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ABSTRACT
This paper investigates the problem of efficiently computing
the confidences of distinct tuples in the answers to conjunc-
tive queries with inequalities (<) on tuple-independent prob-
abilistic databases. This problem is fundamental to proba-
bilistic databases and was recently stated open.

Our contributions are of both theoretical and practical
importance. We define a class of tractable queries with in-
equalities, and generalize existing results on #P-hardness of
query evaluation, now in the presence of inequalities.

For the tractable queries, we introduce a confidence com-
putation technique based on efficient compilation of the lin-
eage of the query answer into Ordered Binary Decision Di-
agrams (OBDDs), whose sizes are linear in the number of
variables of the lineage.

We implemented a secondary-storage variant of our tech-
nique in PostgreSQL. This variant does not need to materi-
alize the OBDD, but computes, in one scan over the lineage,
the probabilities of OBDD fragments and combines them on
the fly. Experiments with probabilistic TPC-H data show up
to two orders of magnitude improvements when compared
with state-of-the-art approaches.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-

ing ; G.3 [Mathematics of Computing]: Probability and
Statistics

General Terms
Algorithms, Languages, Management, Performance

Keywords
Query Processing, Decision Diagrams, Probabilistic Databases

1. INTRODUCTION
Probabilistic data management has recently drawn atten-

tion of the database research community [3, 5, 12, 10, 15].
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Many applications require probabilistic data management
support, including data warehousing, data integration, data
cleaning, and Web data extraction. Scientific experiments
frequently generate probabilistic data, such as incomplete
observations or imprecise measurements. Sensor and RFID
data are inherently uncertain.

We currently witness a concerted effort from the database
research community to provide scalable query evaluation
techniques, e.g., [5, 12, 10, 15]. To date, however, little has
been achieved towards truly scalable techniques: Most of the
existing systems, such as Trio[3], employ exact or approxi-
mate main-memory evaluation algorithms that do not scale.
Notable exceptions are MystiQ [5] and SPROUT [15], which
propose secondary-storage algorithms for tractable conjunc-
tive queries without self-joins on so-called tuple-independent
probabilistic databases. In addition, there is strong theoret-
ical and experimental evidence that MystiQ and SPROUT
perform orders of magnitude faster than existing main-memo-
ry techniques for exact and approximate confidence com-
putation techniques based on general-purpose compilation
techniques [12] or Monte Carlo simulations using the Karp-
Luby estimator [11]. This key observation supports the idea
that specialized secondary-storage algorithms, which take
the query and the probabilistic database model into account,
have better chances at improving the state of the art in
query evaluation on probabilistic databases. Surprisingly,
though, there is very little available beyond the aforemen-
tioned works. While it is true that the tuple-independent
model is rather limited, it still represents a valid starting
point for developing scalable query processing techniques.
In addition, independence occurs naturally in many large
data sets, such as census data [2] and social networks [1].

This paper is the first to investigate the problem of effi-
ciently computing the confidences of distinct tuples in the
answers to conjunctive queries with inequalities (<) on tuple-
independent probabilistic databases. It provides a charac-
terization of a large class of queries that can be computed in
polynomial time data complexity and proposes an efficient
secondary-storage evaluation technique for such tractable
queries. The characterizations, as well as the technique, are
based on structural properties of the inequalities present in
the query and of a special form of decision diagrams, called
Ordered Binary Decision Diagrams (OBDDs) [13], which are
used as a compiled succinct representation of the uncertainty
manifested in the query answer.

We illustrate our approach on a tuple-independent proba-
bilistic database of subscribers and events. Assume we have
archived information on subscribers, including a subscriber



Subscribers
Id DomId RDate Vs Ps

1 1 1995-01-10 x1 0.1
2 1 1996-01-09 x2 0.2
3 1 1997-11-11 x3 0.3
4 2 1994-12-24 x4 0.4
5 2 1995-01-10 x5 0.5

Events
Description PDate Ve Pe

XMas party 1994-12-24 y1 0.1
Fireworks 1996-01-09 y2 0.2
Theatre 1997-11-11 y3 0.3

Query Answer before conf()

DomId Vs Ps Ve Pe

1 x1 0.1 y2 0.2
1 x1 0.1 y3 0.3
1 x2 0.2 y3 0.3
2 x4 0.4 y2 0.2
2 x4 0.4 y3 0.3
2 x5 0.5 y2 0.2
2 x5 0.5 y3 0.3

Query Answer
DomId P

1 0.098
2 0.308

Figure 1: Tuple-independent probabilistic database and the answer to our query from the Introduction.

Figure 2: Decision tree (left) and OBDD (right) for
the lineage of the answer tuple with DomId=1.

identifier, a domain identifier, and a date of registration for
event services. The information on events includes a de-
scription and a publication date. Figure 1 gives a database
instance, where each tuple is associated with an indepen-
dent Boolean random variable (hence the database is tuple-
independent). These variables are given in the V -columns
and their probabilities (for the “true” assignment) in the
P -columns. Such a tuple-independent database represents
exponentially many possible instances, one instance for each
total valuation of the variables in the database. For exam-
ple, a valuation that maps x1 and y1 to true and all other
variables to false defines the instance with one subscriber
(with Id=1) and one event (Xmas party). The probability
of this instance can be simply computed as the product of
the probabilities of x1 and y1 being true and of all remaining
variables being false.

We would like to compute, for each domain, the likelihood
that its subscribers participated in the broadcasted events –
subscribers can participate in an event if their registration
date is before the publication date of the event:

select DomId, conf() as P from Subscribers, Events

where RDate < PDate group by DomId;

The aggregate function conf() is used here to specify the
confidence computation for each distinct DomId value.

The answer to a query on a probabilistic database can be
represented by a relation pairing possible result tuples with
a formula over random variables, called lineage [3]. For ex-
ample, the lineage of the answer tuple t with DomId=1 is
x1y2+x1y3+x2y3. The lineage of a tuple describes symboli-
cally the set of worlds in which that tuple occurs in the query
result: There is a one-to-one correspondence between these
worlds and the total valuations that satisfy the lineage [5].
Given a decision tree over all variables of this lineage, as in
Figure 2(left), the satisfying valuations are represented by
the root-to-leaf paths that lead to a leaf labelled 1 (true).
Each node in the decision tree corresponds to the decision for
one variable. We follow the solid outgoing edge in case the
variable is assigned to true and the dotted edge otherwise.

The confidence in a tuple is the probability for true of
its associated lineage [5]. Decision trees that represent lin-
eage can be used to compute tuple confidences: Simply sum
up the probabilities of each path leading to 1. This holds
because the paths are pairwise mutually exclusive. This ap-
proach is, however, extremely expensive as one has to iterate
over an exponential number of possible valuations.

Our approach is to directly compile the lineage into a com-

pressed representation of the decision tree, called OBDD:
Figure 2(right) gives an OBDD for the lineage of tuple t.
To see the correspondence between the decision tree and its
equivalent OBDD, consider removing redundant nodes and
factoring out common subtrees and representing them only
once. For example, the first node n for variable y2 has two
identical children. We only need to represent them once and
have both outgoing edges of n point to the same subtree.
This also means that n is redundant and can be removed,
for the decision on whether y2 is true or false at that point
is not relevant for the overall satisfiability.

Computing the probability of the OBDD can be done in
one bottom-up traversal. The probability Pr of a node n
for a variable v and with children l for v = false and r
for v = true can be expressed using the probabilities of the
children as follows: Pr(n) = Pr(v) · Pr(l) + Pr(v) · Pr(r).
In case of a leaf node, Pr(1) = 1 and Pr(0) = 0.

We show that the lineage of any query from a large query
class on any tuple-independent database can be always effi-
ciently compiled into an OBDD whose size is polynomial in
the number of variables of that lineage. Moreover, we need
not materialize the OBDD before computing its probability.
In fact, we only need to keep around a small number of run-
ning probabilities for fragments of the overall OBDD and
avoid constructing it entirely. This number depends on the
query size and is independent of the database size.

Consider first a bottom-up traversal of the OBDD and two
values: px for the probabilities of OBDD fragments rooted at
nodes for Vs-variables x1 and x2, and py for Ve-variables y2

and y3. These values are updated using recurrence formulas
that can be derived from the query structure and mirror the
probability computation of OBDD nodes. Updating py and
px at a node for variable v is done using the formulas

py = Pr(v) · py + Pr(v) · Pr(1)

px = Pr(v) · px + Pr(v) · py

The difference between the recurrence formulas of px and py

reflects the position in the OBDD of nodes for variables of Vs

and of Ve: Whereas the nodes for Ve-variables have always
a child 1 on the positive branch, those for Vs-variables have
a child node for a Ve-variable on the positive branch.

