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Abstract—Πgora is an integration system for probabilistic data
modelled using different formalisms such as pc-tables, Bayesian
networks, and stochastic automata. User queries are expressed
over a global relational layer and are evaluated by Πgora
using a range of strategies, including data conversion into one
probabilistic formalism followed by evaluation using a formalism-
specific engine, and hybrid plans, where subqueries are evaluated
using engines for different formalisms.

This demonstration allows users to experienceΠgora on real-
world heterogeneous data sources from the medical domain.

I. I NTEGRATING PROBABILISTIC DATA

Real-world applications model probabilistic data using a
plethora of different formalisms. The reason for this diversity
stems from the fact that each formalism has its own benefits
and better fits particular scenarios. We next focus on three such
formalisms. Bayesian networks are a natural fit for managing
expert knowledge, where the probabilistic relationship between
input random variables, which are observable quantities, un-
known parameters, or hypotheses, exhibits conditional inde-
pendence. The pc-tables formalism excels at managing uncer-
tain relational data, such as NELL tables [1], which consistof
records extracted from hundreds of millions of web pages, and
Google Squared tables that aggregate unstructured, possibly
contradictory information representing answers to keyword
web search queries [2]. Finite State Transducers (FSTs) are
stochastic automata used by state-of-the-art optical character
recognition programs, such as those powering Google Books,
to capture probability distributions over all possible strings that
could be represented in a given image [5].

These formalisms naturally support probabilistic processing
to varying degrees. The pc-tables formalism supports select-
project-join queries whose answers and their probabilities
can be represented as pc-tables; Bayesian networks support
inference queries that ask for the conditional probabilityof
an event given another event; FSTs support selection queries
that ask for the probability that a certain string occurs in their
possible runs.

In order to harness the value of heterogeneous probabilistic
data sources, it becomes imperative to provide a uniform
interface to them. Such an interface would allow for their
integration and enable expressive SQL-like querying across
them. This is possible since their underlying formalisms have
a common denominator: they all admit a sound interpre-
tation via the possible worlds semantics [11]. Under this
semantics, pc-tables, Bayesian networks, and FSTs represent
finite probability distributions over sets of possible tables, sets

of correlated observations, and respectively sets of possible
strings represented in an image.

Our systemΠgora (to be pronounced pi-gora: probabilistic
agora) provides such a uniform interface over Bayesian net-
works, pc-tables, and FSTs. In addition, it provides a query
evaluation mechanism over the interface, whose strategiestake
the native querying capabilities of the underlying formalisms
into account, to devise an efficient query plan defined either
by a sequence of sub-plans to be evaluated by engines for
different formalisms, or by transformations of sources to one
of the existing formalisms followed by evaluation using a sin-
gle query engine. Further common aspects of data integration
systems, such as declarative specifications of capabilities of
each data source (in addition to those of their underlying
formalisms), automatically rewriting the user query to usethe
views representing local sources [6], and dealing with many
possible rewritings in case several sources publish similar or
same data, are not yet considered byΠgora.

II. T HE ARCHITECTURE OFΠGORA

Πgora presents a unifying relational interface over hetero-
geneous sources calledmediated schema. The users phrase
their queries over this mediated schema. The components of
the system, as well as the data and control flow, are shown in
Figure 1. The system works as follows. Each local source
is registered to the system with a relational schema that
becomes part of the mediated schema. The user queries are
expressed as select-project-join SQL queries extended with an
exact and approximate probability computation aggregate and
with a given clause, which allows to formulate conditionals
and ask for the probability of an event given another event.
For instance, one could ask for each age group and sex
how probable it is that a person suffers from diabetes and
their diabetes medication causes exhaustion. This query joins
(1) a Bayesian network1 expressing probabilistic relationships
between, among others, the existence of diabetes, age, sex,
and pregnancy, (2) a NELL pc-table relating relationships
between drugs and side effects, and (3) a NELL pc-table
relating drugs and diseases. One could ask for the probability
that a pregnant woman suffers from a left breast tumour given
that she suffers from hypothyroidism. This query is a join of
two Bayesian networks with relationships between age, breast
cancer, pregnancy, and hypothyroidism.

