Towar ds Grouping Constructsfor Semistructured Data

Francois Bry, Dan Olteanu, Sebastian Schaffert
Institute for Computer Science, University of Munich, Germany
htt p: // www. pns. i nformati k. uni - nruenchen. de

Abstract

Markup languages for semistructured data like XML are
of growing importance as means for data exchange and
storage. In this paper we propose an enhancement for the
semistructured data model that allows to express more se-
mantics and to enhance query answering. A data model is
proposed and the implications on pattern matching are in-
vestigated.

1. Introduction

Languages for semistructured data (SSD) like XML have
by now gained widespread acceptance as a data exchange
format. Also growing is the importance of the SSD data
model for database management. Query languages like
XQuery [15] are visible signs of this development.

In this paper, we suggest an enhancement called group-
ing congtructs to the SSD data model. This enhancement
allows to establish explicit semantic relationships between
data items in semistructured databases. Usually these rela-
tionships are given either implicitly through the meaning of
element names or are implemented in the application soft-
ware processing the data. A declarative localization lan-
guage (e.g. XPath [13]) that not only copes with grouping
constructs but also uses them for a more efficient localiza-
tion and thus querying is further described.

This paper is organized as follows: Section 2 shows on
an example the deficiencies of ordinary SSD data models
and how they can be overcome with grouping constructs.
Section 3 introduces the grouping facets which make up
the grouping constructs. Section 4 gives an overview of
a formalism for grouping constructs. Section 5 deals with
matching and its results in a grouping context. Finally, cur-
rent investigations on the subjects, plans and visions for the
future as well as related work are briefly presented.

2. Motivation

Consider the following example of a curriculum at the
University of Munich: In the first 4 terms, some courses are
optional while others are required. Thus there are and and
or connections between courses.

Terms Courses
Comp. Sc. Mathematics Projects
1 CS1 Algebra |
and
Analysis |
2 CSll Algebra Il
and
Hardware Basics
3 CS 1l Graph Theory | Programming
and or
App. Analysis | Systems
4 CSIV Stochastics or
and or Hardware
Advanced Numerical or
Algorithms Mathematics Logics

While this table reminds of a standard database item like
e.g. a (non-first normal form) relation, the and and or con-
nections show a very different semantics. Obviously, a data
model is needed with which grouping constructs like the
and and or connectives can be expressed and used during
localization and data retrieval in general. Note that object
data not meta-data are grouped. In the following we will
see that other grouping constructs are also desirable.

Let us consider a more abstract example: Consider data
the semantics of which is a and (b or ¢). In a relational
database model, this would be achieved by transforming
this to its conjunctive normal form (a and b) or (a and c)
and then storing each of the conjuncts (a, b) and (a,c) in a
relation R (informally, the and is between the columns, or
attributes, while the or is between the rows, or tuples, of the
table). This would result in the relation R = {(a,), (a,¢) }.

This representation has two drawbacks:

e redundancy: The information about a is stored several

times. This is inefficient in both, space and computa-
tion, and error prone for updates

e information loss: The fact that b and ¢ are and con-
nected to the common item @ might be important from
a semantics viewpoint. This information has to be re-
computed (i.e. the conversion to the conjunctive nor-
mal form has to be reversed)

With the SSD data model it is even worse: While the re-
lational model at least has the connections and and or built-
in (i.e. the and connections between the columns and the or
connections between the rows), in the SSD data model it is
not possible to express such information in an application
independent manner.