Using these two recurrence formulas, we go up levelwise
until we reach the root of the OBDD. The probability of the



OBDD is then px. We now apply the recurrence formulas
and obtain the update sequence (initially, px = py = 0)

Step 1. py = Pr(y3) · py + Pr(y3) · Pr(1) = Pr(y3) = 0.3

Step 2. px = Pr(x2) · px + Pr(x2) · py = 0.06

Step 3. py = Pr(y2) · py + Pr(y2) · Pr(1) = 0.44

Step 4. px = Pr(x1) · px + Pr(x1) · py = 0.098

The confidence of our tuple is thus 0.098.
Given the recurrence formulas for updating px and py,

the same result can also be obtained in one ascending scan
of the relational encoding of the lineage. This approach
completely avoids the OBDD construction. The updates to
px or py are now triggered by changes between the current
and the previous lineage clauses. We first access x2y3 and
trigger an update to py. The next clause x1y3 differs in the
Vs-variable from the previous clause and triggers an update
to px. When we read the last clause x1y2, the change in the
Ve-variable triggers an update to py. We then reach the end
of table, which triggers an update to px, which is then also
returned as the probability of the lineage.

The main contributions of this paper are as follows.
1. To the best of our knowledge, this paper is the first

to define tractable conjunctive queries with inequalities (<)
on tuple-independent probabilistic databases. This problem
is fundamental to probabilistic databases and was recently
stated open [6]. The tractable queries are defined using the
inequality relationships on query variables: Each input table
contributes with at most one attribute to inequality condi-
tions, yet there may be arbitrary inequalities between the
contributing attributes.

2. We define a class of hard (ie, with #P-hard data com-
plexity) conjunctive queries with inequalities. This class
includes the previously known maximal class of hard con-
junctive queries without self-joins, and is defined by gener-
alizing the notion of hierarchical queries based on equality
relations on query variables to also include equivalences be-
tween query variables and so-called guards. A pair of query
variables (X, Y ) is a guard for a variable Z, if the inequalities
X < Z < Y hold in our query.

3. We cast the exact confidence computation problem as
an OBDD construction problem and show that the lineage of
tractable queries can be efficiently compiled into polynomial-
size OBDDs. We relate the OBDD size to properties of the
graph of the inequality conditions present in the query, and
show that for particular types of graphs, such as paths or
trees, the OBDDs are linear in the number of variables in
the lineage. For arbitrary condition graphs, the sizes can be
expressed as polynomials with degree bounded in the size of
the condition graph. This motivates our choice of OBDDs,
for they can naturally exploit the structural regularity in the
lineage of answers to tractable queries.

4. The OBDD-based technique requires to first store the
OBDDs in main memory. We overcome this limitation by
proposing a new secondary-storage variant that avoids the
materialization of the OBDD, and computes, in one scan
over the lineage, the probabilities of fragments of the OBDD
and then combines them on the fly.

5. We implemented our secondary-storage algorithm and
integrated it into the SPROUT query engine [15]. SPROUT
is a scalable query engine for probabilistic databases that ex-
tends the query engine of PostgreSQL with special physical
aggregation operators for confidence computation. It is cur-

rently under development at Oxford and publicly available
at http://maybms.sourceforge.net as part of MayBMS [9].

6. We report on experiments with probabilistic TPC-H
data and comparisons with an exact confidence computation
algorithm and an approximate one with polynomial-time
and error guarantees [12]. In cases when the competitors
finish the computation within the allocated time, our algo-
rithm outperforms them by up to two orders of magnitude.

The structure of the paper follows the contribution list.

2. PRELIMINARIES

2.1 Tuple-independent Probabilistic Databases
Let X be a finite set of (independent) Boolean random

variables. A tuple-independent probabilistic table Rrep is a
relation of schema (A, V, P ) with functional dependencies
A → V P , V → A. The values in the column V are from X
and the values in the column P are numbers in (0, 1] that
represent the probabilities of the corresponding variables be-
ing true. Certain tables are special tuple-independent ta-
bles, where the P -value associated with each variable is 1.
Figure 3 gives five probabilistic tables, out of which S and
S′ are certain. A probabilistic database D is a set of prob-
abilistic tables.

A probabilistic database represents a set of instance data-
bases, here called possible worlds, with one possible world
for each total valuation of variables from X. To obtain one
instance, fix a total valuation f :

f =
“

^

x∈X:f(x) true

x
”

∧
^

x∈X:f(x) false

¬x).

Under f , the instance of each probabilistic table Rrep is the
set of tuples ~a such that (~a, x, p) ∈ Rrep and f(x) is true.
The probability of that world is the probability of the chosen
total valuation f :

Pr[f ] =
“

Π
x∈X:f(x) true

Pr[x]
”

·
“

Π
x∈X:f(x) false

Pr[¬x]
”

.

2.2 Queries
Syntax. We consider conjunctive queries without self-joins
and with inequalities (<), and denote them by queries in the
sequel. We write queries in datalog notation. For instance,

Q(x0):-R1(x1), . . . , Rn(xn), φ

defines a query Q with head variables x0 ⊆ x1∪. . .∪xn and a
conjunction of distinct positive relational predicates R1, . . . ,
Rn, called subgoals, as body. The conjunction φ defines in-
equalities on query variables or variables and constants, e.g.,
B < C or B < 5. Equality-based joins can be expressed
by variables that occur in several subgoals. Equalities with
constants can be expressed by replacing the variables with
constants in subgoals. Figure 3 gives four Boolean queries
with inequalities.
Semantics. Conceptually, queries are evaluated in each
world. Given a query Q and a probabilistic database D, the
probability of a distinct answer tuple t is the probability of
t being in the result of Q in the worlds of D, or equivalently,

Pr[t ∈ Q(D)] =
X

f : t∈Q(D) in world f

Pr[f ].

The evaluation of queries on probabilistic databases fol-
lows the standard semantics, where the columns for vari-



R A Vr

2 x1

4 x2

6 x3

S B C
2 2
2 4
4 2
4 6
6 4

T D Vt

2 y1

4 y2

6 y3

R’ E F Vr′

1 3 x1

3 5 x2

5 7 x3

T’ G H Vt′

1 3 y1

3 5 y2

5 7 y3

S’ E F G H
1 3 1 3
1 3 3 5
3 5 1 3
3 5 5 7
5 7 3 5

The same lineage x1y1 + x1y2 + x2y1 + x2y3 + x3y2 is associated with the answers to:
Q1:-R(X), S(X, Y ), T (Y ) on database (R, S, T ).
Q2:-R′(E, F ), S(B, C), T ′(G, H), E < B < F, G < C < H on database (R′, S, T ′).
Q3:-R(A), S(E, F, G, H), T (D), E < A < F, G < D < H on database (R, S′, T ).

Q4:-R(X), S(X, C), T ′(G, H), G < C < H on database (R, S, T ′).

Figure 3: Tuple-independent tables (P -columns not shown) and Boolean conjunctive queries with inequalities.

Figure 4: OBDDs used in Examples 2.2 and 4.3.

ables and probabilities are copied along in the answer tu-
ples. These columns store relationally a DNF formula over
Boolean random variables, which is commonly called lineage.
The lineage of the answers to any of the queries in Figure 3
is x1y1+x1y2 +x2y1 +x2y3+x3y2. We denote the lineage of
t by φt,Q,D (or φt,Q if D is clear). If Q is Boolean, we write
φQ as a shorthand for φ(true),Q. For lineage φ over variable
sets x1, . . . , xn, we denote by V ars(φ) ⊆ (x1 ∪ . . . ∪ xn) the
set of its variables, and by V arsx1

(φ) ⊆ x1 the set of its
variables that occur in x1.

The following result is folklore.

Proposition 2.1. For any query Q, probabilistic database

D, and a distinct tuple t in Q(D), Pr[t ∈ Q(D)] = Pr[φt,Q,D].

Computing Pr[φt,Q,D] is #P-complete in general and the
goal of this paper is to define and study classes of queries
for which this computation can be done efficiently.

2.3 Ordered Binary Decision Diagrams
Ordered binary decision diagrams (OBDDs) are commonly

used to represent compactly large Boolean expressions [13].
We find that OBBDs can naturally represent query lineage.

The idea behind OBDDs is to decompose Boolean formu-
las using variable elimination and to avoid redundancy in the
representation. The decomposition step is based on exhaus-
tive application of Shannon’s expansion: Given a formula φ
and one of its variables x, we have φ = x·φ |x +x̄·φ |x̄, where
φ |x and φ |x̄ are φ with x set to true and false, respectively.
The order of variable eliminations is a total order π on the

set of variables of φ, called variable order. An OBDD for φ
is uniquely identified by the pair (φ, π).

OBDDs are directed acyclic graphs with two terminal
nodes representing the constants 0 (false) and 1 (true), and
non-terminal nodes representing variables. Each node for
a variable x has two outgoing edges corresponding to the
two possible variable assignments: a high (solid) edge for
x = 1 and a low (dashed) edge for x = 0. To evaluate the
expression for a given set of variable assignments, we take
the path from the root node to one of the terminal nodes,
following the high edge of a node if the corresponding input
variable is true, and the low edge otherwise. The terminal
node gives the value of the expression. The non-redundancy
is what normally makes OBDDs more compact than the
textual representation of Boolean expressions: a node n is
redundant if both its outgoing edges point to the same node,
or if there is a node for the same decision variable and with
the same children as n.