1Available from the UCI Machine Learning Repository at
http://archive.ics.uci.edu/ml/datasets.html.
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Fig. 1. The architecture ofΠgora. Double and dashed arrows denote data
and control flow, respectively.

We next detail the components of the system.
Data sources.Each local source defines a relational schema
that is part of the mediated schema. A pc-table is a relation
extended with a special column that encodes the uncertainty
of the records using probabilistic events, which are propo-
sitional formulas over random variables. Tuple correlations
can be encoded by such events. A special case is that of
tuple-independent pc-tables, where the events are pairwise
independent. An excerpt of the NELL pc-table relating drugs
and diseases is given below:

Drug Disease P E

avandia diabetes 1 x1

tamoxifen breastcancer 1 x2

actos diabetes 0.998 x3

glucophage diabetes 0.996 x4

A Bayesian network is a probabilistic graphical model that
represents a set of random variables and their conditional
dependencies via a directed acyclic graph [9]. Figure 2 shows a
Bayesian network representing dependencies between diabetes
and age, sex, and pregnancy (taken from the UCI ML Repos-
itory). Its relational schema consists of one attribute pernode
in the network. The network thus corresponds to a relation
Diabetes with attributesage, diabetes, sex, pregnant,
and so on; its schema is that of the relation representing the
join of all conditional probability tables in the network.

A finite state transducer is an automaton that converts strings
from an input alphabet to an output alphabet and where there is
a probability distribution over the transitions from each node.

We use MayBMS to manage pc-tables [4]. FSTs are man-
aged by Staccato [5]. Bayesian networks are represented in
the XML-based BayesNets Interchange Format2.

2 http://www.cs.cmu.edu/∼fgcozman/Research/InterchangeFormat/

Fig. 2. Bayesian network for diabetes from the UCI machine learning
repository (the conditional probability tables at nodes are not shown).

Translation layer. The possible worlds semantics repre-
sents a bridge between the different formalisms and enables
sound, equivalence-preserving translations between their in-
stances [8]. These translations are needed whenΠgora’s query
evaluation strategy requires to translate all sources intoone
formalism and executes the query using one dedicated engine.

We next exemplify the translation into pc-tables of the nodes
age, sex, and diabetes from the Bayesian network in
Figure 2. The nodes correspond to Boolean random variables
(random variables with a domain of sizen can be expressed by
n Boolean variables); for space reasons, we assume thatage is
Boolean: below 40 and above 40. The conditional probability
tables of the nodes are as follows:

Sex P

Male 0.48
Female 0.52

Age P

≤ 40 0.314
> 40 0.686

Age Sex Diabetes P

≤ 40 Female true 0.349
≤ 40 Female false 0.651
≤ 40 Male true 0.255
≤ 40 Male false 0.745
> 40 Female true 0.355
> 40 Female false 0.645
> 40 Male true 0.249
> 40 Male false 0.751

Each conditional probability table is translated into an
equivalent pc-table, where the conditional probabilitiesas well
as the dependencies of the node to its ancestors in the network
are captured by probabilistic events:

