
Building a Native XML-DBMS as a Term Project in a
Database Systems Course

Christoph Koch, Dan Olteanu, and Stefanie Scherzinger
Lehrstuhl für Informationssysteme

Universität des Saarlandes, Saarbrücken, Germany
{koch,olteanu,scherzinger}@infosys.uni-sb.de

1. INTRODUCTION
This is to report on a database systems course the first

author held in the summer semester of 2005 at Saarland
University, Saarbrücken, Germany.

This course was an experiment in several respects. For
one, we wanted to teach a systems course with a practical
part in which students apply the material taught to build
the core of a database management system. Such a systems
building effort seems to be quite common in top-tier US uni-
versities, but it is rare in Europe. One main reason for this is
that European curricula often require students to take many
small courses per term. Students then cannot be required to
invest the time necessary for such a systems-building effort
into an individual course. In Saarbrücken, this fortunately
does not apply and students are expected to take only about
two main courses per term. (The database systems course in
Saarbrücken is worth 9 points in the European course-credit
transfer system ECTS, which corresponds to an estimated
workload of 20 hours per week.)

Second we wanted our students to do something reason-
ably new to facilitate follow-up bachelor’s and master’s pro-
jects. So we decided to have them build the core of a native
XML-DBMS, an active research area with a number of ex-
citing problems. This would allow students to do something
that may never have been done before: Indeed, to our knowl-
edge, no database systems course has had students build a
native XML-DBMS before. (However, we are aware of a
compiler construction course at UC San Diego in which a
main-memory XQuery system was built [7].)

A main goal of the course was to convince the participants
that systems research goes far beyond good programming.
Students should get the opportunity to experience success in
speeding up query evaluation by several orders of magnitude
by using the techniques and algorithms taught in the course.

Even though this course was meant to be an intensive ex-
perience, we had to make compromises to make the project
feasible. We decided to restrict the project to building the
query processor, but keep updates as simple as possible and
completely disregard concurrency control and recovery. We
describe our design decisions and our ways in which we have
shaped the project in the remainder of this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
XIME-P 2006, 3rd International Workshop on XQuery Implementation,
Experiences and Perspectives, June 30, Chicago, Illinois
Copyright 2006 ACM 1-59593-465-0/06/0006 ...$5.00.

2. THE PROJECT
The system was realized in four successive milestones, the

first being a purely main-memory-based query engine imple-
menting a small, clean XQuery fragment as the query lan-
guage. The final milestone is a (moderately) complete XML
query processor with efficient secondary storage structures,
and algebraic and cost-based query optimization.

The following description of the four milestones closely re-
flects the specification of the system as given to students plus
a number of hints and design suggestions (particularly re-
garding query opimization) we made. Students were allowed
to deviate from our suggestions as long as the requirements
of the specification were met.

Milestone 1: An In-memory XQuery Evaluator
As first milestone, the students built an in-memory query
engine for composition-free XQuery (XQ) [4]. XQ supports
XQuery for-expressions, conditionals, node construction, and
(downward) navigation in the input document, but excludes
XQuery features such as recursion, duplicate elimination,
reordering, and aggregation. The abstract syntax of XQ is
shown in Figure 1.

query ::= () | 〈a〉query〈/a〉 | query query

| var | var/axis :: ν

| for var in var/axis :: ν return query

| if cond then query else query

cond ::= var = var | var = string | true()

| some var in var/axis :: ν satisfies cond

| cond and cond | cond or cond | not(cond)

axis ::= child | descendant

ν ::= a | ∗ | text()

Figure 1: Abstract syntax of XQ.

For the denotational semantics of XQ we refer to the
course material online [6]. The semantics is just what one
would expect from the XQuery standard, with the following
exception. We made the restriction that comparisons only
needed to be implemented for the case that variables bind to
text nodes. Students were allowed to check this at runtime
and exit with an error message otherwise.

After familiarizing themselves with the XQuery semantics
and getting hands-on experience with the Galax XQuery
evaluator [5], the students went to work and implemented
their own in-memory evaluator for XQ. We provided the
students with C++ skeleton code consisting of a scanner and
a parser for XQ and XML documents.
Teaching Goal. The primary goal was to ensure that the
students understood the XQ semantics. Moreover, we wanted
to offer enough time for participants to freshen up their C++

programming skills. With international masters students in

1 � 18

2 journal 17

3 authors 12

4 name 7

5 Ana 6

8 name 11

9 Bob 10

13 title 16

14 DB 15

Figure 2: XML document with in and out labels.

our class who had done their undergraduate degrees at other
universities, we could not expect that all participants could
build upon the same level of C++ programming experience.