Constructing succinct OBDDs is an NP-hard problem [13].
The choice of variable order can vary the size of the OBDD
from constant to exponential in the number of variables.
Moreover, some formulas do not admit polynomial-size OB-
DDs. In this paper, we nevertheless show that lineage as-
sociated with the answer to any query can be compiled in
OBDDs of polynomial size.

Example 2.2. Figure 4(left) depicts the OBDD for

x1(y1 + y2 + y3) + x2(y2 + y3) + x3y3

using the variable order x1x2x3y1y2y3. We show how to con-
struct this OBDD. Let α2 = x2(y2 + y3) and α3 = x3y3. By
eliminating x1, we obtain y1 + y2 + y3, if x1 is true, and
α2 +α3 otherwise. We eliminate x2 on the branch of x1 and
obtain y2 + y3 in case x2 is true, and α3 otherwise. We con-
tinue on the path of x2 and eliminate x3: We obtain y3 in
case x3 is true, and false otherwise. All incomplete branches
correspond to sums of variables: y1+y2+y3 includes y2+y3,
which includes y3. We compile all these sums by first elimi-
nating y1. In case y1 is true, then we obtain true, otherwise
we continue with the second sum, and so on. Although some
variables occur several times in the input, the OBDD thus
has one node per input variable. 2

The probability of an OBDD can be computed in time lin-
ear in its size using the fact that the branches of any node
represent mutually exclussive expressions. The probability
of any node n is the sum of the probabilities of their children
weighted by the probabilities of the corresponding assign-
ments of the decision variable at that node. The probability
of the terminal nodes is given by their label (1 or 0).



3. TRACTABLE QUERIES
We next define classes of tractable queries with inequali-

ties and without self-joins. The confidence computation al-
gorithms developed in Section 4 focus on a particular class of
Boolean product queries with a special form of conjunction
of inequalities. Sections 3.1 through 3.4 extend the applica-
bility of our algorithms to considerably larger query classes.

Definition 3.1. Let the disjoint sets of query variables

x1, . . . , xn. A conjunction of inequalities over these sets has

the max-one property if at most one query variable from each

set occurs in inequalities with variables of other sets.

Definition 3.2. An IQ query has the form

Q:-R1(x1), . . . , Rn(xn), φ

where R1, . . . , Rn are distinct tuple-independent relations,

the sets of query variables x1, . . . , xn are pairwise disjoint,

and φ has the max-one property over these sets.

Example 3.3. The following are IQ queries

q1:-R
′(E, F ), T (D), T ′(G, H), E < D < H

q2:-R
′(E, F ), T (D), S(B, C), E < D, E < C

q3:-R(A), T (D)

q4:-R(A), T (D), R′(E, F ), T ′(G, H), A < E, D < E,D < G 2

We will show in Section 4 that

Theorem 3.4. IQ queries can be computed on tuple-inde-

pendent databases in polynomial time.

We represent the conjunction of inequalities φ by an in-

equality graph, where there is one node for each query vari-
able, and one oriented edge from A to B if the inequality
A < B holds in φ. We keep the graph minimal by remov-
ing edges corresponding to redundant inequalities, which are
inferred using the transitivity of inequality. Inequalities on
variables of the same subgoal are not represented, for they
can be computed trivially on the input relations. Each graph
node thus corresponds to precisely one query subgoal. We
categorize the IQ queries based on the structural complexity
of their inequality graphs in paths, trees, and graphs.

Example 3.5. Consider again the IQ queries of Exam-
ple 3.3: q1 is a path, q2 is a tree, and q3 and q4 are graphs.2

IQ queries are limited in three major ways: they are
Boolean, have no equality joins, and have restrictions con-
cerning inequalities on several query variables of the same
subgoal. We address these limitations next.

3.1 Non-Boolean Queries
Our first extension considers non-Boolean conjunctive que-

ries, whose so-called Boolean reducts are IQ queries.

Definition 3.6. The Boolean reduct of a query

Q(x0):-R1(x1), . . . , Rn(xn), φ

is Q′
:-R1(x1 − x0), . . . , Rn(xn − x0), φ

′

where φ′ is φ without inequalities on variables in x0.

Example 3.7. The query from the introduction

q(DomId):-Subscr(Id, DomId, RDate), Events(Descr, PDate),

RDate < PDate

has as Boolean reduct the IQ query

q′:-Subscr(Id, RDate), Events(Descr,PDate), RDate < PDate2

In case the Boolean reduct of a query Q is in IQ, we can
efficiently compute the probability of each of the distinct
answer tuples of Q by employing probability computation
algorithms for IQ queries. This is because for a given value
of the head variables, Q becomes a Boolean IQ query.

Proposition 3.8. The queries, whose Boolean reducts are

IQ queries, can be computed on tuple-independent databases

in polynomial time.

3.2 Efficient-independent Queries
Our next extension considers queries that can be effi-

ciently materialized as tuple-independent relations.

Definition 3.9. A query is efficient-independent if for

any tuple-independent database, the distinct answer tuples

are pairwise independent and their probability can be com-

puted in polynomial time.

Such queries can be used as subqueries at the place of tuple-
independent relations in an IQ query.

Proposition 3.10. Let the relations R1, . . . , Rn be the

materializations of queries q1(x1), . . . , qn(xn). The query

Q(x0):-R1(x1), . . . , Rn(xn), φ.

can be computed in polynomial time if q1, . . . , qn are efficient-

independent and Q’s Boolean reduct is an IQ query.

3.3 Equality Joins
One important class of efficient-independent queries is rep-

resented by the hierarchical queries (without self-joins) whose
head variables are maximal [7].

Definition 3.11. A conjunctive query is hierarchical if

for any two non-head query variables, either their sets of

subgoals are disjoint, or one set is contained in the other.

The query variables that occur in all subgoals are maximal.

Example 3.12. Consider a probabilistic TPC-H database
with relations Cust, Ord, Item. The following query asks for
the probability that Joe placed orders:

Q:-Cust(ckey,′ Joe′, regdate), Ord(okey, ckey, odate),

Item(okey, ckey, shipdate).

This query is hierarchical: subgoals(okey)⊂ subgoals(ckey),
subgoals(odate)⊂ subgoals(okey), subgoals(discount)⊂ sub-
goals(okey), and subgoals(odate) ∩ subgoals(discount)= ∅.
The query variable ckey is maximal. 2

The tractable conjunctive queries without self-joins on
tuple-independent databases are precisely the hierarchical
ones [5]. The following result is fundamental to the evalu-
ation of hierarchical queries and used for the generation of
safe plans [5] and for query plan optimization in general [15].

Proposition 3.13. Hierarchical queries, whose head vari-

ables are maximal, are efficient-independent.



ckey

ckey,okey Cust(ckey,regdate)

Ord(ckey,okey,odate) Item(ckey,okey,shipdate)

Figure 5: Tree representation of the hierarchical
query of Example 3.12.

We can allow restricted inequalities in hierarchical queries
while still preserving the efficient-independent property.

Proposition 3.14. Let Q(x0):-q1(x1), . . . , qn(xn), φ be a

query, where ∀1 ≤ i < j ≤ n : x0 = xi ∩ xj, and φ has

the max-one property over the disjoint variable sets x1 −
x0, . . . , xn−x0. Then, Q is efficient-independent if q1, . . . , qn

are efficient-independent.

This class can be intuitively described using a tree repre-
sentation of hierarchical queries, where the inner nodes are
the common (join) variables of the children and the leaves
are query subgoals [14]. The root is the set of maximal
variables. Each inner node corresponds to a hierarchical
subquery where the head variables are the node’s variables.
Such subqueries are efficient-independent because their head
variables are maximal by construction. Figure 5 shows the
tree representation of a hierarchical query. Proposition 3.14
thus states that a hierarchical query with maximal head vari-
ables remains efficient-independent even if max-one inequal-
ities are allowed on the children of its tree representation.

Example 3.15. The addition of the inequality shipdate >
odate to the query of Example 3.12 preserves the efficient-
independent property. We first join Ord and Item:

q′(ckey, okey):-Ord(ckey, okey, odate), Item(ckey, okey, shipdate),

shipdate > odate

According to Proposition 3.14, q′ is efficient-independent.
We then join q′ and Cust and obtain our query, which ac-
cording to Proposition 3.14, is also efficient-independent. 2

3.4 Database Constraints
Our last extension considers queries with inequalities that,

under functional dependencies (fds) that hold on probabilis-
tic relations, can be rewritten into IQ queries whose sub-
goals are efficient-independent subqueries. We use an adap-
tation of the rewriting framework of our previous work [15].