Sex P Esex

Male 0.48V 0
sex

Female 0.52¬V 0
sex

Age P Eage

≤ 40 0.314V 0
age

> 40 0.686¬V 0
age

Age Sex Diabetes P Ediabetes

≤ 40 Female true 0.349V 0
age ∧ V 0

sex ∧ V 0

diabetes

≤ 40 Female false 0.651V 0
age ∧ V 0

sex ∧ ¬V 0

diabetes

≤ 40 Male true 0.255V 0
age ∧ ¬V 0

sex ∧ V 1

diabetes

≤ 40 Male false 0.745V 0
age ∧ ¬V 0

sex ∧ ¬V 1

diabetes

> 40 Female true 0.355¬V 0
age ∧ V 0

sex ∧ V 2

diabetes

> 40 Female false 0.645¬V 0
age ∧ V 0

sex ∧ ¬V 2

diabetes

> 40 Male true 0.249¬V 0
age ∧ ¬V 0

sex ∧ V 3

diabetes

> 40 Male false 0.751¬V 0
age ∧ ¬V 0

sex ∧ ¬V 3

diabetes

At each node, for each combination of values of the parent
nodes, we introduce a Boolean random variable to capture the
conditional probability distribution at that node. For instance,



the Boolean random variableV 0
age encodes whether the age

is under 40 or over 40, and its probability distribution is that
of the nodeage. The first entry in the conditional probability
table for the nodediabetes states that there is a diabetes
probability of 0.349 for females under 40. This dependency is
encoded by the conjunctionV 0

age∧V 0
sex∧V 0

diabetes, where the
new Boolean random variableV 0

diabetes captures the probabil-
ity distribution of the nodediabetes in the network given
that sex is female andage is under 40.

This translation can lead to an exponential blowup for
networks that are not tree-shaped. We mitigate this problem
by allowing let definitionsin our pc-table formalism, whereby
events can be named and re-used several times.
Inference and Query Engines.Πgora is implemented in Java
on top of the probabilistic management system MayBMS [4]
with the SPROUT query engine [7] for queries on pc-tables,
SMILE [3] for Bayesian inference, and Staccato for selection
queries on FSTs [5].
Query Planning, Reformulation, and Execution. The task
of this component is to decide how to evaluate the user query.
Πgora uses two broad strategies for query evaluation. These
are exemplified in the next section.

The default strategy is to identify subqueries that are natu-
rally supported by the formalisms of the sources referencedin
these subqueries,i.e., inference queries for Bayesian networks,
selection queries for finite state transducers, and select-project-
joins for pc-tables. We then use the engines associated with
the formalism of the data sources to answer the subqueries.
All remaining processing steps, e.g., joining subqueries that
are evaluated using different query engines, are supportedby
translation to pc-tables. Besides the identification of such sub-
queries, a further challenge of this strategy is thus to compute
the final query result using the results of the subqueries.

A further strategy is to (possibly, offline) convert all data
sources used by the query into either the pc-tables or Bayesian
networks formalism, followed by evaluation using either a
query or an inference engine respectively, after reformulat-
ing the query over the corresponding formalism. A possible
optimisation is to specialise the query to only use those parts
of the data sources that are needed for the evaluation. For
instance, in case only a few nodes of a Bayesian network are
needed for the evaluation, we could rewrite the query to only
use their corresponding pc-tables. For relational evaluation,
if the query has a conditional clause, we can then rewrite
it, by following the definition of conditional probability,into
a query for numerator and one for denominator, and a third
query that uses the results of the first two queries to compute
the final result. For evaluation via Bayesian inference, theuser
query is rewritten into a sequence of inference queries thatare
optimised by identifying independence and temporary results
that can be reused several times.

III. D EMONSTRATION SCENARIO: MEDICAL DATA

We demonstrateΠgora using real-world data sources in
the medical domain from NELL, the UCI machine learning
repository, and a repository of FSTs from Google Books.