As semistructured data, the previous course of studies

example could be expressed as follows:
<course_of _studies>
<term>
<number>4</number>
<computer_sciences>
<course>CS IV</course>
<course>
Advanced Algorithms
</course>
</computer_sciences>
<mathematics>
<course>Stochastic</course>
<course>
Numerical Mathematics
</course>
</mathematics>
<seminars>
<course>
Programming Course
</course>
<course>
System Course
</course>

</§éﬁ1inars>
</term>
</course_of_studies>

In this excerpt, some information is missing: It is not
expressed which courses are optional and which are re-
quired. A common solution would be to provide this infor-
mation in an application dependent query interface. How-
ever, this approach would not be portable since every ap-
plication would have its own data format. This would be
unfortunate because it is the idea of SSD to be applica-
tion independent. Note that such semantic groupings occur
frequently in data exchange (e.g. in e-commerce catalogs,
bioinformatics databases etc.).

Our proposal is to add general constructs to the SSD data
model so as to allow the grouping of elements according to
certain properties (“grouping facets”), thus trying to over-
come the above mentioned deficiencies of the relational and
the standard semistructured model.

With grouping facets the introductory example can be
represented as follows. Again, the XML syntax has been
retained. Also note that grouping can be expressed through
other constructs than through elements.

<course_of _studies>
<term>
<number>4</number>
<computer_sciences>
<AND>
<course>CS IV</course>
<course>
Advanced Algorithms
</course>
<IAND>
</computer_sciences>
<mathematics>
<OR>
<course>Stochastic</course>
<course>
Numerical Mathematics
</course>
</OR>
</mathematics>
<seminars>
<OR>
<course>
Programming Course
</course>
<course>
System Course
</course>

<IOR>
</seminars>
</term>
</course_of_studies>

3. Grouping Facets

Since our extension groups data items and adds addi-
tional information to the already-existing structure, it is
called grouping constructs. The individual kind of group-
ing is called grouping facets. The following grouping
facets are suggested:

e connector: for grouping items with the connectors
AND, OR and XOR (the connector facet has one of
the properties “AND”, “OR” and “XOR”).

e order: for specifying whether items are ordered or not
(properties “ordered”, “unordered”)

e repetition: for specifying whether items of the same
type may be repeated or not (properties “repetition al-
lowed” and “repetition not allowed”).

e selection: for allowing a query to select/match a cer-
tain number of the items (property “n to m”)

e exclusion: for excluding certain items (property “ex-
cluded”)

e depth: for allowing a pattern to span several levels in a
matched tree (property “n to m”).%

Not all of the mentioned grouping facets fit equally well
to databases and to patterns/schemas. While e.g. the con-
nector facet may be of relevance in both databases and

IPermitting indefi nite as value for m alows to express the classical
quantifi ers “*”, “+” and “?’ as “n to m” facets

patterns/schemas, the exclusion facet makes sense for pat-
terns/schemas only.

In this paper we deliberately impose the following re-
strictions on grouping facets:

e only one grouping facet can be specified for a group of
nodes

o the specified grouping facet always applies to all im-
mediate children

o the data model is currently limited to trees?

The rationale for these restrictions is the focus on the
novel issue. An extension is possible in the future.

Ontologies [3, 8, 11] have constructs similar to these
grouping constructs, however they use them primarily for
structuring meta-data. Also schemas for XML (DDML,
XML-Data [12], XML-Schema [14] etc.), have constructs
similar to some of the above mentioned grouping con-
structs, but not all of them. Note that these constructs are
only used for grouping in a schema, not in the data. Using
grouping constructs in queries and answers is not consid-
ered in these specifications.

XML-Schema grouping constructs are less expressive
than the present proposal. With XML-Schema one can rep-
resent only the connector, order, repetition and exclusion
facets. The AND connector and ordering can be repre-
sented in XML-Schema as a sequence of children declara-
tion for the content model of the parent. The XOR connec-
tor reminds of the choice group element or of the enumer-
ation facet from XML-Schema. The OR connector can-
not be completely modeled using XML-Schema constructs
(part of it can be achieved using a combination between
the choice group element and the min-/ maxOccurs facets).
The unordering can be represented in XML-Schema by the
all group element. The repetition and exclusion facets are
covered by the min-/ maxOccurs facets.