Definition 3.16. Given a set of fds Σ and a query

Q(x0):-R1(x1), . . . , Rn(xn), φ

where φ is a conjunction of inequalities. Then, the FD-
reduct of Q under Σ is the query

Qfd:-R1(CLOSUREΣ(x1) − CLOSUREΣ(x0)), . . . ,

Rn(CLOSUREΣ(xn) − CLOSUREΣ(x0)), φ′

where φ′ is obtained from φ by dropping all inequalities on

variables in CLOSUREΣ(x0).

Similar to the case of hierarchical FD-reducts [15], it follows
from the chase procedure that

ckey,regdate

ckey,regdate,okey,odate Cust(ckey,regdate)

Ord(ckey,regdate,okey,odate) Item(ckey,regdate,okey,odate,shipdate)

Figure 6: Tree representation of the FD-reduct of
Example 3.18.

Proposition 3.17. If there is a sequence of chase steps

under fds Σ that turns a query into an IQ query with efficient-

independent subgoals, then the fixpoint of the chase, i.e., the

FD-reduct, is such an IQ query.

Example 3.18. Consider a modified version of the query
of Example 3.12, which asks for the likelihood of items shipped
with delay to old customers (see query 2 of the experiments):

Q′:-Cust(ckey,′ Joe′, regdate), Ord(okey, ckey, odate),

Item(okey, shipdate), regdate < odate < shipdate

Q′ is not in our tractable query class because it has equality
joins and yet is not hierarchical. In case ckey and okey are
keys in Cust and Ord respectively, the FD-reduct becomes

Q′:-Cust(ckey,′ Joe′, regdate), Ord(okey, ckey, odate, regdate),

Item(okey, shipdate, ckey, regdate, odate),

regdate < odate < shipdate.

Query Q′ is hierarchical and can be represented as in Fig-
ure 6. The subquery corresponding to any of the tree nodes
is efficient-independent. In particular, each inequality is ex-
pressed on variables of the same node. 2

Proposition 3.19. The queries, whose FD-reducts are

IQ queries with efficient-independent subgoals, can be com-

puted on tuple-independent databases in polynomial time.

3.5 Interval Conditions (IC)
Using inequalities, we can express conditions forbidden in

IQ queries, such as X < Z < Y , with X and Y in the
same subgoal and different from the subgoal of Z. We show
next that such interval conditions can lead to hard queries.
(However, not all queries with interval conditions are hard.)

It is known that non-hierarchical queries are hard (#P-
complete) on tuple-independent databases [5]. The proto-
typical non-hierarchical query is Q1 of Figure 3, because the
subgoals of X and Y do not satisfy the hierarchical property:
{R, S} 6⊆ {S, T}, {S, T} 6⊆ {R, S}, but {S, T} ∩ {R, S} 6= ∅.
In other words, S can express a many-to-many relationship
between tuples of R and T . This query can thus create
lineage representing arbitrary bipartite positive 2DNF for-
mulas, for which model counting is #P-complete.

The above pattern of hard queries can be generalized to
accommodate inequalities. For this, we first define the no-
tions of interval conditions and variable guards.

Definition 3.20. For a given query Q, the relation IC(Q)
contains the pair of variables (X, Y ) if

• X and Y occur in the same subgoal of Q, or

• ∃U1, . . . , Un: IC(Q) contains (U1, U2), . . . , (Un−1, Un),
(X, U1), and (Un, Y ), or

• ∃(U,V ) ∈ IC(Q): U < X < V and U < Y < V .



Then, the pair of variables (X, Y ) guards Z in Q if X <
Z < Y holds in Q and (X, Y ) ∈ IC(Q).

Example 3.21. Consider the queries of Figure 3. In Q2

and Q3, (E, F ) guards B and A respectively, whereas (G, H)
guards C and D respectively. (X, Y ) guards Z in the queries

Q:-R(X, A), S(Y, A), T (Z), X < Z < Y.

Q′:-R1(X, U1), R2(U2, U3), R3(U3, Y ), R4(Z), R5(X1, X2),

X1 < U1 < X2, X1 < U2 < X2, X < Z < Y.

We explain for Q′. We first note that (X1, X2) guards both
U1 and U2, hence (U1, U2) is in IC(Q′), then there is a chain
of joined subgoals starting from a subgoal of X (here, R1)
and ending with a subgoal of Y (here, R3). This implies
that (X, Y ) is also in IC(Q′), and because X < Z < Y it
follows that (X, Y ) guards Z. 2

Guards have the property that there exist databases on
which the query cannot distinguish between values in the
interval (X, Y ) and values of Z. In particular, each pair of
values (X, Y ) can be close enough so as to contain precisely
one distinct value of Z from its active domain. For instance,
the databases given in Figure 3 establish a one-to-one map-
ping between the values of guards and guarded variables of
queries Q2 through Q4. We can thus establish an equiva-
lence relation between guards and guarded variables.

Definition 3.22. Given a variable Z of a query Q. The

equivalence class of Z, denoted by [Z]+, is the set consisting

of Z itself, of the variables of all guards of Z in Q, and of

all variables sharing guards with Z.

We are now ready to generalize the hierarchical property.

Definition 3.23 (Generalization of Defn. 3.11).
A query is hierarchical if for any two equivalence classes of

its query variables, either their sets of subgoals are disjoint,

or one set is contained in the other.

Example 3.24. All queries of Figure 3 are non-hierarchi-
cal. For query Q1, we have [X]+ = {X} with subgoals
{R, S}, and [Y ]+ = {Y } with subgoals {S, T}. These sets
of subgoals do not include each other and are not disjoint.
For query Q2, [B]+ = {E, B, F} with subgoals {R′, S}, and
[C]+ = {G, C, H} with subgoals {S, T ′}. Again, these sets
are not disjoint nor include each other. Consider the query

Q:-R1(X1, A1), R2(X2, A2), R3(X3, A1), R4(A2), X1 < X2 < X3.

Then, (X1, X3) guards X2 and [X2]+ = {X1, X2, X3}. This
equivalence class covers the subgoals {R1, R2, R3}, while
[A2]+ = {A2} covers {R2, R4}. We thus conclude that Q
is non-hierarchical. It can be checked that query Q′ of Ex-
ample 3.21 is also non-hierarchical. 2

Following an argument similar to the case of hard queries
without inequalities, we obtain that

Theorem 3.25. Non-hierarchical queries are #P-complete.

4. OBDD-BASED QUERY EVALUATION
This section shows that the lineage of IQ queries on any

tuple-independent database can be compiled into OBDDs of
size polynomial in the number of variables in the lineage.

We first study the class of IQ queries with inequality
paths. Here, the OBDDs have size linear in the number of

Figure 7: OBDDs used in Examples 4.2 and 4.9.

variables in the lineage. We then investigate the more gen-
eral subclass of IQ queries with inequality trees, in which
case the OBDDs still have sizes linear in the number of vari-
ables in the lineage, but with a constant factor that depends
exponentially on the size of the inequality tree. In the case
of inequality graphs, the OBDD size remains polynomial in
the number of variables, where the degree of the polynomial
is the minimal number of node cuts needed to transform the
inequality graph into a tree.

Remark 4.1. Our confidence computation algorithms are
designed for IQ queries, but are applicable to a larger class of
queries with efficient-independent subqueries (see Section 3).

The straightforward approach to deal with such subqueries
is to materialize them. A different strategy is to consistently
use OBDDs for the evaluation of the most general tractable
query class of Section 3, which is that of IQ queries with
efficient-independent subqueries. This approach is subject
to future work. We note that previous work of the au-
thors [14] showed that the hierarchical queries without self-
joins, which represent together with the IQ characterization
ingredients of efficient-independent subqueries, also admit
linear-size OBDDs. 2

4.1 Independent Subqueries
Before we start with inequalities, a note on IQ queries

that are products of independent subqueries is in place here.
The lineage of such queries can be expressed as the prod-
uct of the independent lineage of each of the subqueries.
For OBDDs, product of independent lineage is expressed as
concatenation of their OBDDs. We next exemplify with a
simple query, but the same OBDD construction applies to
any query with independent subqueries.

Example 4.2. Let the query Q:-R(A), T (D) on the da-
tabase (R, T ) of Figure 3. The lineage consists of one clause
for each pair of variables from R and of variables from T :

(x1 + x2 + x3)(y1 + y2 + y3).

An interesting variable order is (x1x2x3)(y1y2y3), i.e., a
concatenation of variable orders for the sums of variables in
R and in T , respectively. The OBDD, shown in Figure 7, is
then the concatenation of the OBDDs for the two sums. 2

We next consider only IQ queries whose subgoals are con-
nected by inequality joins.



4.2 Queries with Inequality Paths
We study the structure of the OBDDs for IQ queries with

inequality paths. Examples of queries in this subclass are

Q5:-R(A), T ′(G, H), A < H

Q6:-R
′(E, F ), T (D), T ′(G, H), E < D < H

In general, queries in this subclass have the form

Q:-R1(. . . , X1, . . .), . . . , Rn(. . . , Xn, . . .), X1 < . . . < Xn.

