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ABSTRACT

DAGger is a clustering algorithm for uncertain data. In con-
trast to prior work, DAGger can work on arbitrarily corre-
lated data and can compute both exact and approximate
clusterings with error guarantees.

We demonstrate DAGger using a real-world scenario in
which partial discharge data from UK Power Networks is
clustered to predict asset failure in the energy network.
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1. CLUSTERING UNCERTAIN DATA

Recent years have witnessed a surge in the amount of
digitally-born data. In many scenarios, this data is inher-
ently uncertain or probabilistic, such as in automatic data
extraction, image and voice detection (e.g., processing hand-
writing, controlling mobile phones by voice), location detec-
tion, sensor networks, and measurement data [13]. Uncer-
tain data calls for new processing approaches where uncer-
tainty is explicitly accounted for, and it has led to a solid
body of work on building probabilistic databases, such as
MystiQ, Trio, and MayBMS. Albeit at a smaller scale, there
is effort to adapt well-known data mining tasks to uncertain
data, e.g., in discovery of frequent patterns and association
rules [14], clustering [5], and classification [10]. However, to
the best of our knowledge, prior work only considers limited
probabilistic data models based on a simplifying indepen-
dence assumption and circumvents the hardness of probabil-
ity computation by the use of expected values and Monte-
Carlo sampling. Expected values can lead to unintuitive re-
sults, for instance when data values and their probabilities
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follow skewed and non-aligned distributions. In case of cor-
related input events, the independence assumption can lead
to results that are arbitrarily off from the ground truth.

In this paper we demonstrate DAGger, a novel approach to
clustering correlated uncertain data. At its core, DAGger is
a variant of the well-known k-medoids clustering algorithm
adapted to accommodate uncertainty throughout the clus-
tering process and probability computation.

DAGger has the following key features:

e The clustering outcome has a simple and intuitive mean-
ing given by the possible worlds semantics: conceptu-
ally, it is equivalent to clustering in each possible world
represented by the input data. This is in line with vir-
tually all work in probabilistic databases [13] and thus
allows for an easy integration of query processing and
mining tasks.

e [t supports arbitrarily correlated input data through a
symbolic representation of probabilistic events. Com-
plex events generated during the clustering process are
expressible within the same representation formalism.

e At any stage in the clustering process, DAGger com-
putes clustering events stating the membership of an
object to a cluster and whether an object is a cluster
medoid. The probability of such events can be com-
puted exactly or approximately with absolute or rela-
tive error guarantees using a novel compilation tech-
nique of independent interest. This technique first rep-
resents the events of all objects and clusters at all itera-
tions in a directed acyclic graph (DAG) where common
factors are represented only once; each node in this
graph thus represents an event. It then bulk-compiles
all events into one decision diagram to the degree re-
quired to compute their probabilities.

e In addition to the events that are intrinsic to the clus-
tering process, DAGger supports queries over the clus-
tering output, e.g., to compute the probability that
two given objects belong to the same cluster.

The purpose of the demonstration is to show how DAGger
can be effectively used to cluster and classify sensor readings
of a phenomenon in energy distribution networks, called par-
tial discharge. This is used to predict asset failure in energy
distribution networks. We will use real (anonymised) data
from UK Power Networks consisting of known readings rep-
resenting asset failures and new unclassified readings. These
readings are naturally uncertain due to limited sensor sen-
sitivity, hardware failure, and unreliable transmission chan-
nels [1, 3, 4]. By using DAGger, we can improve the quality



(metadata) (uncertain) (events)

date/time class PD load | ¢[o;]

05 20/12 16:00 0K 5 140 T4 N T5 A Tg
06 20/12 17:00 0K 6 140 x5 N xe N\ T7
o7 20/12 18:00 OK 9 150 re N xT7 A T8
08 20/12 19:00 0K 50 160 x7 N xg N\ T9

o015 10/01 03:00 warn 22 25
o016 10/01 04:00 warn 20 25
o17 10/01 05:00 warn 24 40
o1 10/01 06:00 warn 25 50

T14 N T15 N\ Z16
15 N T16 N\ 17
z16 N T17 N Z18
17 N T18 A Z19

025 01/07 19:00 77 16 100
026 01/07 20:00 7?7 30 80

T24 N\ T25 N\ T26
25 N\ T26 N 27

Table 1: Simplified data set. The labelled sensor readings
are prior to a fault on January 11, 2011. The last two read-
ings can be classified by clustering them with labelled data.

of the clustering for the set of new sensor readings and are
able to distinguish spurious readings from readings that in-
dicate an imminent failure of an asset (e.g., a cable). The
audience of this demonstration can explore the clustering
outcome visually, as well as a ranked list of critical assets.

In the rest of this paper, we explain our demonstration
scenario, show how DAGger clusters uncertain sensor read-
ings, and detail on how the audience of our demonstration
can interact with the system.

2. DEMONSTRATION SCENARIO: CLUS-
TERING PARTIAL DISCHARGE DATA

We demonstrate the clustering capability of DAGger in an
application that predicts asset failure in energy networks.