4. Data Model: Treeswith Grouping Facets

In this section, a data model of data trees with grouping

facets is introduced. Let N denote a set of nodes, E C N x
N aset of edges and LL a set of node labels. Furthermore, let
P(X) denote the set of all (finite) repetition free lists with
elements from X.
Data Trees (DTs). The semistructured data model consid-
ered is based upon node-labeled trees, hence (slightly) dif-
ferent from other approaches such as UnQL [2] and OEM
[6] or ACeDB [10].

A tree T = (N, E) is a rooted DAG (directed acyclic
graph), where for every node n € N there is a unique path
from the root root to n.

2Extensions to DAGs and forests do not pose principal problems

Definition 4.1 (elementary data tree)

An dlementary data tree DT, with set of nodesN, set of
edgesE, set of node labels L. and root root, is represented
by the tuple (N, L, root,name, children), where:

e name : N — L maps each nodeto its label
e children : N — Lists(IN) maps each noden € N to
its children (thus children are ordered)

Our model considers by default an elementary data tree
as unordered tree. The ordering can be explicitly stated us-
ing the order facet.

Trees with ordered children will be written as
A(By,...,By,), meaning a tree with root node A and sub-
trees By, ..., B, in the given order. Trees with unordered
children will be written A{By, ..., B,} denoting the same
tree, but with the subtrees By, ..., B, in any order.

Elementary data trees are enriched with grouping
facets as follows:

Definition 4.2 (data tree with grouping facets)

Given a set G of grouping facets as defi ned in Section
3, a data tree with grouping facets is defi ned as a tuple
(N,L,root,name,children,grouping), where:

e (N, L,root,name, children) is an elementary data tree
e grouping : N — P(G) is a function mapping each
nodeto a set of corresponding grouping facets.

Note that Definition 4.2 allows grouping facets for all the
children of a node, as assumed in Section 3.

The meaning of a data tree with grouping can be ex-
pressed as a set of elementary data trees. For example, the
data tree with OR-grouping expresses the set of elementary
data trees consisting of all combinations between children
(see Definition 4.3). By contrast, a data tree with AND-
grouping expresses the set of elementary data trees repre-
sented only by the elementary data tree with all children.

4.1. Semantics of DTswith grouping facets

The semantics of a data tree with grouping facets is de-
fined in terms of elementary data trees (without grouping).
Thus, data trees with grouping facets can be seen as “fac-
torization” of several elementary data trees.

Definition 4.3 (Interpretation of grouping facets)

Let DT be a data tree with grouping facets. A given node
N € N(DT) with a grouping facet G € grouping(N)
and children Ty, . .., T, isinterpreted as its correspondent
forest of data treesI(Ng) with root node N and without G
as defi nedin table 1.

enriched subtree Ng interpreted as the elementary
subtrees

I(N()) {NO}

I(N(Ty,...,Ty)) {N(T{,....,Ty) | T} €
I(T;),1 <i<n}

I(N{}) I(N())

I(N{Tlv s 7Tn}) U{I(N(Tw(l)v e =T7r(n))) |
w permutationof {1,...,n}}

I(N()) I(N{})

I(N(T1, ..., Ty)) I(N{Th,...,Tn})

I(Nann()) I(N{})

I(Nanp(Th,...,Tn))| (N{Ty,...,Ta})

I(Nor()) I(N{})

I(NOR(Tl"":Tn)) U{I(N{Pla’Pk}) |
{Pl, .. Pk} C
{T1,...,T,},1<k<n}

I(Nora.()) I(N ())

I(Noyq. (Th,---,Tn)) | (N(Th,...,Th))

I(Nunord ()) I(N{})

I(Nunord (Tl,---,) I(N{Tl,,Tn})

I(Nrepeat () I(N{})

I(Nrepeat (T1, - - ., Tn)} | J{I(N{TT0...0T,}) | T} =
(Tiy..., %), |TY| = kiy1 <
i<n, ki >0}

I(Ni 0 5()) I(N{})

I(Nitoj (T, .., Tn)) | U{I(N{P, ..., Pc}) |
{Pl, A ,Pk} g
{Tl,"'aTn}ai <k SJ}

1<i<j<n

Table 1. Interpretation of grouping facets

I applied recursively to all nodes from the data tree DT
beginning with the root node generates a forest of elemen-
tary data trees. This forest is called the interpretation of
DT, writtenI(DT).