The lineage of such queries follows the inequalities on query
variables. If table R1 is sorted (ascendingly) on the attribute
mapped to X1, then the tuples of R2, which are joined with
the i + 1st tuple of R1, are also necessarily joined with the
ith tuple of R1 because of the transitivity of inequality. This
means that if the sorted table R1 has variables x1, . . . , xk,
we can express the lineage as Σixifxi

, where the cofactor
fxi

of xi includes the cofactor fxi+1
of xi+1. This property

holds for the relationship between the variables of any pair
of tables that are involved in inequalities in Q.

The OBDDs are very effective at exploiting the overlap-
ping between the cofactors. We can easily find a variable
order for the cofactor fxi

such that its OBDD already in-
cludes the OBDDs of the cofactors fxj

of all variables xj

where j > i. This is because the clauses of fxi+1
are also

clauses of fxi
- we write this syntactically as fxi

⊇ fxi+1
.

We can obtain fxi+1
from fxi

by setting to false variables
that occur in fxi

and not in fxi+1
. The variable order for

fx1
must then agree with constraints on variable elimina-

tion orders imposed by migrating from fxi
to fxi+1

, for all
i ≥ 1. Such a variable order eliminates the variables of each
table Ri in the order they occur after sorting that table, and
before the variables of table Ri+1.

Computing such a variable order can then be done very
efficiently. Under this variable order, the OBDD represen-
tations for the cofactors fxj

, where j > 1, are obtained for
free, once we computed the OBDD for fx1

.

Example 4.3. Example 2.2 discusses how the lineage of
the query Q5 above on the database (R,T ′) of Figure 3 can
be compiled into an OBDD of linear size.

We next discuss the case of the query Q6:

Q6:-R
′(E, F ), T (D), T ′(G, H), E < D < H.

Consider the probabilistic database (R′, T, T ′) of Figure 3,
where the variables of T ′ are z1, z2, z3 instead of y1, y2, y3.
The lineage of the answer to query Q6 on this database is

x1[y1(z1 + z2 + z3)+ y2(z2 + z3)+y3z3]+

x2[ y2(z2 + z3)+y3z3]+

x3[ y3z3].

We can check that the inclusion relation holds between the
cofactors of variables xi: fx1

⊃ fx2
⊃ fx3

. The same applies
to the cofactors of variables yi. Although it is not here the
case, in general the inclusion may not be strict. That is,
two variables may have the same cofactor. For instance, if
two tuples of R′ have the same E-value, then their variables
have the same cofactors.

The above lineage can be easily compiled into an OBDD
of size linear in the number of variables in the lineage, see
Figure 4(right). We first eliminate the variables x1, x2, x3,
and then reduce the cofactor fx1

to fx2
by eliminating vari-

able y1, and then to fx3
by eliminating y2. The variable

order of our OBDD has then y1 before y2 before y3. Note
that the variables y1 and z1 are those that occur in fx1

and
not in fx2

, although to get from fx1
to fx2

we only need to
set y1 to false. The same applies to variables y2 and z2.

After removing y1, the branch y1 = 0 points to fx2
, and

the other branch y1 = 1 points to z1+z2+z3. After removing
y2, we point to fx3

and to z2 + z3. In case of y3, we point to
0 and to z3. The sums z1 + z2 + z3, z2 + z3, and z3 can be
represented linearly under the variable order z1z2z3, because
(z1 + z2 + z3) ⊃ (z2 + z3) ⊃ z3. 2

We can now summarize our results on inequality paths.

Theorem 4.4. Let φ be the lineage of any IQ query with

inequality paths on any tuple-independent database. Then,

we can compute a variable order π for φ in time O(|φ| ·
log |φ|) under which the OBDD (φ, π) has size bounded in

|V ars(φ)| and can be computed in time O(|V ars(φ)|).

We thus obtain linear-size OBDDs for lineage whose size
can be exponential in the query size. This result supports
our choice of OBDDs as a data structure that can naturally
capture the regularity in the lineage of tractable queries.

4.3 Queries with Inequality Trees
We generalize the results of Section 4.2 to the case of

inequality trees. Examples of such IQ queries are:

Q7:-R
′(E, F ), T (D), S(B, C), E < D, E < C and

Q8:-R
′(E, F ), T (D), S(B, C), T ′(G, H), E < D, E < C < H.

The lineage of queries with inequality paths and of queries
with inequality trees have different structures. We explain
using the lineage of query Q7, where we assume that table
R′ has variables x1, . . . , xn, table T has variables y1, . . . , ym,
and table S has variables z1, . . . , zk, and that the tables are
already sorted on their attributes involved in inequalities.
We will later exemplify with a concrete database. As for
inequality paths, the lineage can be expressed as Σixifxi

,
but now each cofactor fxi

of xi is a product of a sum of
variables yi and of a sum of variables zj . In contrast, for
an inequality path E < D < C, a cofactor fxi

would be a
sum of variables yj , each with a cofactor fyj

that is a sum
of z-variables.

The inclusion relation still holds on the cofactors of vari-
ables xi: fx1

⊇ . . . ⊇ fxn , and we can thus obtain any fxi+1

from fxi
by setting to false variables that occur in fxi

and
not in fxi+1

. These variables can be both y-variables and
z-variables; to compare, in the case of inequality paths, the
elimination variables need only be y-variables. The inclusion
relation holds because of the transitivity of inequality: If we
consider any two E-values e1 and e2 such that e1 < e2, the
tuples of T and S joined with e2 are necessarily also joined
with e1. The inclusion relation holds even if the variables
yi or zj have themselves further cofactors due to further
inequalities, provided the cofactors of variables yi are inde-
pendent from the cofactors of variables zj .

Example 4.5. Consider the database consisting of tables
R′, T , and S of Figure 3, where we add variables z1 to z5 to
the tuples of table S. The lineage of query Q7 is

x1(y1 + y2 + y3)(z1 + z3 + z2 + z5 + z4)+

x2(y2 + y3)(z2 + z5 + z4)+

x3(y3)(z4).



Assumptions:
Input tree is the query’s inequality tree and has n nodes.
Input t is the query answer before confidence computation.
For each node in tree, tuples in t have its column X involved
in inequalities and the variable column V of its table.

processLineage(IneqTree tree, Tuples t) {

assign indices {1,2,...,n} to each node in tree according to
its position in a depth-first preorder traversal;

sort t on (X1 desc, V1, ..., Xn desc, Vn), where Xi and Vi

are from the table of node with index i in tree;
let t′ be πV1,V2,...,Vn

(sorted t);

crtTuple = first tuple in t′;
varOrder = NULL;

foreach node no of tree do {
no.firstVar = crtTuple[Vno.index];
no.latestVarInVO = NULL;
no.varToInsert = crtTuple[Vno.index]; }

{ nextTuple = next tuple in t′;

find minimal i such that crtTuple[Vi] 6= nextTuple[Vi];

foreach node no of tree with index from n to i do {
if (no.varToInsert 6= NULL) {

insert no.varToInsert at the beginning of varOrder;

no.latestVarInVO = no.varToInsert;
no.varToInsert = NULL; }

if (crtTuple[Vno.index] 6= nextTuple[Vno.index] AND

crtTuple[Vno.index] = no.latestVarInVO AND
nextTuple[Vno.index ] 6= no.firstVar)

no.varToInsert = nextTuple[Vno.index ];
}

crtTuple = nextTuple;
} do while (crtTuple 6= NULL);

}

Figure 8: Incremental computation of variable or-
ders for IQ queries with inequality trees.

It indeed holds that fx1
⊃ fx2

⊃ fx3
. We can transform

fx1
into fx2

by eliminating in any order y1 and (z1, z3). We
then transform fx2

into fx3
by eliminating y2 and (z2, z5).

According to the elimination order constraints imposed by
transformations on cofactors, an interesting variable order is
x1x2x3y1z1z3y2z2z5y3z4. Figure 12 gives a fragment of the
OBDD for this lineage in case x1 is set to false. As we can
see, each variable xi has one OBDD node, and each variable
yi or zi has up to two OBDD nodes. This is because the lin-
eage states no correlation between the truth assignments of
any pair of variables yi and zj . Hence, in case we eliminate,
say, yi, nodes for variable zj can occur under both branches
of the yi node.

There are, of course, other variable orders that do not
violate the constraints. For instance, we could eliminate
y1z1z3 after x1 and before x2, and similarly for y2z2z5: We
then obtain x1y1z1z3x2y2z2z5x3y3z4. The reverse of any
such order also induces succinct OBDDs. 2

As in the case of inequality paths, we can always find
a variable order for the cofactor fx1

such that its OBDD
already includes the OBDDs of the cofactors fxi

of all vari-
ables xi where i > 1. This order must agree with constraints
on variable elimination orders imposed by transforming fxi

into fxi+1
, for all i ≥ 1. Example 4.5 (above) shows how

such orders can be computed for a reasonably small lineage.
For the case of general IQ queries with inequality trees, one
can use the algorithm given in Figure 8.

