotations are not leUgio A annotation can only follow an opening tag in the stream.

For each received annotation, a transducer pushes an @onota
VII. COMPLEXITY onto the stack and for each closing tag an annotation is gbppe

This section gives polynomial upper bounds for the compfexifrom the stack. A stack can have at mastntries (=annotations),
of Forward Core XPath query evaluation against XML streamfr there can be at mostopening tags encountered in the stream
The polynomial lower bounds fdn-memoryevaluation of Core before one of their closing tags is received.
XPath are given by [26]. References [27], [28] give memory TO process an XML stream, a transducer network needs then
lower bounds for the evaluation of queries from a large XPattne linear ing and space linear ip andd. The time and space
fragment against non-recursive streams. For queries Wiure complexities depend also on the size of annotations crefateng
axes and predicates, [28] shows that any streaming evatuatProcessing, as discussed next.
algorithm must use at leasf(CONCUR(D, Q)) memory space, XPath queries have no predicates, thus (a) there are no
where CONCUR(D, Q) is the maximum number of candidatescandidates to buffer, and (b) the only used annotations tee t
for the evaluation ofp against the streand at any instant. In full and the empty annotations, both of constant size.
worst case, this number is the number of stream nodes ane hencXPath—5 queries can have predicates. The evaluation of
the entire stream has to be buffered. queries with predicates can require a buffer of maximum size
In the remainder we consider that the query has giZee., P X ¢ X a;: there arec candidates at any instant and for each
number of steps inside and outside predicates);andtermost candidate we keep at mosf annotations for each of the scopes
predicates (i.e., predicates not included in other preejathe that nest the head transducer (in tgtaduch scopes).
tree conveyed in the stream has degttbreadths, size s, and XPath, queries have no closure axes, thus there is no need to
number of nodes:.. We also use: = CONCUR(D, Q). union annotations, and each transducer matches at a fixed dep
We next present the space and time combined complexities farthe stream. This makes that only three annotations are use
the evaluation of queries from five XPath fragments. Thenatie during processing, namely [], [0], and [1], all of constaiztes
behind choosing these fragments is given by the various size XPaths_s queries can have closure axes and predicates. De-
annotations created during query evaluation and by the ¢ack Pe€nding on the predicate types, the unions of annotations is
need to buffer stream fragments. The syntactical chaiaatin bounded byd (for vertical predicates)d + b (for horizontal
of these fragments is given in Fig. 11. All fragments contzon- Predicates), or. (for diagonal predicates). n
closure axes, nodetests, and all boolean and set operators. ~ Remark 7.2:XPath queries have no predicates and therefore
Following [18], [28] we only consider the problem of decigin ? = 0. Thus the space complexity for XPathecomesO(q x d).
whether each node is in the answer set or not. Note that SPEXPaths_s queries are restricted to only have closure axes, one
fully supports the XPath semantics in that it outputs thergueCan show that the annotations can be represented as carginuo
answer and in stream order. This additional computatiotep s intervals of integers, where the biggest integer is bourled
can take quadratic time in the stream size, because the ans{{@ vertical predicates)/+b (for horizontal predicates), or (for

Fig. 11. XPath fragments and corresponding SPEX annotaiizes.

size can be quadratic in the input stream size. diagonal predicates). Then one only neéggd), log(d + b), or
Theorem 7.1:SPEX has time complexitf)(q x s x a;) and log(n) bits respectively, to represent an annotation. O

space complexityO((¢ x d + p x ¢) x a;) for XPath anda; as

defined in Fig. 111 < i < 5). VIIl. EXPERIMENTS

Proof: [Sketch] For all our XPath fragments the following The polynomial combined complexity of SPEX is verified by
three properties hold. First, the size of a transducer nétwoan extensive experimental evaluation conducted on a ppEot
for a query is linear in the query size (see the compilatiomplementation of SPEX in Java (Sun JRE 1.5) on a Pentium 1.5
in Section V). Second, the size of annotations present & tkeHz with 500 MB under Linux 2.4.