Milestone 2: Accessing Secondary Storage
The task of the second milestone was to write an XQ evalua-
tor that uses secondary storage and does not require building
the DOM tree of the input XML document. It can be veri-
fied that in XQ, variables are always bound to single nodes
of the input document [4]. XQ queries can be evaluated
with keeping just the current bindings of variables to nodes
in main memory. The Berkeley DB storage manager was
used to keep the data in secondary storage and to fetch only
those nodes into main memory that are currently required
for query evaluation.

Let us consider the work involved in this step in more
detail. We assume that the nodes in an XML document
tree are assigned two numerical values “in” and “out” in a
depth-first left-to-right preorder traversal of the tree (also
known as document order). An example of such an assign-
ment is shown in Figure 2, where the in values are at the
left and the out values at the right of node labels.

For storing XML documents, we employ extended access
support relations (XASR) [2] with the relational schema

Node(in, out, parent in, type, value)

where each tuple encodes one node of the input XML doc-
ument, and in and out are primary keys. For a given node
in is the number of (opening and closing) tags encountered
before its opening tag; out is the number of (opening and
closing) tags encountered before its closing tag; parent in
is the in-value of its parent node; type is the type of the
node, i.e., root, element, or text; and value is (1) its label
if it is an element node, (2) its text content if it is a text
node, (3) or NULL if it is the root.

Example 1. The nodes labeled ‘journal’ and Ana in the
XML document of Figure 2 are represented in XASR as the
tuples (2, 17, 1, element, journal) and (5, 6, 4, text, Ana).2

Obviously, XML documents stored using this schema can
be reconstructed, because (1) the child relation is preserved
by the parent in values, and (2) the order of the children
of a node is preserved by the in/out values. Further, using
this schema, structural joins such as child or descendant
can be easily expressed. Consider nodes xi and xi+1. Then,

xi+1 is child of xi ⇔ xi+1.parent in = xi.in

xi+1 is descendant of xi ⇔ xi.in< xi+1.in ∧

xi.out > xi+1.out

Teaching Goal. In this second phase, the students gath-
ered first experiences using the storage manager and its li-
braries. At this point, the availability of a mailing list proved
useful, as students could help each other with setting up the
storage manager.

Milestone 3: Algebraic Query Optimization
For the third milestone, an algebraic query optimizer was
added to the XQ evaluators. The idea is to rewrite for-loops
and certain if-conditions as relational algebra expressions.
These subexpressions are optimized using selection-pushing
heuristics, i.e. pushing selections as far down as possible
using the usual equivalences of relation algebra, and creating
joins out of products. Finally, the logical algebra operators
need to be implemented by physical operators. We now
describe the various steps involved more closely.

The TPM Algebra. We introduced the TPM algebra con-
sisting of projections, selections, cross products, and joins,
and further a “super-for-loop” operator called relfor . Intu-
itively, relfor-expressions have the structure

relfor vartuple in xasr-alg return expression

where xasr-alg is a relational algebra expression over the
XASR relation. Let vartuple be the tuple ($x1, $x2, . . . , $xk),
of variables $x1 to $xk, where we assume that $x1 is bound
to the root node (in our XASR encoding always having the
in-value 1). Then, the result of xasr-alg is a k-ary relation.

We define the semantics of an XQ expression α with n free
variables using a function [[α]]n that takes a n-tuple of trees
as input (i.e., an environment for n variables). On input
tree t, query Q evaluates to [[Q]]1(t).

For a relational algebra expression α, let

[[α]]n($x1 ⇒ v1, . . . , $xn ⇒ vn)

be the relation obtained by evaluating α with each occur-
rence of “external” variable $xi in (selection conditions of) α
interpreted as constant vi, and with resulting tuples sorted
hierarchically in document order1. Let the symbol] denotes
list concatenation and [. . .] the list constructor. Then,

[[relfor ($xn+1, . . . , $xn+k) in α return β]]n(t1, . . . , tn) :=
]

h

[[β]]n+k(t1, . . . , tn, in
−1(an+1), . . . , in

−1(an+k)) |

〈an+1, . . . , an+k〉 ∈ [[α]]n($x1 ⇒ in(t1), . . . , $xn ⇒ in(tn))
i

where in maps nodes to their in-values and in−1 is the in-
verse, mapping an in-value to a given node.

