
1 / 19

Aggregation and Ordering in
Factorized Databases

http://www.cs.ox.ac.uk/projects/FDB/

Bakibayev, Kočiský, Olteanu, and Závodný

University of Oxford

VLDB Sept 2, 2014

What are Factorized Databases?

Applications

A Glimpse at Aggregating Factorized Data

2 / 19

Outline

Factorized Databases by Example

Orders

customer day pizza

Mario Monday Capricciosa

Mario Friday Capricciosa

Pietro Friday Hawaii

Lucia Friday Hawaii

Pizzas

pizza item

Capricciosa base

Capricciosa ham

Capricciosa mushrooms

Hawaii base

Hawaii ham

Hawaii pineapple

Items

item price

base 6

ham 1

mushrooms 1

pineapple 2

Consider the natural join of the three relations above:

Orders 1 Pizzas 1 Items

customer day pizza item price

Mario Monday Capricciosa base 6

Mario Monday Capricciosa ham 1

Mario Monday Capricciosa mushrooms 1

Mario Friday Capricciosa base 6

Mario Friday Capricciosa ham 1

Mario Friday Capricciosa mushrooms 1

.

3 / 19

Factorized Databases by Example

Orders 1 Pizzas 1 Items

customer day pizza item price

Mario Monday Capricciosa base 6

Mario Monday Capricciosa ham 1

Mario Monday Capricciosa mushrooms 1

Mario Friday Capricciosa base 6

Mario Friday Capricciosa ham 1

Mario Friday Capricciosa mushrooms 1

.

A flat relational algebra expression encoding the above query result is:

〈Mario〉 × 〈Monday〉 × 〈Capricciosa〉 × 〈base〉 × 〈6〉 ∪

〈Mario〉 × 〈Monday〉 × 〈Capricciosa〉 × 〈ham〉 × 〈1〉 ∪

〈Mario〉 × 〈Monday〉 × 〈Capricciosa〉 × 〈mushrooms〉 × 〈1〉 ∪

〈Mario〉 × 〈Friday〉 × 〈Capricciosa〉 × 〈base〉 × 〈6〉 ∪

〈Mario〉 × 〈Friday〉 × 〈Capricciosa〉 × 〈ham〉 × 〈1〉 ∪

〈Mario〉 × 〈Friday〉 × 〈Capricciosa〉 × 〈mushrooms〉 × 〈1〉 ∪ . . .

It uses relational product (×), union (∪), and singleton relations (e.g., 〈1〉).

The attribute names are not shown to avoid clutter.
4 / 19

Factorized Databases by Example

The previous relational expression entails lots of redundancy due to the joins:

〈Mario〉 × 〈Monday〉 × 〈Capricciosa〉 × 〈base〉 × 〈6〉 ∪

〈Mario〉 × 〈Monday〉 × 〈Capricciosa〉 × 〈ham〉 × 〈1〉 ∪

〈Mario〉 × 〈Monday〉 × 〈Capricciosa〉 × 〈mushrooms〉 × 〈1〉 ∪

〈Mario〉 × 〈Friday〉 × 〈Capricciosa〉 × 〈base〉 × 〈6〉 ∪

〈Mario〉 × 〈Friday〉 × 〈Capricciosa〉 × 〈ham〉 × 〈1〉 ∪

〈Mario〉 × 〈Friday〉 × 〈Capricciosa〉 × 〈mushrooms〉 × 〈1〉 ∪ . . .

We can factorize the expression following the join structure, e.g.,:

〈Capricciosa〉 × (〈Monday〉 × 〈Mario〉 ∪ 〈Friday〉 × 〈Mario〉)

× (〈base〉 × 〈6〉 ∪ 〈ham〉 × 〈1〉 ∪ 〈mushrooms〉 × 〈1〉)

∪ 〈Hawaii〉 × 〈Friday〉 × (〈Lucia〉 ∪ 〈Pietro〉)

× (〈base〉 × 〈6〉 ∪ 〈ham〉 × 〈1〉 ∪ 〈pineapple〉 × 〈2〉)

pizza

day

customer

item

price

There are several algebraically equivalent factorized representations defined by

distributivity of product over union and commutativity of product and union.
5 / 19

Properties of Factorized Representations

Factorized representations of results of queries with select, project, join,

aggregate, groupby, and orderby operators:

Very high compression rate
I Can be exponentially more succinct than the relations they encode.
I Arbitrarily better than generic compression schemes, e.g., bzip2
I Factorized representations of asymptotically-tight size bounds computable

directly from input database and query

Querying in the compressed domain
I Factorizations are relational expressions
I We developed the FDB in-memory query engine for this purpose

Constant-delay enumeration of represented tuples
I Tuple iteration as fast as listing them from equivalent flat relations

6 / 19

What are Factorized Databases?