XML Streams. We consider the effect of varying the streanprevious tests. Cf. Fig. 13(b), an increase of the query gfrem
size s on the evaluation time for two XML stream sets. The to 1000 leads to an increase from 2 to 8 MB of the memory for
first set [29] provides real-life XML streams of up 2o million the network and for its processing. The memory use is medsure
nodes and depth up ®6. We used in the experiments the smalby inspecting the properties of the Java virtual maching.(e.
XML documents region, nation, courses, sigmod, part, adérsr using the Runtime Java package).
(with sizes from 1 KB to 5MB), and as medium to large XML Reducing the stream traffic. All previous tests show results
documents nasa, lineitem, treebank, dblp, and proteirh(sites for “naive” SPEX, i.e., SPEX without the filters described in
from 23 to 680 MB). The second set provides synthetic XMISection VI. Fig. 14 shows how these filters affect the evadnat
streams with a slightly more complex structure that allonsven time. The phasg filters (vertical and horizontal) improve the
precise variations in the workload parameters [17]. Thetstic evaluation time up to 3 times for our tests using queries,ssho
data is generated from information about processes runoing sizes range from 5 to 1000, cf. Fig. 14(a). The same figure show
computer networks and corresponds to the output of the Linalso that, for small XML streams, our evaluation strategynis
(SUSE) command “ps -elfH” in XML. average five times slower than the mere parsing of the XML

Queries. For each considered XML document we generategiream, if phase is used, 10 times slower if phasédiagonal
queries using its DTD. This led to queries that express tréifiers only) is used, and 15 times slower for naive SPEX. gsin
navigation compatible to the document structure definedhiey tphase, an increase in the query sizetends to have little to
DTD. The query generation was tuned with the query sjze constant influence on the evaluation time. This result ideémed
(which means the number of location steps) and several prdiy the fact that an increase in the query size leads often to
abilities: ppextsibh P+ P+ @andp. for next-sibling, closure axes, an increase in its selectivity, thus supporting the raterfar
predicates, and wildcard nodetest respectively. For el@ng employing filters. The same explanation applies to Fig. 14(b
path query hag, = 0. For each parameter setting)-50 queries where the increase of the closure probabilipy-Y makes the
were tested. queries less selective and leads to a less effective gaievech

The query generation algorithm works as follows. We firdpy the filters.
construct a graph representing the input DTD, where eack nod Non-polynomial behavior of other engines.Work indepen-
represents a (possibly optional) token. Child-edges ablihgi dent of ours confirms experimentally the polynomial comipiex
edges are created from a nodeto a (not necessarily distinct) of SPEX versus the exponential complexity of the XPath emgin
nodey if y appears in the content model ofin the DTD, or Xalan-Java 2.6 [30] for queries that involve closure axeH.[3
if y can appear as a next-sibling in a document instance of tKelan, as also other engines [9]-[11], have exponentiakyque
DTD respectively. To generate a query, we start with the lgragomplexity because they lack efficient set-at-a-time pssirey:
node corrsponding to the given top token and decide to neviggiven a path and a set of context nodes, Xalan computes the
along a child-edge or a sibling-edge depending on the pitityab set of nodes reachable via the given path from each context
PnextSibi depending orp., we decide to jump several edgesiode independently of the other context nodes, although the
of the same type and depending pn we decide to create computed sets can overlap. To ensure correct answer without
a predicate with the steps generated using the same precedluplicates and in stream order, Xalan unions the computts se
(predicates with simple paths or boolean connectors haual egsorts the result, and removes the duplicates. This oparatm
probabilities). Depending op., we take as nodetest the currentake exponential space in the query size, because for egyeithat
token, or the wildcard ™. This procedure ends when the ltotset of nodes reachable from any node can be linear in therstrea
number of generated steps reaches the baurfithe procedure size. The engines [9]-[11] are based on automata that cas hav
ends before reaching the desired number of steps, thericaddit an exponential number of states to encode that at any ingtant

dummy steps self::* are appended. current node can be matched by several query steps.
Note that this algorithm can generate queries that yieldtgmp
answers. This is because a DTD defines a set of different XML IX. RELATED WORK

documents and a generated query may have non-empty answe
on a subset of these documents, which may not contain therlshere is a large amount of work in the field of XPath evaluation

document from our dataset. In our tests. about 5% of the weri’:\gainst XML streams. We look next at the characteristicshef t
have empty answers ' most known processors through SPEX glasses.

- . In the context of publish-subscribe or event notificatios-sy
Scalability. Scalability results are presented for stream and)
. . . ems, the XML stream needs to be filtered by a large number of
query sizes. In both cases, the depth is bounded in a ratral sm:

constant { < 36) and its influence on processing time showea'mpIe me?‘Td queries. Engines like [9), [10], [12] assuthe
. . Stream partitioned into small XML documents (up to thousand
to be considerably smaller than that of the stream or quesssi

Fig. 12 emphasizes the theoretical results: The procegsimg of elements_per).(ML documt_ent). Except of [1.2]’ they perform

. guery matching with exponential query complexity. Recefl7]
increases linearly with the stream size as well as with theryqu ives lower bounds for the query matching problem in the case
size. The effect is visible in both the real-life and the &tic 9 query 9p

data set, with a slightly higher increase for the synthetitadiue of two fra_gments of XPath (Univariate _XPath and Structural
. Subsumption-free XPath) and non-recursive streams.dtgiles
to its more complex structure.