This algorithm works on a relational encoding of the lin-
eage (as produced by queries) and, after sorting the lineage,
it only needs one scan. It uses the inequality tree to re-
discover the structure of the lineage. Because of the max-
one property of the conjunction of inequalities, there is one
table for each node in the inequality tree. Each node in the
inequality tree contains four fields: index, firstVar, lat-
estVarInVO and varToInsert. The field index serves as
an identifier of the node, whereas the other three fields store
information related to the variables from the corresponding
table. The field firstVar stores the first variable from the
table that has been inserted into the variable order. It is
set as the variable in the first tuple after sorting and does
not change afterwards. The field latestVarInVO stores
the latest variable from the table inserted into the variable
order, and the field varToInsert stores the new variable en-
countered in the input tuples but not yet inserted into the
variable order.

The variable order construction is triggered by the changes
in the variable columns between two consecutive tuples. The
sorting is crucial to the algorithm, as it orders the lineage
such that the cofactor fxi+1

is encountered before fxi
in one

scan of the lineage. We thus compute the variable order for
fxi+1

before computing it for fxi
. Because the OBDD for

fxi+1
represents a subgraph of the OBDD for fxi

, the vari-
able order for fxi+1

is a suffix of the variable order for fxi
. A

key challenge here is to identify a variable that has not been
inserted into the variable order. An inefficient approach is
to look it up in the variable order constructed so far. This
can be solved more efficiently, however, by only using first-
Var and latestVarInVO. Due to sorting and the inclusion
property between the cofactors of variables from the same
table, all variables encountered after firstVar and before
latestVarInVO while scanning the cofactor of a variable
have already been inserted into the variable order. After
scanning the cofactor of latestVarInVO, if the next vari-
able in the same column of the next tuple is not firstVar,
this indicates that this variable has not been encountered
and we store it in varToInsert.

Example 4.6. Consider the lineage of Example 4.5. We
scan it in the order x3y3z4, x2y3z4, x2y3z5, x2y3z2 and so
on. Initially, the first tuple is read and firstVar and var-
ToInsert are set to the variables in this tuple. On process-
ing the second tuple, a change is found on the first variable
column, all varToInsert values stored in the nodes are in-
serted into the variable order and obtain x3y3z4. The fields
latestVarInVO of nodes for query variables E, D, and C
are also updated accordingly to x3, y3, and z4 respectively.
On reading the third tuple, a change in the third variable
column is detected and varToInsert is updated to z5. On
reading the fourth tuple, a change is again detected in the
third variable column and z5 is inserted into the variable
order. We thus obtain the order z5x3y3z4, In addition, lat-
estVarInVO is updated to z5 and varToInsert is set to
z2. The final variable order is x1y1z1z3x2y2z2z5x3y3z4. 2

Under such variable orders, the OBDDs can have several
nodes for the same variable. As pointed out in Example 4.5
for the lineage of query Q7, this is because there is no con-



straint between variables yi and zj : Setting a variable yi to
true or false does not influence the truth assignment of a
variable zj .

We next analyze the maximum number of OBDD nodes
for a variable in case of an inequality tree consisting of a
parent with n children:

Q8:-R(X), S1(Y1), . . . , Sn(Yn), X < Y1, . . . , X < Yn

where R and Si have variables x1, . . . , xm, and yi
1, . . . , y

i
mi

,

respectively. The lineage is Σixi(
n

Π
j=1

fxi
(yj)), where each

fxi
(·) is a sum of variables from the same table. We know

that the OBDD obtained by compiling the cofactor of x1

contains the OBDDs for the cofactors of all other xi (i > 1),
under the constraint that the variable order transforms one
cofactor into the next. This means that, in order to compile
the cofactor of x1, we need to use an intertwined elimination
of variables y1 to yn.

Consider we want to count the number of OBDD nodes
for variable yi

j . The OBDD nodes that can point to yi
j-

nodes represent expressions that can have any of the form

s(yi)
l≤n

Π
k=1, 6=i

s(yk)) or simply s(yi), where the functions s(yk)

stand for sums over variables yk
1 , . . . , yk

mk
. All such expres-

sions necessarily contain a sum over variables yi, which in-
cludes yi

j ; otherwise, their OBDD nodes cannot point to

yi
j-nodes. The number of distinct forms is exponential in n

(more precisely, half the size of the powerset of {1, . . . , n};
those without s(yi) are dropped). Interestingly, there can
be precisely one OBDD node for each of these forms that
point to an yi

j-node. This means that the number of yi
j-

nodes is in the order of O(2n). We explain this for three
of the possible forms. A node representing an expression
s(yi) can point to an yi

j-node if, according to our elimina-

tion order, the variables yi preceding yi
j are all dropped, and

precisely one variable from the remaining variable groups is
set to true. Then, there is a single path from the OBDD
root to the node for the expression s(yi), following the true
and false edges of the eliminated variables, and hence only
one yi

j-node to point to. A node representing an expression

s(yi)
n

Π
k=1, 6=i

s(yk)), which is a product of sums of variables

from each variable group, can point to yi
j-nodes only if the

sum s(yi) contains the variable yi
j and all its preceding vari-

ables yi are set to false. Then, again, there is one path from
the root to that node that follows the false edges of the elim-
inated variables yi, and hence one yi

j-node to point to. In
case of expression forms, where some of the sums are miss-
ing, we use the same argument: precisely one variable from
each of these sums is set to true, and there is a single path
from the root to the node representing that expression, and
hence one yi

j-node to point to. This result can be generalized
to arbitrary inequality trees.

Theorem 4.7. Let φ be the lineage of any IQ query with

inequality tree t on any tuple-independent database. Then,

we can compute a variable order π for φ in time O(|φ| ·
log |φ|), under which the OBDD (φ, π) has size and can be

computed in time O(2|t| · |V ars(φ)|).

The OBDD for φ does not need all O(2|t|) nodes for each
variable. Figure 12 shows two OBDDs for a fragment of the
lineage of query Q7 of Example 4.5, one as constructed by
our algorithm (right), and a reduced version of it (left).

Figure 9: Partial OBDD used in Example 4.9.

4.4 Queries with Inequality Graphs
We next consider IQ queries with inequality graphs.
In case the inequality graph is cyclic, then the query is

unsatisfiable, as an inequality of the form A < B < A can
be derived from the transtivity of inequality.

An inequality graph with several unconnected components
means that the query is a product of independent subqueries,
one subquery per unconnected component. This case is ap-
proached as described in Section 4.1.

In case of connected inequality graphs, the structure of
the lineage for such queries differs from that of inequality
trees. Our approach is to simplify the inequality graph by
eliminating all its sink nodes, i.e., all nodes that have more
than one incoming edge. After elimination, we are left with
an inequality tree, which can be processed as presented in
Section 4.3, or with several unconnected inequality trees,
which can then be processed independently.

The elimination of a node from an inequality graph corre-
sponds to the construction of a variable order where all (ran-
dom) variables of the table corresponding to that node occur
together and before the variables of other tables. The order
of these variables has to follow the inclusion of their cofactors
such that the variable xi+1 occurs before xi if fxi

⊂ fxi+1
.

This order is the order of the indices of variables xi, as-
suming the variables xi are initially sorted according to the
values of the attribute mapped to that inequality node.

If several nodes in the inequality graph need to be elimi-
nated, then their elimination order is irrelevant. In case of
two such nodes, say with corresponding tables R1 and R2,
their elimination leads to variable orders starting with all
the variables xn, . . . , x1 of the table R1, followed by all the
variables ym, . . . , y1 of the table R2, and finally completed
with the variables from the remaining tables. Because the
elimination of a variable from R1 may not affect the truth of
any variable from R2, the OBDD fragment constructed un-
der the variable order xn . . . x1ym . . . y1 can have size n · m:
for each variable xi, the same variable yj can occur under
both of its branches. (Note again that variables xl with l < i
cannot occur under the positive branch of xi because their
cofactors are subsumed by the cofactor of xi.)

This property generalizes to k inequality sink nodes to be
removed from an inequality graph.

Theorem 4.8. Let φ be the lineage of any IQ query on

any tuple-independent database. Let g be the inequality graph,

whose sink nodes correspond to tables T1, . . . , Tk. Then, we

can compute a variable order π for φ in time O(|φ| · log |φ|),

under which the OBDD (φ, π) has size O(2|g|−k · |V ars(φ)| ·
k

Π
i=1

(|V arsTi
(φ)|)).

We next exemplify with an inequality graph that has one
sink node.



OBDD Node: probability p, bool vector bv, children hi

from the solid edge and lo from the dotted edge

Level: a vector of OBDD Nodes nodes, index of the

inequality tree node whose table contains the variables at

this level index

n: the number of nodes in the inequality tree

obdd levels: Level[n + 1]

Figure 10: Data structures used by the algorithm of
Figure 11.