2.1 Partial discharge

Partial discharge (PD) is an electrical discharge that does
not fully bridge the insulation between two conducting elec-
trodes. It has been identified as one of the major causes of
long-term degradation and eventual failure of cables.

In order to minimise the customer minutes lost, energy
distribution network operators (DNOs) are currently deploy-
ing sensors to monitor partial discharge activity in the dis-
tribution network, to be able to act preemptively [8, 9]. Un-
fortunately, monitoring partial discharge is not a straightfor-
ward task: the phenomenon is hard to detect, sensors often
report spurious measurements and are prone to failure (as
are the transmission channels).

The HiPerDNO project [15] aims to show the benefits of
the introduction of cutting edge computational tools and
techniques to improve electricity distribution network oper-
ations in partnership with UK Power Networks and other
European DNOs.

2.2 Uncertain readings of PD and load

The data used to demonstrate our system is historical data
on partial discharge activities in distribution networks, as
well as records of network load and asset failure. It is gath-
ered from two different types of sensors: (1) partial discharge
sensors installed on switchgear and cables in substations of
the distribution network, and (2) network load sensors in
substations. By aggregating the number of partial discharge
occurrences over the duration of an hour and subsequently
pairing this value with the average network load during that

hour, a data set like the one depicted in Table 1 is obtained.
DAGger can deal with data with an arbitrary number of di-
mensions. For this demonstration each data point has the
attributes load and partial discharge as described above. A
single asset typically yields up to 24 data points per day.

DAGger interprets this data probabilistically. The right-
most column of Table 1 contains probabilistic events, i.e.,
arbitrary propositional formulas over independent Boolean
random variables, that quantify the correlation and proba-
bility of readings. This probabilistic data formalism, whereby
records are associated with probabilistic events, is called
probabilistic conditional tables, or pc-tables for short, and
is common in probabilistic databases [13].

We associate each sensor reading with a probabilistic event.
The probability of that reading being true is thus given by
the probability of the event. Each load and partial discharge
reading has a probability of being accurate, which is inferred
from sensor specification and measurement intervals in his-
torical data. In the events used in DAGger, this is captured
by independent Boolean random variables zo, ... Zm—1.

Inference of probabilities and correlations can be done us-
ing many techniques, e.g. using inference in Bayesian net-
works or Markov Logic Networks [11, 6] and possibly based
on the hardware specifications of the sensor manufacturer.
In this specific application of DAGger, we construct a Markov
chain in which each data point o; at time ¢t only depends on
the data point o,—1 at time ¢ — 1. The conditional proba-
bilities are then converted into events that can be processed
by DAGger. As expected, consecutive sensor readings are
strongly correlated [12]. In the example in Table 1, we used
a sliding window of size three that yields events represented
by conjunctions of three literals.

The possible worlds represented by our sample data are
obtained by total assignments of the event variables. For
instance, the worlds in which reading os is correct are defined
by assignments where z7,xs, and x9 are true. Hence, the
probability of og being correct is given by the product of
probabilities of these Boolean random variables being true.
The readings os and og are positively correlated, since they
both depend on zs and xs. The readings os and o015 are
independent, since their events are independent.

2.3 Predicting asset failure

In order to predict asset failure, we perform the following
procedure using DAGger:

1. Construct a clustering using both historical data (la-
belled readings), and the unclassified sensor readings.

2. For each unclassified reading, query the clustering for
the probability that the reading is in the same cluster as
one (or more) of the readings from the warn-labelled set.
Depending on the type of labelled readings in the same
cluster with the new readings, an expert user can also
understand the type of failure.

After DAGger has constructed a probabilistic clustering,
we can query it for the event that reading oss is clustered
into the same cluster as at least one reading from the set
Ryarn with readings labelled warn. This query is constructed

using clustering events (for clusters C1,...,Cy):
¢lozs is warn] = \/ ¢ oas € Cj] A \/ ¢ [ow € Cj]
1<i<k 0w € Ruarn



Figure 1: Partial DAG with five layers encoding clustering
events for clusters Cp (OK) and C; (warn) in our example.

In this expression, ¢ [0; € C;] denotes the event that read-
ing o0; belongs to cluster C;. DAGger can cluster the data set
from Table 1 and perform exact classification of 025 within
seconds. The system can thus inform the user whether new
readings indicate that a fault is imminent.

3. UNDER DAGGER’S HOOD

At the core of DAGger lies the well-known k-medoids clus-
tering algorithm [2, 7], an unsupervised data mining tech-
nique that partitions a set of data points into k£ groups of
similar points. It repeatedly assigns data points to clusters
and re-elects cluster medoids, until convergence is reached.