Example 2. For instance, evaluating the query

<names> { for $j in /journal return
for $n in $j//name return $n } </names>

on the input document from Figure 2 yields the following
operator tree.

constr(names)

relfor

($j, $n)
J.in N.in
2 4
2 8

$n

The expression at the root is responsible for constructing
the XML node with label “names” around the computed
result. Below it, there is a relfor-expression that computes
the two nested for-loops.

1A relation R(in1, . . . , inn) consisting of tuples with
in-values of nodes from a document is sorted hierarchically
in document order if for all ti, tj ∈ R, ti < tj holds if there
is an attribute ink such that for all l < k, ti.inl = tj .inl
and ti.ink < tj .ink.

Here, the algebraic expression over the XASR relation has
already been evaluated. If the physical operators in the im-
plementation are all order-preserving, then the intermediate
result is sorted hierarchically in document order. The relfor-
expression is evaluated like an imperative for-loop, so the
vartuple ($j, $n) is successively bound to (2, 4) and (2, 8),
representing a pair of in-values of nodes in the original doc-
ument tree. In each binding, the subtree to which variable
$n is bound is written to the output. Consequently, the re-
sult nodes are output in document order. We will address
the issue of order in more detail later. 2

Note that TPM (“the professor’s mistake”) is not a query
algebra in the usual sense. Yet TPM is sufficient for our
purposes and much simpler than existing XQuery algebras.
Moreover, we have gracefully reduced the problem of op-
timizing XQuery to that of optimizing relational algebra
queries. All the material about relational query optimiza-
tion that has been presented in the lectures holds immedi-
ately2.

Rewriting For-Loops into TPM. Let a relational alge-
bra expression without union and difference be in project-
select-product normal form (PSX) if it is of the form

πA1,...,Am
(σφ1∧···∧φk

(R1 × · · · ×Rn))

and the φi are atomic conditions of the form A = A′ or
A = c, for c a constant. We abbreviate such a query as

PSX((A1, . . . , Am), φ1 ∧ · · · ∧ φk, (R1, . . . , Rn)).

Then, XQ for-loops can be rewritten into relfor-expressions
using rewrite rules such as the following two:

for $y in $x/a return α `
relfor ($y) in PSX(R.in, R.parent in=$x ∧
R.type=elem ∧ R.value=a, XASR[R]) return α

for $y in $x//a return α `
relfor ($y) in
PSX(R2.in, R1.in=$x ∧ R1.in<R2.in ∧ R2.out<R1.out ∧

R2.type=elem ∧ R2.value=a,
(XASR[R1], XASR[R2])) return α

Example 3. Applying the rewrite rules to the for-loops
in the query of Example 2 yields the TPM expression shown
in Figure 3. 2

Nested relfor-expressions can be merged according to the
following rule. Let the names R1, . . . , Ri, S1, . . . , Sj be pair-
wise different, then

relfor ($x1, . . . , $xm) in
PSX((A1, . . . , Am), φ, (R1, . . . , Ri)) return

relfor ($y1, . . . , $yn) in
PSX((B1, . . . , Bn), ψ, (S1, . . . , Sj)) return α `

relfor ($x1, . . . , $xm, $y1, . . . , $yn) in
PSX((A1, . . . , Am, B1, . . . , Bn), φ ∧ ψ′,

(R1, . . . , Ri, S1, . . . , Sj)) return α

where ψ′ is obtained from ψ by replacing each occurrence of
$xi, for 1 ≤ i ≤ m, by Ai.

Example 4. By merging the relfor-expressions from Ex-
ample 3, we obtain the TPM expression shown in Figure 4.
The PSX subexpression now computes the bindings of vari-
ables $j and $n to nodes in the document tree.

2Close in spirit to TPM’s goal, [1, 3] report on a compi-
lation procedure that derives relational algebra plans from
arbitrarily nested XQuery FLWOR expressions.

relfor

($j) πJ.in

σ

J.parent in = 1 ∧
J.type = elem ∧
J.value = journal

XASR[J]

relfor

($n) πN2.in

σ

N1.in = $j ∧
N1.in < N2.in ∧

N1.out > N2.out ∧
N2.type = elem ∧
N2.value = name

×

XASR[N1] XASR[N2]

$n

Figure 3: TPM Expression of Example 3.

relfor

($j, $n) πJ.in,N2.in

σ

J.parent in = 1 ∧
J.type = elem ∧ J.value = journal ∧

J.in < N2.in ∧ J.out > N2.out ∧
N2.type = elem ∧ N2.value = name

×

XASR[J] XASR[N2]

$n

Figure 4: Merged relfor-expression of Example 4.