Let us consider the query in Figure 3 (left). It asks for
the probability (note the constructconf() in the select
clause) of a pregnant woman suffering from a left breast
tumour, given that she also suffers from hypothyroidism.
Correlations between the two medical conditions are reported
in literature [10]. Possible data sources are the Bayesian
networks Hypothyroid and Breast_cancer. We join
these sources onage, since both conditions depend on age.
Πgora chooses a purely Bayesian evaluation, since both data

sources are Bayesian networks. In this case, we phrase the
SQL query as a sum of inference queries:

∑

B.age

(P (B.tumor = true ∧ B.breast = left∧ H.tumor = true∧

H.pregnant = true|

(B.age = H.age∧ H.hypothyroid = primary)))

For a given valuex for age, we have the inference query:

P (B.tumor = true ∧ B.breast = left∧ H.tumor = true ∧

H.pregnant = true|

(B.age= x ∧ H.age= x ∧ H.hypothyroid = primary))

Since the two Bayesian networks are independent, we can
regroup as follows:

P (B.tumor = true ∧ B.breast = left| B.age= x) ∗

P (H.tumor = true ∧ H.pregnant = true|

(H.age= x ∧ H.hypothyroid = primary))

Next, we present two further possible scenarios. Figure 3
(right) depicts the plan for relational evaluation. We firstapply
the conditional probability formula:P (A |B) = P (A∧B)

P (B) .
Expressed in SQL, this means that for eachage value, we
compute (1) the probability of the query with a conjunction
of the conditions in thewhere andgiven clauses, (2) the
probability of the query representing only thegiven clause,
(3) the division of the two probabilities, and finally (4) sumup
the probabilities of allage values. Further optimisations are
applicable, such as specialising the relationsHypothyroid
andBreast_cancer to those constituent pc-tables strictly
needed for query evaluation.

Let us now assume thatBreast_cancer is a pc-table.
The default strategy would then split the query into the
subquery referring to theHypothyroid network and the
subquery referring to theBreast_cancer relation.

For each value ofx for age we have the inference query:

∀x : PH(x) = P (H.tumor = true ∧ H.pregnant = true|

H.age = x ∧ H.hypothyroid = primary)

The subquery that refers to Breastcancer is now rewritten
following the conditional probability formula:

create tableT1 as selectB.age, conf() as p1
from Breast cancer B

where B.tumor=’true’ and B.breast=’left’group by B.age;

create tableT2 as selectB.age, conf() as p2

from Breast cancer Bgroup by B.age;

create tableT3 as selectT1.age, p1/p2 asPB

from T1, T2 where T1.age =T2.age;



Fig. 3. Πgora Graphical User Interface: Input data and query (left) and Visualisation of the chosen evaluation strategy (right).

We finally obtain the query answer by joining the indepen-
dent intermediate resultsPH andT3:

∑

age

PB(age)∗PH(age),

wherePB(age) denotesPB for the tuple(age, PB) in T3.
We note that one further data source for this query could

be a collection of finite state transducers modelling possible
strings represented in images of scanned book pages referring
to these medical conditions. Then, further evidence of corre-
lation between these medical conditions can be signalled by
multiple co-occurrences of the names of the two conditions
within paragraphs on the same pages, and hence by large co-
occurrence probability.

IV. U SER INTERACTION

The users can interact withΠgora via its graphical user in-
terface that allows to view and register data sources, compose
and execute queries, inspect query evaluation strategies,and
see query results.

Figure 3 depicts two screen shots ofΠgora at work. The
left screen shot corresponds to the input data and query tab:
it presents a list of data sources and shows how the user can
compose queries.

The right screen shot corresponds to the evaluation tab,
where the user can choose one of the supported evaluation
strategies,i.e., evaluation via pc-tables, via Bayesian inference,
or the default mixed evaluation where formalism-specific
engines are used to evaluate subqueries of the input query.
This tab also depicts the execution plan chosen by the system
to evaluate the input query.

The right screen shot also depicts a relational plan used by
a strategy based on pc-tables to evaluate the query mentioned
in the previous section. The plan consists of several relational
queries that together encode the conditioning expressed in

the original query. It is optimised such that it only refers to
those pc-tables obtained by translating the nodes in the input
Bayesian networks for hypothyroidism and breast cancer that
are necessary to express the query.

The visitors of our demonstration will also be encouraged
to inspect the translations of Bayesian networks into pc-tables,
which are of independent interest.
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