In table 1 a void grouping facet is represented by e. A
node with an e grouping facet can be viewed as without
grouping facets. The formal definitions of other facets, like
XOR or exclude, are presented in [1]. Their semantics com-
prises informations about missing or not allowed children
of a node.

The number of possible interpretations of a data tree DT'
grows exponentially with the number of grouping facets in
the tree, because it is necessary to combine each of the
grouping facets of the parent node with the ones of the chil-
dren. This shows the expressive power of grouping facets:
It is possible to express informations that would usually re-
quire a large number of elementary data trees in one single
data tree with grouping facets.

Example 4.1
A simple data tree with grouping facets and its set of ele-
mentary presentations is shown in the fi gure. Each of the

elementary data trees is a model for the enriched tree.

@G o @G@
@) . g
§ ¢

The localization process for databases and patterns based
on data trees with grouping facets should not consist in a
systematic generation of the elementary data trees repre-
senting the patterns and databases. This would be ineffi-
cient. Rather, a matching at the semantic level is more de-
sirable. Such a matching is described below.

5. Matching Trees With Grouping Facets

Data trees with grouping facets are useful in both,
queries and database items. In this section, it is investigated
whether or not a given query pattern matches with a given
data item, and if it does, what is the result.

Patterns and Databases. Patterns and data items differ
inasmuch as (1) variables may occur in patterns(discussed
in Section 6), not in data items, and (2) a pattern consist in
asingle data tree, a database in several.

Simulation as Basic Approach. The basic approach for
pattern matching is based on a technique called simulation.
Simulation is introduced in more detail in e.g. [5]. Simu-
lation essentially is “walking down” through two graphs in
parallel. 1.e. for each node in the one graph, one tries to find
the same node in the other graph. During the tree traversal,
only edges having the same labels in both graphs are se-
lected. The standard simulation [5] can easily be adapted to
the elementary data trees considered in this paper (cf. [1]).

Two approaches for Data Trees with Grouping. In con-
trast, adapting simulation to data trees with grouping facets
require significant modifications to the simulation definition
and algorithms. Two approaches are possible (cf. [1]).

The first, naive, approach defines a “simulation with
grouping” with respect to the standard simulation without
grouping: For two data trees with grouping DTy and D75,
there exists a simulation with grouping if there is at least one
elementary simulation between an interpretation of DT}
and one interpretation of DT5. This approach is straightfor-
ward. However in most cases it results in inefficient com-
putations, especially in those cases where there is a perfect
match, or no matches at all.

A second, more sophisticated approach is described in
[1]. It computes the grouping simulation by just comparing
the grouping facets of the two data trees. This approach first

computes a “maximal simulation” (covering all of the pos-
sible other simulation) between the two data trees without
considering grouping facets. If this succeeds, an aggregated
answer is then determined by using a simple comparison
table.

Answer Semantics. The primary interest is not in whether
or not the pattern matches (it is assumed that it matches), but
in retrieving a result out of the localization. Using the naive
approach, the result is given implicitly in the simulation, but
needs to be reconstructed. Using the second approach on
the other hand, one easily gets a third data tree aggregating
the possibly many answers that one would have obtained
by querying a “wider” database and with a “wider” pattern.
Answer semantics is covered in [1].

6. Ongoing wor k

The data model we described in this paper is by no means
complete. Many issues are still ongoing work:

Variables. For a full-fledged localization language it will
be necessary to introduce “variables”. Possible approaches
could be inspired by the techniques used in logic or func-
tional programming languages.