Note that because N1.in = $j = J.in, the relations J and
N1 are the same and we can safely drop N1. 2

To merge relfor-expressions, we need to strictly cohere to
the merging rule above. For instance, consider the query
from Example 2 modified to have a construction of a j-
labeled node between the for-loops:

<names>{ for $j in /journal return
<j>{ for $n in $j//name return $n }</j>

}
</names>

Then, the relfor-expressions could not be merged offhand.
This is because for documents containing journal-nodes
without children, the construction of empty j-labeled nodes
must still be performed. A merged relfor would always con-
struct non-empty j-labeled nodes.

As a consequence to this strict merging rule, the evalua-
tion for the above query may be less efficient than for the
syntactically very similar query from Example 2:

(1) The relational algebra expression constructed from the
inner for-loop is evaluated for each binding of $j. A solution
to this problem is to extend TPM by left-outer-joins.

(2) Further, when the outer variable ($j in our exam-
ple) is bound to the in-value of a node, then only this in-
value is available when the relfor-expression for the inner
for-loop is evaluated. Yet for computing the descendants of
the node bound by $j, we also need the corresponding out-
value. Consequently, this value has to be retrieved from the
database, which requires an additional join. This overhead
can be avoided, e.g., by modifying the vartuples in relfor-
expressions so that they also contain the out-value of the
bound nodes.

relfor

($j) πJ.in

relfor

() π()

σ

T1.in = $j ∧
T2.type = text ∧
T1.in < T2.in ∧
T2.out < T1.out

×

XASR[T1] XASR[T2]

relfor

($n) πN2.in $n

Figure 5: TPM Expression of Example 5. The tri-
angles represent the same subtrees as in Figure 3.

Rewriting If-Expressions into TPM. If-expressions are
rewritten to TPM if the conditions are constructed using
“some”, “and”, and equality tests “A = B” or “A = c”, but
without “or”, “not”, or “every”. Further, we require that
the else-part must be empty, as we can only map pass-fail
decisions to our TPM fragment of relational algebra.

The rules for rewriting into TPM are of the form

if φ then α else () ` relfor () in ALG(φ) return α

where ALG(φ) is the rewriting of the condition to TPM. We
refer to [6] for the complete set of rules.

We assume that conditions define nullary relations. Note
that the empty relation (obtained e.g. by projection π∅) ad-
mits two possible databases/relations, namely the empty re-
lation (“false”) and the nullary relation with the empty tuple
(“true”), not just a single relation, the empty one.

Example 5. Consider the query

<names>{ for $j in /journal return
if (some $t in $j//text() satisfies true())

then for $n in $j//name return $n
else () }</names>

and its TPM expression with un-merged relfor-expressions
in Figure 5. In the second relfor-expression, the projection
is on the empty tuple, hence checking whether the condition
holds. The three relfor-expressions can further be merged.2

The Role of Order. In the evaluation of a relfor-expression

relfor($x1, . . . , $xk) in α return β

with relational algebra expression

α = PSX((A1, . . . , Ak), φ, (R1, . . . , Rm))

we require that the relation R[α] computed by evaluating α

1. has attributes A1, . . . , Ak (in this order),

2. R[α] is sorted hierarchically in document order.

If an XQ query contains no some-expressions, TPM rewrit-
ing which strictly adheres to the rules from above will suffice.
However, if there are for-loops nested inside if-expressions,
then we need to take additional steps to ensure the correct
ordering.

For instance, consider the query in Example 5 and the
TPM expression in Figure 5. If the translation to TPM were
strictly by the rules (and provided all physical operators are
order-preserving), we would obtain the following operator
tree during evaluation on the document from Figure 2 (the
copies N1 and T1 of J have been dropped; further, we only
show the in-attributes):

relfor

($j, $n) π(J.in,N2.in)

J.in . . . T2.in . . . N2.in . . .
2 . . . 5 . . . 4 . . .
2 . . . 5 . . . 8 . . .
2 . . . 9 . . . 4 . . .
2 . . . 9 . . . 8 . . .