Applications

A Glimpse at Aggregating Factorized Data

7 / 19

Outline

Spot the Factorized Database!

Logical
Schema

Physical
Layout

Traditional Relational Clustered Hierarchical

Customer(CustomerId, …)

Campaign(CustomerId, CampaignId, …)

AdGroup(CustomerId, CampaignId, AdGroupId, …)

Customer(1,...)

Campaign(1,3,...)

AdGroup (1,3,6,...)

AdGroup (1,3,7,...)

Campaign(1,4,...)

AdGroup (1,4,8,...)

Customer(2,...)

Campaign(2,5,...)

AdGroup (2,5,9,...)

Physical data partition
boundaries occur

between root rows.

Primary key includes
foreign keys that reference

 all ancestor rows.

Related data is clustered
for fast common-case

 join processing.

Customer(CustomerId, …)
Campaign(CampaignId, CustomerId, …)
AdGroup(AdGroupId, CampaignId, …)

Customer(1,...)

Customer(2,...)

Campaign(3,1,...)

Campaign(4,1,...)

Campaign(5,2,...)

AdGroup(6,3,...)

AdGroup(7,3,...)

AdGroup(8,4,...)

AdGroup(9,5,...)

Joining related data often requires reads
spanning multiple machines.

Foreign key references only
the parent record.

Figure 2: The logical and physical properties of data storage in a traditional normalized relational schema
compared with a clustered hierarchical schema used in an F1 database.

think about materializing them using joins across several ta-
bles. The use of Protocol Bu↵ers in F1 SQL is described in
Section 8.7.

Many tables in an F1 schema consist of just a single Pro-
tocol Bu↵er column. Other tables split their data across
a handful of columns, partitioning the fields according to
access patterns. Tables can be partitioned into columns
to group together fields that are usually accessed together,
to separate fields with static and frequently updated data,
to allow specifying di↵erent read/write permissions per col-
umn, or to allow concurrent updates to di↵erent columns.
Using fewer columns generally improves performance in
Spanner where there can be high per-column overhead.

3.3 Indexing
All indexes in F1 are transactional and fully consistent.

Indexes are stored as separate tables in Spanner, keyed by
a concatenation of the index key and the indexed table’s
primary key. Index keys can be either scalar columns or
fields extracted from Protocol Bu↵ers (including repeated
fields). There are two types of physical storage layout for
F1 indexes: local and global.

Local index keys must contain the root row primary key as
a prefix. For example, an index on (CustomerId, Keyword)

used to store unique keywords for each customer is a local
index. Like child tables, local indexes are stored in the same
Spanner directory as the root row. Consequently, the index
entries of local indexes are stored on the same Spanner server
as the rows they index, and local index updates add little
additional cost to any transaction.

In contrast, global index keys do not include the root row
primary key as a prefix and hence cannot be co-located with
the rows they index. For example, an index on (Keyword)

that maps from all keywords in the database to Customers
that use them must be global. Global indexes are often large

and can have high aggregate update rates. Consequently,
they are sharded across many directories and stored on mul-
tiple Spanner servers. Writing a single row that updates a
global index requires adding a single extra participant to a
transaction, which means the transaction must use 2PC, but
that is a reasonable cost to pay for consistent global indexes.

Global indexes work reasonably well for single-row up-
dates, but can cause scaling problems for large transactions.
Consider a transaction that inserts 1000 rows. Each row
requires adding one or more global index entries, and those
index entries could be arbitrarily spread across 100s of in-
dex directories, meaning the 2PC transaction would have
100s of participants, making it slower and more error-prone.
Therefore, we use global indexes sparingly in the schema,
and encourage application writers to use small transactions
when bulk inserting into tables with global indexes.

Megastore [3] makes global indexes scalable by giving up
consistency and supporting only asynchronous global in-
dexes. We are currently exploring other mechanisms to
make global indexes more scalable without compromising
consistency.

4. SCHEMA CHANGES
The AdWords database is shared by thousands of users

and is under constant development. Batches of schema
changes are queued by developers and applied daily. This
database is mission critical for Google and requires very
high availability. Downtime or table locking during schema
changes (e.g. adding indexes) is not acceptable.

We have designed F1 to make all schema changes fully
non-blocking. Several aspects of the F1 system make non-
blocking schema changes particularly challenging:

• F1 is a massively distributed system, with servers in
multiple datacenters in distinct geographic regions.