Depth Facet. The depth facet is the most delicate of the
grouping facets. A formal representation has already been
suggested but has been left out of the paper for space rea-
sons.

Inspirations for this could come from the area of graph
and search algorithms. Related work is done in the fields of
query languages for XML (see [15]).

Combining Grouping Facets. A topic that has not been
addressed in this paper is the combination of several group-
ing facets for the same group of nodes. Combining facets
can give very different meanings to a set of nodes (consider
e.g. the AND-connector and the depth facet). Therefore,
refining the semantics presented in Section 4 so as to ac-
commaodate multiple grouping is worth investigating.
Arbitrary Graph Structures. In this paper we restricted
the model to trees. It would be desirable to extend this to
databases having an arbitrary graph structure.

Non-Rooted Matching. In many applications it might
be desirable to match patterns with substructures of the
database. While the simulation technique allows such
matching, it is necessary to investigate answer semantics.

7. Related wor k

A different approach to localization queries in SSD is
used by XPath [13]. The difference between XPath and our
localization approach is that the result usually is a set of
nodes instead of a combined answer.

Inspirations for the topic have originated from the paper
[7], where matching for elementary data trees with aggre-
gated answers has been proposed. However, our work goes
beyond and presents an enriched SSD data model based on
adding grouping constructs, i.e. aggregated trees also for
databases and patterns.

A collection of tree matching problems, called tree in-
clusion problems, has been addressed in [4], where the or-
dered/unordered node-labeled tree model has been used. [4]
provides also an extension of tree inclusion problems by
logical variables used to extract substructures of the pattern
instances and to express equality constraints on them.

The work presented here is also related to semantic mod-
eling in general, see e.g. [9] and especially to ontologies and
RDF [11, 8] (see Section 3).

References

[1] F. Bry, D. Olteanu, and S. Schaffert. Grouping con-
structs for semistructured data. Technical report, Univer-
sity of Munich, available at http://www.pms.informatik.uni-
muenchen.de/publikationen, 2001.

[2] P.Buneman, S. Davidson, and D. Suciu. Programming con-
structs for unstructured data. In DBLP, 1995.

[3] Defense Advanced Research Projects Agency. The DARPA
Agent Markup Language (DAML), 2000.

[4] P. Kilpel'ainen. Tree matching problems with application to
structured text databases. PhD thesis, Department of Com-
puter Science, University of Helsinki, 1992.

[5] S. Abiteboul etal. Data on the Web. From Relations to
Semistructured Data and XML. Morgan Kaufmann, 2000.

[6] S. Chawathe etal. The TSIMMIS project: Integration of
heterogenous information sources. In Information Process-
ing Society of Japan, 1994.

[7] H. Meuss, K. Schulz, and F. Bry. Towards aggregated an-
swers for semistructured data. In International Conference
on Database Theory, 2001.

[8] On-To-Knowledge IST Programme, http://www. onto-
knowledge. org/oil/. Ontology Inference Layer (OIL).

[9] R. K. Richard Hull. Semantic database modeling: Survey,
applications, and research issues. ACM Computing Surveys,
19(3):201-260, September 1987.

[10] J. Thierry-Mieg and R. Durbin. Syntactic definitions for the
ACeDB data base manager. Technical report, MRC-LMB
xx.92, MRC Laboratory for Molecular Biology, Cambridge,
1992.

[11] W3 Consortium, http://www.w3c.org/RDF/. RDF, 1999.

[12] W3C, http://www.w3.0rg/TR/1998/ NOTE-XML-data-
0105. XML-Data, Jan. 1998.

[13] W3C, http://www.w3.0rg/TR/xpath. XML Path Language
(XPath), 1999.

[14] W3C, http://mww.w3.org/XML/Schema.
March 2001.

[15] W3C, http://www.w3.0rg/TR/xquery/. XQuery: A Query
Language for XML, Feb 2001.

XML Schema,