Example 4.9. Let the IQ query with inequality graph

Q9:-R(A), T (D), R′(E, F ), T ′(G, H), A < E, D < E, D < G

on the database (R,R′, T, T ′) of Figure 3, with the modi-
fication that R′ has variables z1, z2, z3 and T ′ has variables
u1, u2, u3. Its inequality graph has the sink node labeled E
corresponding to the table R′. The lineage is

x1y1(z2 + z3)(u2 + u3) + x1y2z3u3+

x2y1z3(u2 + u3) + x2y2z3u3+

x3y2z3u3.

We remove from the inequality graph the sink node E and
obtain two unconnected graphs: one isolated node A, and
a path D → G. This removal operation corresponds to the
elimination of variables z3 and z2 from the lineage. The for-
mulas remaining after these variable eliminations can then
be (separately) compiled as for unconnected graphs. The
partial OBDD structure obtained by eliminating the vari-
ables z3 and z2 is shown in Figure 9. We also show the
OBDD for the cofactor of z3 in Figure 7(right). 2

5. CONFIDENCE COMPUTATION IN
SECONDARY STORAGE

This section introduces a secondary-storage algorithm for
confidence computation for IQ queries with inequality trees.
For queries with arbitrary inequality graphs, we follow the
node elimination algorithm given in Section 4.4, which trans-
forms arbitrary inequality graphs into (possibly unconnected)
trees. We then apply the algorithm of this section.

This algorithm is in essence our algorithm for incremental
computation of variable orders for queries with inequality
trees given in Figure 8 of Section 4. An important property
of this algorithm is that it does not require the OBDD to
be materialized before it starts the computation. The key
ideas are (1) to construct the OBDD levelwise, where a level
consists of the OBDD nodes for one variable in the input lin-
eage, and (2) to keep in memory only the necessary OBDD
levels. Similar to the algorithm that computes variable or-
ders, this confidence computation algorithm needs only one
scan over the sorted lineage to compute its probability.

The algorithm is given in Figure 11 and uses data struc-
tures described in Figure 10: The code in the topmost box
should replace the inner box of the algorithm for variable
order computation given in Figure 8.

Let a query Q with inequality tree t of size n and let φ
be the lineage of Q on some database. As discussed in Sec-
tion 4.3, each variable in φ can have up to 2|t| OBDD nodes,
which form a complete OBDD level. When a new variable
is encountered, instead of adding it to the variable order, we
construct a new level of nodes in the OBDD for this variable.

Code to replace the inner box in Figure 8:

add level(i, no.varToInsert.prob);

Initialization:
create Level L; L.nodes = OBDD Node[2n]; L.index = 0;

foreach OBDD Node no in L.nodes do {

no.bv = distinct bool vector of size n;

if (any value in no.bv is false) no.p = 0;

else no.p = 1; }

insert L at beginning of obdd levels;

add level(int i, Prob p)

create Level L;
L.nodes = OBDD Node[2n−1]; L.index = i;

foreach OBBD node no in L.nodes do {

no.bv = distinct bool vector of size n where bv[i] = false;

no.lo = get node(no.bv, i, false);

no.hi = get node(no.bv, i, true);

no.p = p × no.hi.p + (1 − p) × no.lo.p; }

remove L′ from obdd levels such that L′.index = i;

insert L at beginning of obdd levels;

get node(bool vector bv, int i, bool is true)

bv[i] = is true; crtLevel = the first Level in obdd levels;

while(true)

if (crtLevel.index = 0 OR (!bv[crtLevel.index]

AND all ancestors set true(bv, crtLevel.index)))

foreach OBDD node no in crtLevel.nodes do

if (no.bv = bv) {

bv[i] = false;

return no; }

else

crtLevel = the next Level in obdd levels;

all ancestors set true(bool vector bv, int i)

foreach ancestor A of get ineqtree node with index(i) do

if (!bv[A.index]) return false;

return true;

Figure 11: Secondary-storage algorithm for confi-
dence computation.

The major challenge lies in how to connect the low and high
edges of a node to the correct (lower) nodes in the levels
kept in memory. Recall that every OBDD node represents a
partial lineage obtained by eliminating variables at the up-
per OBDD levels. In an OBDD, none of the nodes represent
the same formula. The formulas determine the connection
between nodes from different levels. For instance, in Fig-
ure 12, the left and right nodes in the level of y3 represent
formulas y3z4 and y3 respectively. The formula at the left-
most node x3 is x3y3z4, and hence the high edge of this node
must point to y3z4 and not to y3.

The formula can be, however, large and, instead of mate-
rializing it, we use a compact representation of it. This is
possible due to the lineage structure imposed by the query
and the chosen variable elimination order. Our compact rep-
resentation is that of a Boolean vector of size n. A “true”
value in this Boolean vector at position i indicates that a
variable from the table with index i has been set to true.
This means that the formula at that node does not con-
tain further variables from the table with index i (property
of OBDDs representing lineage of queries with inequality
trees). The Boolean vectors act as the identifiers of the
OBDD nodes so that the nodes from the level above can
identify a potential child node among the ones at this level.
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Left: Reduced OBDD used in Section 4. Right: Partially reduced OBDD as constructed by the algorithm of Section 5.
Constant nodes are merged, and nodes z4[FFF], z4[FTF], z4[TFF], y3[FFT] and y3[FFF] are removed for compactness (al-
though the algorithm constructs them). Grey nodes form the equivalent reduced OBDD on the left.

Figure 12: OBDDs for the lineage discussed in Example 4.5.

The algorithm works as follows: We initially build a level
of one constant node 1 and 2n − 1 constant nodes 0. Note
that this construction does not lead to reduced OBDDs, but
it is sufficient for our processing task. For every new vari-
able encountered during the scan, we build a level of OBDD
nodes, and for each such node find its high and low children
nodes in the existing levels. The probability of a node can
be computed only based on the probabilities of the nodes it
points to. Therefore, the probability computation and the
OBDD construction go in parallel. Instead of keeping all the
levels of the OBDD in memory, our algorithm keeps only one
level for every table in the condition tree t. As soon as a
new level is built for a variable from a table, the old level
for the variable from the same table is dropped if there is
any. This is possible because of the following property of the
OBDDs for queries with inequality trees: Let x1 and x2 be
variables from the same relation and the level of x1 higher
than the level of x2. Then, no edge from levels above the
level of x1 points to nodes in the level of x2. This is due to
the inclusion property between the cofactors in the lineage.

The algoritm also exploits two properties of such OBDDs:

• No OBDD node for a variable from a table is accessi-
ble via the high edge of an upper OBDD node for a
variable from the same table.

• Let a table R and its ancestors S1, . . . , Sn in the in-
equality tree. Then, a path from the root to an OBDD
node for a variable from R must follow the high edges
of at least one node for a variable from each S1, . . . , Sn.

Both these properties are used in the outermost if-condition
of the procedure get node in Figure 11.

Example 5.1. We show how to compute the probability
of the lineage of query Q7 of Example 4.5. Figure 12 shows a
fragment of its OBDD. The inequality tree is of size 3. The
number of constant nodes is thus 23 = 8 and of non-constant
nodes per level is 22 = 4. The size of a Boolean vector is 3
and the corresponding inequality tree nodes of tables R′, T
and S are assigned indices 1, 2 and 3 respectively.

We build a level of eight constant nodes: Seven nodes
with at least one false value (F) in the Boolean vector have
probability 0 (they are merged into one in Figure 12) and
the remaining one with [T,T,T] has probability 1. We then
construct four nodes in the level for z4. The corresponding
Boolean vectors of the nodes are [T,T,F], [T,F,F], [F,T,F],
and [F,F,F]. The value in all the vectors for the variables of
table S is F because formulas of all nodes at this level contain
variable z4; otherwise, elimination of z4 will be redundant.
The first vector encodes a formula with variables only from
S. The second vector encodes a formula with variables only
from T and S, and so on.

The outgoing edges of nodes z4 can only point to the only
level below, which is made by constant nodes. For instance,
the high and low edges of node with vector [T,T,F] point
to nodes with [T,T,T] and [T,T,F] respectively, that is, to
nodes 1 and 0 respectively. Hence, its probability is Pr(z4)×
1 + Pr(z4) × 0 = Pr(z4).