Excerpt from F1: A Distributed SQL Database That Scales. PVLDB’13.

Google’s DB supporting their lucrative AdWords business

Database factorization increases data locality for common access patterns
I Tables pre-joined using a nesting structure defined by key-fkey constraints

Data partitioned across servers into factorization fragments

Spot the Factorized Database!
















































































































































































































































































































































  














































Figure 3: (a) In relational domains, design matrices X have large blocks of repeating patterns (example from
Figure 2). (b) Repeating patterns in X can be formalized by a block notation (see section 2.3) which stems
directly from the relational structure of the original data. Machine learning methods have to make use of
repeating patterns in X to scale to large relational datasets.

to process feature vectors in the original space, i.e. by con-
catenating the vectors (eq. 1) – not even on-the-fly. On-the-
fly concatenating would reduce the memory complexity to
O(NZ(B)) but not the runtime complexity. In analogy to
compression: if B is regarded as a compression of X, then
a linear runtime complexity in B means that the algorithms
have to do all calculations without decompressing the data
at all (not even on-the-fly or partially).

3. SCALING LINEAR REGRESSION
To highlight the basic ideas of scaling learning algorithms,

the well-known linear regression model is discussed first.

3.1 Standard Linear Regression
The linear regression (LR) model for the i-th row/ feature

vector xi of an n× p design matrix X is

ŷ(xi) = w0 +

p∑

j=1

wj xi,j

where Θ = {w0, w1, . . . , wp} are the model parameters. Pre-
dicting all n cases can be implemented in O(NZ(X)) by re-
garding only the non-zero elements in the design matrix.

There are several ways to learn a LR model. The tradi-
tional one for least-squares regression is based on solving a
p × p system of linear equations (typically in O(p3) time).
Iterative approaches scale better to a large number of pre-
dictor variables p and coordinate descent (CD) [2] is one of
the most efficient iterative algorithms. The CD algorithm
starts with an initial (random) guess of Θ, then iterates over
each model parameter wl ∈ Θ and performs an update

wl ←
wl

∑n
i=1 x2

i,l +
∑n

i=1 xi,l ei∑n
i=1 x2

i,l + λl
(3)

where λl ∈ R+ is a predefined regularization constant for the
l-th model parameter and ei = yi− ŷ(xi) is the i-th residual
(i ∈ {1, . . . , n}) which should be precomputed and has to be
updated during learning. After a parameter changes from
wl to w∗

l (let ∆l = wl −w∗
l be the difference), each residual

changes and can be updated in constant time ei ← ei+∆l xl.
This process of updating each model parameter wl (and

updating precomputed residuals) is iterated over all model
parameters until convergence. The runtime of CD is domi-
nated (see eq. (3)) by computing the two quantities:

n∑

i=1

x2
i,l,

n∑

i=1

xi,l ei. (4)

By caching residuals e, each full iteration (i.e. over all Θ)
of CD can be implemented efficiently in O(NZ(X)).

Whereas CD is a point estimator, i.e. the result is a sin-
gle value for each parameter wl, Bayesian inference can in-
clude uncertainty into the model. Bayesian inference typi-
cally improves the prediction quality and also allows to infer
regularization values automatically. Bayesian inference with
Markov chain Monte Carlo (MCMC), here Gibbs sampling
with block size of one, is related to CD. In this case, the
Gibbs sampler updates the model parameters by drawing
wl from its conditional posterior distribution:

wl ∼ N
(

α wl

∑n
i=1 x2

i,l + α
∑n

i=1 xi,l ei + µl λl

α
∑n

i=1 x2
i,l + λl

,

1

α
∑n

i=1 x2
i,l + λl

)
(5)

where α is the precision of the likelihood and µl is the mean
and λl the precision of the normal prior distribution over
wl. These three hyperparameters are found automatically
by Gibbs sampling – see [13] for details. As it can be seen, for

340

Excerpt from Scaling Factorization Machines to Relational Data. PVLDB’13.

Feature vectors for predictive modelling represented as very large design

matrices (= relations with high cardinality)

Standard learning algorithms cannot scale on design matrix representation

Use repeating patterns in the design matrix as key to scalability

Spot the Factorized Database!