In DAGger, the assignment of data points to clusters and
selection of cluster medoids are probabilistic events. There-
fore, a data point belongs to a cluster or is a cluster medoid
with a certain probability. Conceptually, DAGger’s outcome
is equivalent to applying the standard k-medoids algorithm
in each possible world. However, DAGger cannot afford to
enumerate the exponentially many possible worlds and per-
form a clustering in each of them. Instead, its computation
is more symbolic as it traces the clustering events and uses
them to compute probabilities of possible clusterings to any
approximation degree. This symbolic computation can be
orders of magnitude faster than the more extensional ap-
proach based on explicit enumeration of the possible worlds.

In this section, we give some details on how DAGger works.

Constructing events. The events ¢[o;] associated with
input readings are the building blocks for events that are
subsequently created by DAGger to express medoid selection
and cluster assignment. At each clustering step, such events
depend solely on events from the previous step. All events
can be represented in a layered structure, where each layer
corresponds to a clustering step and where we factor out
common expressions. This layered factorisation, which is a
directed acyclic graph (DAG), is key to the compact rep-
resentation of the events, as it exploits the combinatorial
nature of clustering computation. For instance, the event
¢loi € C;] that reading o; belongs to cluster C; is expressed
as a conjunction of the event ¢[o;] and of events for all cases
in which a reading o; is the medoid of cluster C; and the dis-
tance from o; to o; is the smallest among all distances from
0; to the other readings. Figure 1 partially depicts such a
DAG. Clustering events are expressed using conditional ex-
pressions that involve propositional formulas and distances,
since the selection of new cluster medoids depends on in-
put events and distances between data points. They are
expressed in the algebraic structure of the semimodule de-

/ = DAGger - predicting assek Failure
Dataselection | Classification: asset risks | Clustering: assignments < 3
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Figure 2: Screenshot of the system interface, showing an
ordered list of assets of which sensor readings were classified
as ‘warning’ with a high probability.

fined by the tensor product B[X]®R of the Boolean semiring
B[X] freely generated by the set X of input random variables
and the SUM monoid of real numbers R. For instance, the
following expression represents the total distance-sum of a
reading o; to the readings oo, ...,0n—1 in cluster Cj;:

A(Cj,oi) = Z

0<a<n,a#i

(¢loa € Cj] @ d(01, 0a))

This expression represents a discrete probability distribu-
tion function over all possible distance-sums of 0; to readings
in cluster C; in a compact way. Indeed, for each possible
truth assignment of random variables, this expression can
yield a different distance-sum with a different probability.
Such distance-sums are used inside inequalities to construct
the events that describe medoid selection: the data point
with the smallest distance-sum to the other points in the
cluster is chosen as the new cluster medoid.

¢lej = o] = ¢los € CIn N\

0<a<n,ai

(A(Cy,0i) < A(Cy,0a))

In the absence of the semimodule B[X] ® R, these inequal-
ities would only be expressible as propositional events of size
exponential in the number of objects (or readings).

Once the clustering events are constructed, classification
queries such as the one described in Section 2.3 are added
to the DAG. The DAG in Figure 1 includes classification
queries for objects 025 and 026 from Table 1 in the top layer.

Probability computation. DAGger uses a novel bulk com-
pilation strategy to efficiently compute the probability of the
events represented in a layered DAG structure. The core
idea of this compilation technique is Shannon expansion:
given a Boolean random variable x, the probability P(®) of
an event ® is the weighted sum of probabilities of the events
®|, and P|-, obtained by setting x to true and respectively
to false in @, i.e., P(®) = P(z) - P(®|s) + P(—z) - P(®|-z).
The challenges faced by DAGger are to extend Shannon
expansion (1) to work well on sets of events represented in a
DAG structure and on semimodule expressions, and (2) to
incrementally compute approximations to any degree.
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(a) Probabilistic assignment of data points to clusters
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Figure 3: Screenshots of the system interface, showing two different views of the clustering result.

4. DRIVING DAGGER

DAGger has a graphical user interface to present the clus-
tering outcome, as well as the incremental probability com-
putation of the clustering events. Screenshots of this inter-
face are given in Figures 2 and 3.

On the first tab, the user can make a selection of the
input data (both labelled and unlabelled data) which is to
be analysed by DAGger. After the data analysis has started,
the user can monitor the progress and examine the results.

On the tab “Classification: asset risks” (Figure 2), the sys-
tem displays the results of the classification of the unlabelled
data points. It lists the assets that were classified into the
warn category in decreasing order of probability.

The tab “Clustering: assignments” (Figure 3a) shows the
probabilistic assignment of data points to clusters.

The tab “Clustering: visualisation” (Figure 3b) presents
the user with a visual representation of the uncertain clus-
tering. By selecting a sensor reading (in this case: og), the
interface will show the user the probability that the data
point will be clustered into the same cluster as the closest
neighbouring data points: the darker the line that connects
06 to another data point, the higher the probability that the
two data points end up in the same cluster.

Throughout the interface of the system, the user will see
the exact lower and upper bounds of the probabilities, whilst
the probabilities are being established. Unless DAGger is
configured to compute approximate probabilities, the system
will present the user with the exact probabilities once the
lower and upper bounds have converged.
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