. - . tchi Igorithm, wh is close to th bounds.
Varying the query characteristics. Fig. 13(a) shows an a matching algorithm, Wose Space 15 ¢ose fo these bounds

. . . The query answering engines XSQ [11] and HAOS [13] and
Increase Of. the evaluation time by a factor of less thamhen TwigM [32] are the closest in spirit to SPEX and deserve alose
p« and p increase from0 to 100%. It also suggests that the

evaluation times for nextSibl and child are comparable. 1We used the Crimson SAX parser availablehet p: // xni . apache.
Thememory usageis almost constant over the full range of theor g/ cri nson/ .

300 ; ‘ 5 20
250 - real-life data o . 16k 4
- synthetic data ------- -7 —
S 200 g 4 o
g ok : g 121 .
o 150 2 B o 8l i
£ 100 | o 4 E
50 e T N 4+ R
0 - Il Il Il Il Il Il O Il L L L L L L L L
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 800 900 1000
stream size s (MB) query size q
’ . a% Varying stream size (g =1 5?) <d<32) (b) Varying query sizey (s = 244 kB, d = 32)
Fig. 12. Scalablllt)g « =P = PnextSibI:%* :%’.
3.6 T T = 8
3.4 closure —— R
a2 next ---x---] 7
5 . wildcard ------ o 6
8 2 1 2
o 2.8 B g 5
E 26 b S a4
2.4 e @
22 %"] 3
2 Pl | | | | 2 | | | | | | | | |
0%

20% 40% 60%

probability (%)

80% 100%

a) Effect of p. , and i
If not varied,s :(44 kB, d L 3£+q = 1&7%&*)(t§|2|+ = PnextSibl = PA

100 200 300 400 500 600 700 800 900 1000
query size q

(b) Effect of varying query size

Fig. 13. =0.5

35 T T T 325

30 parse —— /,x"’- 300 U e
o naive ---x--- - i 5 A — B :
8 25 phasel ---%--- - 8 275 ‘
o 20 [phase2 & L . o 2501 - E
£ 15 e A £ 253 parse —— |
& - 2 naive ---x---
& 10 - ek 7 3 200 |- phasel ---*---

5 T “% g - 175 F) ‘phasez g

0 : . 150 I ! L !

0 100 200 300 400 500 600 700 800 900 1000 0% 20% 40% 60% 80% 100%

query size q

probability (%)

ery sizey (s = 450 kB)

Sizer (s 5 450 KB) o5 (b) Effect of p (s = 700 MB, ¢ = 10)
* = P+ = PnextSibl = V-

Fig. 14. Effect of filter iy 0524

inspection. XSQ supports queries limited to child and dedaat this structure contains only sufficient information to detme

axes and unnested predicates with at most one step. It cgrileomthe next answers, and previous matchings that are not needed
one query into an exponential number of pushdown transducanymore for possible new answers are dropped. This way, the
augmented with queues that are gathered into a hieraratetat- memory footprint of SPEX remains lower than that of HAOS.

ministic pushdown transducer. XSQ can perform an expoalenti Recently, [32] presented an efficient query answering engin
number of operations per stream message, even for norsheEUr called TwigM for an XPath fragment with child and descen-
streams. dant axes and predicates (thus strictly weaker than our iXPat

HAQOS supports child and descendant axes and their symmfr?_gment). The experimental evaluation reported in [32veh

rical reverse axes parent and ancestor. A query is compiled ifat ;\}’(V'?l’\g] scales very well when compared to XSQ [11] and
a DAG structure where nodes are XPath nodetests and edges :M!F)

XPath axes. The reverse axes are rewritten similar to [lifigus XSM [34] is a streaming engine also based on networks
rewrite rules of [15]. The evaluation is based on the incrataie Of transducers. Unlike a SPEX pushdown transducer, an XSM

construction of a matching structure consisting of mapping transducer has buffers with random access and several read
nodes from the DAG query to nodes from the tree convey@dﬂd write pointers. Our SPEX transducers clearly show that a
in the input stream. This evaluation approach is similartte t efficientimplementation of any XPath forward axis does rexth
standard tree pattern evaluation algorithm, presentgd,ie[33], the expressiveness of such complex XSM transducers.