$n

While the intermediate result is in document order, when
we project on J.in and N2.in, we will have to additionally
remove duplicates.

We presented three approaches to this ordering problem.
(a) If we sort the tuples in the intermediary relation R[α]

accordingly, e.g. by implementing external sorting, we suf-
fer no further restrictions on how to evaluate the relational
algebra expression α.

(b) In Example 6 of milestone 4, we discuss a solution to
this problem based on pushing projections down to achieve
semijoin semantics.

(c) Alternatively, we can ensure that the input for the final
projection operator already meets requirements (1) and (2),
which also allows us to remove duplicates during projection
in one pass.

In pursuing the latter two approaches, we can evaluate XQ
without implementing a sorting operator. In the following,
we introduce the basic strategy which was implemented in
the majority of the student projects.

First, relational algebra expressions are evaluated using
order-preserving operators only, e.g. nested-loop joins rather
than block-nested-loop joins. Second, the join order of the
relations R1, . . . , Rm must ensure that each attribute Ai of
PSX((A1, . . . , Ak), φ, (R1, . . . , Rm)) is the in-attribute of
the relation Ri (1 ≤ i ≤ k).

This yields the desired effect. If all physical operators are
order-preserving, then the intermediary result is guaranteed
to be sorted in the correct order w.r.t. the attributes on
which we project. This allows us to conveniently project in
one pass without having to sort, as can be seen in case of
the intermediary result from our previous example.

J.in . . . N2.in . . . T2.in . . .
2 . . . 4 . . . 5 . . .
2 . . . 4 . . . 9 . . .
2 . . . 8 . . . 5 . . .
2 . . . 8 . . . 9 . . .

Teaching Goal. The third milestone required students to
extend the query evaluator from milestone 2 to also deal
with relational selections, projections, products, and joins.
To keep it simple, we allowed the engines to write each inter-
mediate result to disk, and to re-read it whenever necessary
as the input of a subsequent operation.

The TPM algebra and the rewriting rules were first intro-
duced in the lecture and also practiced on paper as home-
work before students started implementing them. However,
we did not provide the complete set of rewriting rules, just
the main rules to communicate the basic idea. So for stu-
dents to be able to hand in a working milestone 3, they had

to understand the translation of XQ expressions to TPM,
and be able to complete the missing rules by themselves.

The decision whether students should preserve document
order during query evaluation and get by without sorting,
or rather ignore the order and restore it in the end caused
much discussion among students.

Unfortunately, the publicly available distribution of Berke-
leyDB does not directly support block-based writing, only
block-based reading. This made it difficult to have the stu-
dents implement external sort and block-nested loop-joins
properly by the book.

Several students chose to enforce sorted intermediate re-
sults by constructing a clustered B-tree index on the input
to the projection operator, thus retrieving the results in the
proper order. While this is certainly not an elegant solu-
tion, we accepted it as a creative workaround, considering
that the workload involved with the third milestone was al-
ready quite tough for the majority of students.

Milestone 4: Cost-based Query Optimization
and Index Structures
For the fourth milestone, students added cost-based query
optimization to their evaluators and B+-tree index struc-
tures on the XASR relations. We asked them to think about
query plans for common queries and decide which index to
cluster to get the best query performance. For the primary
index, the attribute in was the natural choice.

In addition, our students implemented the physical opera-
tors index-based nested-loop join and index-based selection.
Also, they were required to store statistics on the data in
separate external storage structures to be able to estimate
the costs of their query plans. As a minimum of informa-
tion, each implementation maintained the selectivity of each
element node label occurring in the document, and the av-
erage depth of a node in the data tree for estimating the
selectivities of ancestor-descendant joins.

This task was challenging insofar as the formulas for cost-
estimates could not simply be taken out of a book. Instead,
students had to be able to transfer the ideas about com-
puting estimates in relational databases and apply them to
the context of XML processing. We observed both in the
tutorials and the mailing list that this sparked their interest
and gave rise to different and interesting approaches.

Finally, the students assigned costs to the query plans
produced by their systems and chose the cheapest plan ac-
cording to their estimates.

Choosing good query plans. We next discuss possible
query plans produced by students’ optimizers.

Example 6. Consider an XML document with many au-
thors and few articles that have information on volumes.
The following XQuery subexpression returns the list of au-
thors of articles that have information on proceedings vol-
ume.

for $x in //article return
if (some $v in $x/volume satisfies true())

then for $y in $x//author return $y
else ()

We first rewrite the query into TPM as discussed in mile-
stone 3 and create a single relfor by merging the three relfors
of the two for-expressions and of the if-expression. The PSX
expression of this relfor refers to three XASR relations, say
A for articles, B for authors, and V for volumes.