Consider that the level for variable y3 is already con-
structed similarly to the previous level (z4), and let us con-
struct the level for x3. We create four nodes with Boolean
vectors [F,T,T], [F,T,F], [F,F,T], [F,F,F]. For the node with
vector [F,F,F], since the corresponding value for relation R′

in the vector is F and the inequality tree node of R′ is the
ancestor of those of S and T , its low edge cannot point to
nodes in y3 and z4 levels, but instead points to constant node
with vector[F,F,F], namely node 0. Its high edge points to
the node with vector [T,F,F] in the level for y3. Therefore,
its probability is Pr(x3) × (node with vector [T,F,F] in y3

level).p + Pr(x3) × 0.
Let us consider the final step. We construct the level for

x1. As the other non-constant node levels, it has four nodes.
Since x1 is the first to be eliminated in the OBDD, the cor-
responding values for R′, S, and T in the Boolean vector of
the root should be F. Therefore, the probability of the lin-
eage is given by the value p of the node with vector [F,F,F]
in the level x1 and the other three nodes are redundant. Its
probability is Pr(x1)× (node with [T,F,F] in y1 level).p +
Pr(x1)× (node with [F,F,F] in x2 level).p. 2



1 select conf() from orders, lineitem where
o orderkey = l orderkey and o orderdate > l shipdate - 3;

2 select conf() from customer, orders, lineitem where
c custkey = o custkey and o orderkey = l orderkey
and c registrationdate + 30 < o orderdate and
o orderdate + 100 < l shipdate;

3 select conf() from customer, orders, lineitem
where c custkey = o custkey and o orderkey = l orderkey
and c registrationdate + 30 < o orderdate and
c registrationdate + 100 < l receiptdate;

4 select conf() from part, lineitem
where p partkey = l partkey and
l extendedprice / l quantity ≤ p retailprice;

5 select conf() from orders, lineitem
where o orderdate < l shipdate and l quantity > 49 and
o totalprice > 450000;

6 select s nationkey, conf() from supplier, customer
where s acctbal < c acctbal and s nationkey = c nationkey
and s acctbal > 9000
group by s nationkey;

Figure 13: Queries used in the experiments.

6. EXPERIMENTS
Our experiments are focused on three key issues: scala-

bility, comparison with existing state-of-the-art algorithms,
and comparison with “plain” querying where we replaced
confidence computation by a simple aggregation (counting).
The findings suggest that our confidence computation tech-
nique scales very well: We report on wall-clock times around
200 seconds to compute the probability of query lineage of
up to 20 million clauses. When compared with existing con-
fidence computation algorithms, our technique outperforms
them by up to two orders of magnitude in cases when the
competitors need less than the allocated time budget of 20
minutes. We also found that lineage sorting has the lion’s
share of the time needed to compute the distinct answer
tuples and their confidences.
Prototype. We implemented our secondary-storage algo-
rithm and integrated it into SPROUT [15]. SPROUT is
a scalable query engine for probabilistic databases that ex-
tends the query engine of PostgreSQL with a new physical
aggregation operator for confidence computation.
TPC-H Data. We generated tuple-independent databases
from deterministic databases produced using TPC-H 2.8.0.
We added to the table Customer a c_registrationdate col-
umn and set all of its fields to 1993-12-01. This value was
chosen so that the inequality predicates in our queries are
moderately selective: 1993-12-01<o_orderdate holds for
instance for about one fourth of the 1.5 million tuples in
Orders (scale factor 1). We associated each tuple with a
distinct Boolean random variable and chose at random a
probability distribution over these variables.
Queries. We evaluated the six queries shown in Figure 13.
The aggregate construct conf() specifies confidence compu-
tation of distinct tuples in the query answer.
Competitors. To the best of our knowledge, our technique
(denoted by “ours” in the graphics) is the first technique for
exact confidence computation of conjunctive queries with in-
equalities on tuple-independent probabilistic databases that
has polynomial-time guarantees. We cannot therefore ex-
perimentally compare our technique with an existing one
specifically designed to tractable queries with inequalities.

We compare it instead with two state-of-the-art confidence
computation algorithms that are applicable to arbitrary lin-

Query Lineage size # duplicates per distinct tuple

1 99,368 99,368 (Boolean query)
2 725,625 725,625 (Boolean query)
3 4,153,850 4,153,850 (Boolean query)
4 6,001,215 6,001,215 (Boolean query)
5 20,856,686 20,856,686 (Boolean query)
6 256,187 min #duplicates: 5028

max #duplicates: 14252
avg #duplicates: 10247

Figure 14: Lineage Characteristics (scale factor 1).

eage. They represent the query evaluation techniques of
MayBMS [9], which is a publicly available extension of the
PostgreSQL backend (http://maybms.sourceforge.net).

The first algorithm (denoted by “conf”) is an exact confi-
dence computation algorithm with good behaviour on ran-
domly generated data [12]. It compiles the lineage into a
weak form of d-NNF (decomposable negation normal form)
on which probability computation can be done linearly [8].

The second algorithm (denoted by “aconf”) is a Monte
Carlo simulation for confidence computation [16, 5] based
on the Karp-Luby (KL) fully polynomial randomized ap-
proximation scheme for DNF counting [11]. In short, given
a DNF formula with m clauses, the base algorithm computes
an (ǫ, δ)-approximation ĉ of the number of solutions c of the
DNF formula such that Pr[|c− ĉ| ≤ ǫ·c] ≥ 1−δ for any given
0 < ǫ < 1, 0 < δ < 1. It does so within ⌈4 · m · log(2/δ)/ǫ2⌉
iterations of an efficiently computable estimator. Following
[12], we used in the experiments the optimal Monte-Carlo
estimation algorithm of [4].

In contrast to our technique, both competitors can pro-
cess lineage of arbitrary queries on complete probabilistic
database models (such as U-relations [12]), with no spe-
cial consideration for tractable queries. On the down side,
they require main-memory representation of the entire lin-
eage and also random access to its clauses and variables.
In addition, as our experiments show, they are very time
inefficient for the considered workload.

The experiments were conducted on an AMD Athlon Dual
Core Processor 5200B 64bit/3.9GB/Linux2.6.25/gcc 4.3.0.
We report wall-clock execution times of queries run in the
psql shell with a warm cache obtained by running a query
once and then reporting the average runtime over five sub-
sequent, identical executions. The experiments use TPC-H
scale factors 0.005, 0.01, 0.1, 0.5, and 1 (a scale factor of x
means a database of size xGBs).
Sizes of query lineage. We experimented with queries
that produce large lineage. Figure 14 reports the sizes of the
lineage (ie, number of clauses) for each of our queries, be-
fore confidence computation and duplicate elimination are
performed, and the number of duplicates per distinct an-
swer tuple. The performance of confidence computation al-
gorithms depends dramatically on the number of duplicates.
In case of Boolean queries, all answer tuples are duplicates;
for scale factor 1, this means that our algorithm computes
the probability of a DNF formula of about 20 million clauses
in one of our experiments – according to Figure 15 it does
so in about 200 seconds. Further inspection shows that the
actual confidence computation needs under one second, the
rest of the time being needed for sorting the lineage neces-
sary for duplicate elimination and confidence computation.
Comparison with state-of-the-art algorithms. Fig-
ure 15 shows the results of our experimental comparison. For
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Figure 15: Effect of varying the scale factor on query evaluation using our technique, plain, conf, and aconf.

aconf, the allowed error is 10% with probability 99%. We
also consider the time taken by (unmodified) PostgreSQL
to evaluate the queries, where confidence computation has
been replaced by counting (“plain”). Overall, our algorithm
outperforms the competitors by up to two orders of magni-
tude even for very small scale factors such as 0.01.

The algorithm aconf runs out of the allocated time (20
minutes) in most of the scenarios, and the diagrams for
queries 3 and 4 do not have data points for aconf. We also
verified experimentally that the optimal Monte-Carlo esti-
mation algorithm [4] used for aconf in MayBMS is sensitive
to the probability distribution, while this is not true for our
technique nor for conf. For positive DNF formulas repre-
senting lineage of queries on tuple-independent databases,
aconf needs less time if the probability values for the true

assignments of the variables are close to 0. The algorithm
conf performs better than aconf, although conf also exceeds
the allocated time in about half of the tests.
Cost of lineage sorting. We verified experimentally that
in all of our scenarios, the actual confidence computation
time takes up to few seconds only. For instance, for scale
factor 1, it stays within 5% of the total execution time, while
the remaining time is taken by sorting the answer tuples and
their lineage. This sorting step is necessary for duplicate
elimination and confidence computation. Whereas for non-
Boolean queries both counting and confidence computation
need sorting for duplicate elimination, this is not the case for
Boolean queries. In the latter case, sorting is still required
for confidence computation, but not for counting. For query
5, the difference in execution time between counting and
confidence computation is indeed due to sorting. Besides
sorting, both counting and confidence computation require
one scan over the answer tuples and need comparable time.

7. CONCLUSION AND FUTURE WORK
This paper gives a syntactical characterization of (in)trac-

table conjunctive queries with inequalities on tuple-indepen-
dent probabilistic databases. For the tractable queries, we
present a new secondary-storage technique for exact confi-
dence computation based on OBDDs. This technique is fully
integrated into the SPROUT query engine and achieves or-
ders of magnitude improvement over state-of-the-art exact
and approximate confidence computation algorithms.

Exciting followup research can be centered around seconda-
ry-storage algorithms for exact and approximate confidence
computation for various classes of queries and probabilis-
tic database models. Of foremost importance is to chart the
tractability frontier of conjunctive queries with inequalities.
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