though the latter constructs the matching structure betipnin XSM can evaluate queries consisting of steps with descéndan
the data tree, whereas the former constructs the strucbgre taxis and nodetests different from wildcard, value-basetsjand
down, as imposed by the stream’s sequence. All answers of K@uery static element constructors against XML streamd wit
query are accumulated and are delivered after processimg tion-recursive structure definition. Recall that the keytue= of
entire stream. Thus, no progressive processing is perthrive SPEX is the efficient processing structural joins (the XPath
answer is determined uniquely by exactly one matching oheaforward axes) onarbitrary XML streams. We do not see any
query node, and all these matchings are accumulated usetil 8traightforward extension of XSM to cope with XPath axes and
end of the processing. SPEX constructs also a matchingtsteuc arbitrary XML streams. For the (rather trivial) XPath fragm
updated constantly on the arrival of new stream messages amdl XML streams supported by both XSM and SPEX, we
distributed on the stacks of its transducers. However, wpttiame note that both engines become very similar. Due to the severe

restriction on the input XML streams, SPEX transducers for [20] S. Boag, D. Chamberlin, M. F. Fernandez, D. FloresciRabie, and
step child™::n, with a nodetest; different from wildcard, can J. Siméon, “XQuery 1.0: An XML query language,” World Wideet/

Consortium,” Working Draft, 2002.
only match at most one node along any path from the root t ﬂ] J. Clark, “XSL transformations (XSLT) version 1.0,” Wo Wide Web

leaf. Thus the SPEX transducers do not need stacks. Then, ik~ consortium” W3C Recommendation, 1999.

for XSM, we can compose all transducers of a network into[&2] D. C. Fallside and P. Walmsley, “XML-Schema,” World WidWeb

single finite transducer [35]. ggrr]\;?]rgum, W3C Recommendation, 2001, http://www.wgXML/

[23] S. DeRose, R. D. Jr., P. Grosso, E. Maler, J. Marsh, and\Valsh,
“XML pointer language (XPointer),” World Wide Web Consanti,”

. . . . W3C Recommendation, 2002, http://www.w3.org/TR/xptr/.
This article describes SPEX, a streamed and progressnhahev?m] D. Olteanu, “Forward node-selecting queries over #feACM Trans.

ation of XPath queries against XML streams. The streameecasp Database Systems (TOD$Jarch 2007, to appear.
of SPEX resides in the sequential (as opposed to randomgscde5] E. Gurari, An Introduction to the Theory of Computation Computer
i i i ; Science Press, 1989.

to the XML stream. SPEX is prog_resswe because It dellvges t%?(l) G. Gottlob, C. Koch, and R. Pichler, “The complexity oPxth query

guery answers as soon as possible. Queries are compiled

networks of deterministic transducers that process XMeastrs (PODS) 2003, pp. 179-190.

with polynomial combined complexity. Experiments confirhet [27] Z. Bar-Youssef, M. Fontoura, and V. Josifovski, “On tieemory

scalability of SPEX requirements c_)f)_(F’ath evaluation over XML streams,”Hroc. ACM

' Symposium Principles of Database Systems (POBEWM, pp. 177-188.

[28] ——, “Buffering in query evaluation over XML streamsyi Proc. ACM

Symposium Principles of Database Systems (POBE)5, pp. 216-227.

G. Miklau, XML Data Repository Univ. of Washington, 2003, http:

Iliwww.cs.washington.edu/research/xmldatasets.

[30] Xalan-Java Version 2,6Apache Project, 2005, http://xml.apache.org/
xalan-j/index.html.

[31] A. Berlea, “Event-driven evaluation of grammar qusfie
Technische Universitat Minchen, Tech. Rep., 2005, abtgl online

[1] N. Koudas and D. Srivastava, “Data stream query prongséi tutorial,” http:/mwwbib.informatik.tu-muenchen.de/infberichte/2005/TUM-
in Proc. Int. Conf. Very Large Databases (VLDE0O03, p. 1149. 10513.ps.gz.

[2] NASA, JPL Sensor Webs Projedtttp://sensorwebs.jpl.nasa.gov, 2004.[32] Y. Chen, S. Davidson, and Y. Zheng, “An efficient XPatheguprocessor

[83] —— XML Group Resources Paghttp://xml.gsfc.nasa.gov, 2004. for XML streams,” inProc. Int. Conf. Data Eng. (ICDE)2006.