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single (2) married
(3) divorced (4) widowed

(1) single (2) married
(3) divorced (4) widowed

t1.S t1.N t1.M t2.S t2.N t2.M
185 Smith 1 186 Brown 1
185 Smith 1 186 Brown 2
185 Smith 1 186 Brown 3
185 Smith 1 186 Brown 4
185 Smith 2 186 Brown 1
185 Smith 2 186 Brown 2
185 Smith 2 186 Brown 3
185 Smith 2 186 Brown 4

...
785 Smith 2 186 Brown 4

Fig. 1. Two completed survey forms and a world-set relation representing the
possible worlds with unique social security numbers.

t1.S t2.S
185 186
785 185
785 186

× t1.N
Smith

×
t1.M

1
2

× t2.N
Brown

×

t2.M
1
2
3
4

One can observe that the result of this product is exactly the world-set rela-
tion in Figure 1. The decomposition is based on the independence between sets
of fields, subsequently called components . Only fields that depend on each other,
for example t1.S and t2.S, belong to the same component. Since {t1.S, t2.S} and
{t1.M} are independent, they are put into different components.

WSDs can be naturally viewed as c-tables whose formulas have been put into
a normal form represented by the component relations. The following c-table
with global condition φ is equivalent to the WSD with our integrity constraint
enforced.

T S N M cond
φ = ((x = 185 ∧ z = 186) ∨ (x = 785 ∧ z = 185)∨

(x = 785 ∧ z = 186)) ∧ (y = 1 ∨ y = 2)∧
(w = 1 ∨ w = 2 ∨ w = 3 ∨ w = 4)

x Smith y
z Brown w

Formal definitions of WSDs and c-tables will be given in the body of this
article.

Contributions. The main goal of this work is to develop expressive yet effi-
cient representation systems for infinite world-sets and to study the theoretical
properties (such as expressive power, complexity of query-processing, and mini-
mization) of these representation systems. Many of these results also apply to –
and are new for – the world-set decompositions of [5].

Excerpt from 10106

Worlds and Beyond: Efficient Representation and

Processing of Incomplete Information. ICDE’07.

Managing a large set of possibilities or choices:

Configuration problems (space of valid solutions)

Incomplete information (space of possible worlds)

Spot the Factorized Database!

98 5. INTENSIONAL QUERY EVALUATION

5.1.3 READ-ONCE FORMULAS
An important class of propositional formulas that play a special role in probabilistic databases are
read-once formulas. We restrict our discussion to the case when all random variables X are Boolean
variables.

! is called read-once if there is a formula !′ equivalent to ! such that every variable occurs
at most once in !′. For example:

! =X1Y1 ∨ X1Y2 ∨ X2Y3 ∨ X2Y4 ∨ X2Y5

is read-once because it is equivalent to the following formula:

!′ =X1(Y1 ∨ Y2) ∨ X2(Y3 ∨ Y4 ∨ Y5)

Read-once formulas admit an elegant characterization, which we describe next.
A formula ! is called unate if every propositional variable X occurs either only positively (X),

or only negatively (¬X) in !. Let ! be written in DNF and assume each conjunct is a minterm; that
is, no other conjunct is a strict subset (otherwise, absorption rule applies, and we can further simplify
! in polynomial time). The primal graph of ! is GP = (V , E) where V is the set of propositional
variables in !, and for every pair of variables X, Y that occur together in some conjunct, there is an
edge (X, Y) in E. Thus, every conjunct in ! becomes a clique in GP .

Let P4 denote the following graph with 4 vertices: u − v − w − z; that is,P4 consists of a path
of length 4 and no other edges. We say that ! is P4-free if no subgraph induced by 4 vertices in GP is
isomorphic to P4. Finally, we say that ! is normal if for every clique in GP , there exists a conjunct in
! containing all variables in the clique. The following characterization of unate read-once formulas
is due to Gurvich [1991].

Theorem 5.8 A unate formula ! is read-once iff it is P4-free and normal.

For example, the primal graph of XU ∨ XV ∨ YU ∨ YV is the complete bipartite graph with
vertices {X, Y } and {U, V }; thus, it is P4-free and normal: sure enough, the formula can be written as
(X ∨ Y) ∧ (U ∨ V), which is read-once. On the other hand, the primal graph of XY ∨ YZ ∨ ZU

is precisely P4; hence, it is not read-once. The primal graph of XY ∨ XZ ∨ YZ contains the clique
{X, Y, Z} but there is no minterm XYZ, hence the formula is not normal and, therefore, not read-
once.

If ! is given as a read-once expression, then P(!) can be computed in linear time, by simply
running Algorithm 2, and applying only the independent-and, independent-or, and negation rules.
Moreover, if a unate DNF formula ! admits a read-once equivalent !′, then !′ can be computed
from ! in polynomial time [Golumbic et al., 2005].Thus, read-once formulas can be evaluated very
efficiently, and this justifies our special interest in this class of formulas.

Excerpt from Probabilistic Databases. Morgan & Claypool. 2011.