By simply mirroring the structure of the query and pro-
ceeding bottom-up, we create a nonoptimal query plan QP0,
where the relations are joined as A 1 (B × V) with the join

condition A.in=V.parent in ∧ A.in<B.in ∧ B.out<A.out.
We create a better plan QP1 by splitting the big join con-

dition into two conditions and pushing down one of them.
Also, we reorder the joins to ((A 1a B) 1b V), where a is
A.in<B.in∧ B.out<A.out and b is A.in=V.parent in. Note
that, according to our previous discussion on the correct or-
der of the result of relfor-expressions, QP1 is order-preserving.

After projection pushing and a second join reordering, we
obtain the query plan QP2 of Figure 6, where the outer-
most join is not anymore order-preserving. We enforce the
right order by pushing the projection π(A.in, A.out) un-
der the outermost join. Note that the innermost join and
this projection simulate now a semijoin. The plan QP2 is
clearly better than QP1, because (1) only those articles that
have volumes are checked for authors, (2) the more selective
(innermost) join is evaluated first, and (3) both joins are
implemented as index nested-loop joins (INL). 2

relfor

($x,$y) π(A.in,B.in)

1INL(A.in<B.in ∧ B.out<A.out)

π(A.in, A.out)

1INL(A.in=V.parent in)

σ

A.value = article
∧ A.type = elem

XASR[A]

σ

V.value = volume
∧ V.type = elem

XASR[V]

σ

B.value = author
∧ B.type = elem

XASR[B]

$y

Figure 6: Query plan QP2 used in Example 6.

Teaching Goal. We wanted our students to realize that
the more accurately the rankings of query plans by their cost
function are, the better their implementation would perform
in the final benchmarks. Calibration of course required them
to test their implementation for the same query and alter-
native query plans, and to measure runtimes to see how
well the rankings of queries by their cost function actually
matched reality.

Industrious students were rewarded with bonus points if
they implemented either pipelining or cost-based join re-
ordering. While the final milestone was perceived by many
as particularly tough, especially as some students realized
that they had to change their code structure more than an-
ticipated between milestones three and four, it was reward-
ing to see that nearly everybody who completed the fourth
milestone also earned the bonus points.

At this point in their project, the students had started
to identify themselves very much with “their” query engine,
and were willing to invest even more to have their engine to
become one of the best.

3. THE GRADING SYSTEM
The best grade is represented by 100 points, which could

be obtained solely in the final exam. To be admitted to
the exam, however, the students had to successfully finish
an executable query engine at the latest one week prior to
the exam. To pass the exam, they also had to achieve a
minimum of 50 points in the exam.

The timespan between two milestones was approximately
four weeks. In this time, the weekly student meetings were

dedicated to discussions and assignments on the topic of that
milestone [6].

A successful submission of a milestone implementation by
the early-bird review brought two points. The penalty for
missed deadlines (materialized as negative points) increases
with the number of delayed weeks. The grading system
rewards efficient engines. To support excellence, the 10%
and 25% most scalable query engines got additional bonus
points. As a result, 25% of the students that successfully
passed the exam got more than 100 points in total.

Teams. For the first two milestones we allowed teams of up
to two students only. As an experiment, starting with the
third milestone, pairs of teams could join forces (for teams
of up to four students). We thought this would be beneficial
for the migration of knowledge and code. At the same time,
small teams completing the final milestones were rewarded
additional points. We experienced that teams of two were
mostly considered optimal.

Grading the Engines. The infrastructure for grading the

engines comprised (1) an online submission&test system and
(2) milestone reviews, where students answer questions re-
lated to the design and implementation of their engines.

(1) The submission&test system allows students to sub-
mit their code via a Web interface at any time and as often
as necessary, and to notify the students via email within
a half a day on possible problems encountered during test-
ing. Because of all these key features, the system played an
essential role in the development of the XQ engines.

The system was implemented under Linux using Python
and Shell scripts and works as follows. The submissions
are stored in a submission pool and picked up using a fair
scheduling by a tester running on a different machine. To
test them, the query engines are recompiled and run un-
der memory and time constraints. Section 4 details on the
testbed. When the tests for an engine are finished, the stu-
dents are sent an email containing detailed test results, e.g.,
engine run-time errors, scalability problems (if any), the an-
swers to the public queries in case they differ from the cor-
rect answers, and the timing.