[4] Traffic and Traveller Information (TTI) — TTI messages viaffic [33] G. Miklau and D. Suciu, “Containment and equivalenceadiragment
message coding — Part 1: Coding protocol for Radio Data 3yste of XPath,” Journal of the ACMvol. 51, no. 1, pp. 2-45, 2004.
Traffic Message Channel (RDS-TM@jternational Standard Organiza- [34] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstanfin‘A
tion (1SO), 2003, http://www.iso.org. transducer-based XML query processor,’Hroc. Int. Conf. Very Large

[5] N. G. Duffield and M. Grossglauser, “Trajectory samplifay direct Databases (VLDB)2002, pp. 227-238.
traffic observation,”IEEE/ACM Trans. on Networking (TONyol. 9, [35] C. Choffrut and K. Culik II, “Properties of finite and pugown trans-
no. 3, pp. 280-292, 2001. ducers,”SIAM Journal of Computingvol. 12, no. 2, pp. 300-315, 1983.

[6] C. Cortes, K. Fisher, D. Pregibon, A. Rogers, and F. Spitttancock:

A language for extracting signatures from data streamspProc. Int.
Conf. Knowledge Discovery and Data Mining (KR2000, pp. 9-17.

[7] D. Rogers, J. Hunter, and D. Kosovic, “The TV-trawler je,” Journal
of Imaging Systems and Technolpgp. 289-296, 2003.

[8] Z. G. Ives, A. Y. Halevy, and D. S. Weld, “An XML query engirfor
network-bound data,VLDB Journal vol. 11, no. 4, pp. 380-402, 2002.

[9] M. Altinel and M. J. Franklin, “Efficient filtering of XML a@cuments for
selective dissemination of information,” iBroc. Int. Conf. Very Large
Databases (VLDB)2000, pp. 53-64.

[10] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu, “Pragiag XML
streams with deterministic automata,” Rroc. Int. Conf. Database
Theory (ICDT) 2003, pp. 173-189.

[11] F. Peng and S. S. Chawathe, “XPath queries on streanaiteg’ éh Proc.
Int. Conf. Management of Data (SIGMOD003, pp. 431-442.

X. CONCLUSION

ACKNOWLEDGMENT

| thank Fatih Coskun for the implementation of the currer{gg]
version of SPEX.

REFERENCES

evaluation,” inProc. ACM Symposium Principles of Database Systems

[12] C.-Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastd§ifficient
filtering of XML documents with XPath expressions,”froc. Int. Conf.
Data Eng. (ICDE) 2002, pp. 235-244.

[13] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. t6are, and
V. Josifovski, “Streaming XPath processing with forward drackward
axes,” inProc. Int. Conf. Data Eng. (ICDE)2003, pp. 455-466.

[14] C. Koch and S. Scherzinger, “Attribute grammars forlaioke query
processing on XML streamsYLDB Journa) 2007, to appear.

[15] D. Olteanu, H. Meuss, T. Furche, and F. Bry, “XPath: Limgkforward,”
in Proc. EDBT Workshop XMLDM2002, pp. 109-127.

[16] D. Olteanu, T. Furche, and F. Bry, “Evaluating complalees against

XML streams with polynomial combined complexity,” iAroc. British

National Conf. on Databases (BNCOM004, pp. 31-44, prel. version

in technical report PMS-FB-2003-15, University of Munidfgb. 2003.

[17] F. Bry, F. Coskun, S. Durmaz, T. Furche, D. Olteanu, andSlgannagel,
“The XML stream query processor SPEX,”Hroc. Int. Conf. Data Eng.
(ICDE), 2005, demonstration.

[18] G. Gottlob, C. Koch, and R. Pichler, “Efficient algoritis for processing
XPath queries,” irProc. Int. Conf. Very Large Databases (VLDRPO02,
pp. 95-106.

[19] J. Clark and S. DeRose, “XML path language (XPath) wersi.0,”
World Wide Web Consortium,” W3C Recommendation, 1999.

Dan Olteanu received the diploma degree in com-
puter science from the Polytechnic University of
Bucharest in 2000 and completed his diploma thesis
in the Caravel project at INRIA-Rocquencourt. After
receiving the PhD degree in computer science from
the University of Munich in 2005, he joined the
newly created database and information systems
group at Saarland University. His research interests
are in incomplete information, data integration, and
XML query processing.