Provenance and probabilistic data:

Compact encoding for large provenance

Factorization of provenance is used for efficient query evaluation

in probabilistic databases

What are Factorized Databases?

Applications

A Glimpse at Aggregating Factorized Data

12 / 19

Outline

Aggregating Factorized Data

We only present here COUNT and SUM aggregation functions.

COUNT(F) is the number of tuples in a factorization F :

COUNT(〈a〉) = 1.

COUNT(F1 ∪ · · · ∪ Fk) = COUNT(F1) + . . . + COUNT(Fk).

COUNT(F1 × · · · × Fk) = COUNT(F1) · . . . · COUNT(Fk).

SUMA(F) is the sum of all values of attribute A in a factorization F :

SUMA(〈a〉) = a, if the singleton 〈a〉 has attribute A.

SUMA(F1 ∪ · · · ∪ Fk) = SUMA(F1) + . . . + SUMA(Fk).

SUMA(F1 × · · · × Fk) = SUMA(F1) · COUNT(F2) · . . . · COUNT(Fk),

where wlog values for attribute A are in expression F1.

13 / 19

Aggregation by Example

Recall the natural join of Orders, Pizzas, and Items

We would like to find the overall sales per customer

Assume the factorization structure discussed before (leftmost below)

Examplea of possible evaluation plans:

1. First restructure for GROUP-BY, then aggregate
pizza

day

customer

item

price 7→

customer

pizza

day

item

price 7→

customer

sumprice(pizza,day,item,price)

2. Intertwine restructuring for GROUP-BY and partial aggregation
pizza

day

customer

item

price 7→

pizza

day

customer

sumprice(i,p)

7→

customer

pizza

day

sumprice(i,p)

7→

customer

sumprice(p,d,i,p)

14 / 19

Query Evaluation Step by Step

Let us consider the second evaluation plan:

pizza

day

customer

item

price 7→

pizza

day

customer

sumprice(i,p)

7→

customer

pizza

day

sumprice(i,p)

7→

customer

sumprice(p,d,i,p)

The initial factorization with the structure highlighted above:

〈Capricciosa〉 × (〈Monday〉 × 〈Mario〉 ∪ 〈Friday〉 × 〈Mario〉)

× (〈base〉 × 〈6〉 ∪ 〈ham〉 × 〈1〉 ∪ 〈mushrooms〉 × 〈1〉)

∪ 〈Hawaii〉 × 〈Friday〉 × (〈Lucia〉 ∪ 〈Pietro〉)

× (〈base〉 × 〈6〉 ∪ 〈ham〉 × 〈1〉 ∪ 〈pineapple〉 × 〈2〉)

15 / 19

Query Evaluation Step by Step

Let us consider the second evaluation plan:

pizza

day

customer

item

price 7→

pizza

day

customer

sumprice(i,p)

7→

customer

pizza

day

sumprice(i,p)

7→

customer

sumprice(p,d,i,p)

The factorization after partial aggregation with the structure highlighted above:

〈Capricciosa〉 × (〈Monday〉 × 〈Mario〉 ∪ 〈Friday〉 × 〈Mario〉)

× 〈8〉

∪ 〈Hawaii〉 × 〈Friday〉 × (〈Lucia〉 ∪ 〈Pietro〉)

× 〈9〉

16 / 19

Query Evaluation Step by Step

Let us consider the second evaluation plan:

pizza

day

customer

item

price 7→

pizza

day

customer

sumprice(i,p)

7→

customer

pizza

day

sumprice(i,p)

7→

customer

sumprice(p,d,i,p)

The factorization after restructuring with the structure highlighted above:

〈Lucia〉 × 〈Hawaii〉 × 〈Friday〉 × 〈9〉 ∪

〈Mario〉 × 〈Capricciosa〉 × (〈Monday〉 ∪ 〈Friday〉)× 〈8〉 ∪

〈Pietro〉 × 〈Hawaii〉 × 〈Friday〉 × 〈9〉

17 / 19

Query Evaluation Step by Step

Let us consider the second evaluation plan:

pizza

day

customer

item

price 7→

pizza

day

customer

sumprice(i,p)

7→

customer

pizza

day

sumprice(i,p)

7→

customer

sumprice(p,d,i,p)

The factorization after final aggregation with the structure highlighted above:

〈Lucia〉 × 〈9〉 ∪

〈Mario〉 × 〈16〉 ∪

〈Pietro〉 × 〈9〉

18 / 19

Thank you!

19 / 19

	What are Factorized Databases?
	Applications
	A Glimpse at Aggregating Factorized Data