(2) The milestone reviews were conducted by teaching as-
sistants, who were informed in advance about the major dif-
ficulties encountered by the engines during testing. Then,
the discussions were constructively guided towards solving
possible problems or student misunderstandings. This made
it easy to inspect the level of knowledge accumulated by the
students and detect software plagiarism.

4. TESTBED FOR THE QUERY ENGINES
The tests targeted both correctness and efficiency. The

set of input queries contains public queries (with public an-
swers) as well as secret queries. We did not use benchmark
queries proposed in the literature, as some of these bench-
mark queries are not expressible in XQ, e.g. using aggrega-
tion. Instead, we engineered queries that can greatly profit
from the optimization techniques covered in the lectures.

The input XML documents we considered are DBLP (250
MB of shallow data), an 16 MB excerpt of DBLP, TREE-
BANK (80 MB of deeply nested data), and a small hand-
made document of several kilobytes. All XML documents
and public XQ queries are available on the course website [6].

Correctness Tests. For each engine and milestone, the
correctness tests used all aforementioned XML documents
and up to 16 complex XQ queries. These queries covered
fairly all XQ constructs and combinations of them.

Efficiency Tests. After passing the correctness tests, the
engines were tested for time and memory scalability. For

processing five secret XQ queries on the DBLP document,
we allowed only 20 MB of memory and 2 or 30 minutes per
query (depending on the running time of our own reference
implementation). We chose queries that admit query plans
with costs varying by orders of magnitude and that allowed
a clear separation of the optimized engines from the unop-
timized ones. The queries resemble in spirit the example
query used in Section 2 to explain milestone 4.

The Top Five Query Engines. Figure 7 compares the
best five engines out of the existing 12. It shows in seconds
the user time for each efficiency test, and the total time
taken for all efficiency tests. The engines that needed more
than 2400 seconds (20 MB) were stopped and assigned 2400
(4800) seconds.

Most of the engines were designed to generate order-preser-
ving plans. Only few of them (not in the top five) decided
for B+-trees to keep the temporary (and final) results sorted
hierarchically in document order.

Emptiness of the result of the query in the fourth test can
be determined using information from the computed statis-
tics. The two systems that implemented such a check were
very fast (less than 0.01 seconds). Interestingly, the second
engine performed very well in all cases but the last. That
case corresponds to a query with two nested, yet unrelated,
for-loops represented in the query plan by two joins with
very different selectivities. Due to unlucky estimates, the
second engine decided for an suboptimal query plan (with
the very unselective join at the bottom of the plan tree),
which led to the high evaluation time.

Engine Test 1 Test 2 Test 3 Test 4 Test 5 Total
1 0.11 142.77 28.10 164.95 8.48 344.41
2 0.01 0.01 0.14 0.00 2400 2400.16
3 16.44 175.30 2400 63.76 29.70 2685.20
4 24.72 0.01 2400 0.00 2400 4824.72
5 65.41 163.93 2400 123.66 2400 5153.00

Figure 7: Timing of the Top Five Engines.

Acknowledgments
We thank our teaching assistants Melih Demir, Georgiana
Ifrim, Anna Moleda, and Josiane Parreira for their support.

5. REFERENCES
[1] P. Boncz, T. Grust, M. van Keulen, S. Manegold,

J. Rittinger, and J. Teubner. A Fast XQuery Processor
Powered by a Relational Engine. In SIGMOD, 2006.

[2] T. Fiebig and G. Moerkotte. “Evaluating Queries on
Structure with eXtended Access Support Relations”. In
WebDB (Informal Proceedings), pages 41–46, 2000.

[3] T. Grust. Purely Relational FLWORs. In XIME-P,
2005.

[4] C. Koch. “On the role of composition in XQuery”. In
Proc. WebDB, 2005.

[5] Galax XQuery Engine. http://www.galaxquery.org/.
[6] Saarland University Database Group. Database

systems lecture, summer term 2005.
http://www-dbs.cs.uni-sb.de/teaching/dbs05/.

[7] S. M. More, T. Pevzner, A. Deutsch, S. B. Baden, and
P. Kube. “Building an XQuery interpreter in a
compiler construction course”. In Proc. SIGCSE 2005,
pages 2–6, 2005.

