
FDB: A Query Engine for Factorised Relational Databases
Nurzhan Bakibayev and Dan Olteanu and Jakub Závodný

Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK

Factorised Relational Databases

Compact representations that reduce data redundancy and boost query performance

◮ Algebraic factorisations of relational data using distributivity of product over union

◮ Can be exponentially more succinct than the relations they encode

◮ Allow for constant-delay enumeration of tuples, unlike join decompositions and trivial

representation (Q,D)

PlaysFor

player team

Messi Barcelona

Villa Barcelona

Cech Chelsea

Torres Chelsea

van Persie Arsenal

CompetesIn

team league

Barcelona Primera

Barcelona Champions

Chelsea Premier

Chelsea Champions

Arsenal Premier

LeagueStadium

league stadium

Primera CampNou

Champions CampNou

Champions Wembley

Premier Stamford

Premier Wembley

Q1 = PlaysFor ✶team CompetesIn ✶league LeagueStadium

player team league stadium

Messi Barcelona Primera CampNou

Messi Barcelona Champions CampNou

Messi Barcelona Champions Wembley

Villa Barcelona Primera CampNou

Villa Barcelona Champions CampNou

. . .

Two examples of factorised representations of the above query result:

〈Barcelona〉 × (〈Messi〉 ∪ 〈Villa〉)×

×
(

〈Primera〉 × 〈CampNou〉∪

〈Champions〉 × (〈CampNou〉 ∪ 〈Wembley〉)
)

∪

〈Chelsea〉 × (〈Cech〉 ∪ 〈Torres〉)×

×
(

〈Premier〉 × (〈Stamford〉 ∪ 〈Wembley〉)
)

∪

〈Champions〉 × (〈CampNou〉 ∪ 〈Wembley〉)
)

∪

〈Arsenal〉 × 〈van Persie〉×

×
(

〈Premier〉 × (〈Stamford〉 ∪ 〈Wembley〉)
)

.

〈Primera〉 × 〈Barcelona〉 × (〈Messi〉 ∪ 〈Villa〉)× 〈CampNou〉∪

〈Champions〉 ×
(

〈Barcelona〉 × (〈Messi〉 ∪ 〈Villa〉)∪

〈Chelsea〉 × (〈Cech〉 ∪ 〈Torres〉)
)

×

× (〈CampNou〉 ∪ 〈Wembley〉)∪

〈Premier〉 ×
(

〈Chelsea〉 × (〈Cech〉 ∪ 〈Torres〉)∪

〈Arsenal〉 × 〈van Persie〉)
)

×

× (〈Stamford〉 ∪ 〈Wembley〉).

Factorisation trees (f-trees) describe the nesting structure of the above factorisations:
team

player league

stadium

league

team

player

stadium

Left: First group by team and then by players and independently by leagues with stadiums.

Right: First group by league and then by teams with players and independently by stadiums.

Size of Factorised Representations of Query Results

For any conjunctive (aka select-project-join) query Q, there is a number s(Q) such that

For any database D, there is a factorised representation of Q(D) with size O(|D|s(Q)).

This is the best possible bound for factorisations inferred from Q, without looking at D.

How to compute the parameter s(Q)?

◮ Iterate over all f-trees inferred from Q

◮ For each f-tree T , for each root-to-leaf path p in T , compute:

◮ the fractional edge cover number of the hypergraph of the sub-query defined by p,
◮ the maximum such number s(T) over all paths in T

◮ Take s(Q) as the minimum s(T) over all f-trees T of Q

Publications

◮ On Factorisation of Provenance Polynomials D. Olteanu, J. Závodný. In TaPP, 2011.

◮ Factorised Representations of Query Results. D. Olteanu, J. Závodný. In ICDT, 2012.

◮ FDB: A Query Engine for Factorised Relational Databases N. Bakibayev, D. Olteanu,

J. Závodný. In PVLDB 5(11):1232-1243, 2012.

◮ Demonstration of the FDB Query Engine for Factorised Databases N. Bakibayev,

D. Olteanu, J. Závodný. In PVLDB 5(12), 2012.

Query Evaluation

Any query can be evaluated by a sequential composition

of operations called factorisation plan f = ω1, . . . , ωk that

performs the following sequence of transformations:

Tinitial = T0
ω17→ T1

ω27→ . . .
ωk7→ Tk = Tfinal

and is defined by the following operators on f-trees.

Restructuring: Normalisation Operator

◮ factors out expressions common to all terms of a union.

◮ all our operators preserve normalisation.

Restructuring: Swap Operator χA,B

◮ exchanges a node B with its parent node A in the input

f-tree T while preserving normalisation of T .

Cartesian Product ×

◮ simply concatenates the input representations.

Merge (Absorb) Join Operator µA,B (αA,B)

◮ executes selection condition A = B if A and B are sibling

nodes (respectively, A is an ancestor of B) in T .

Projection Operator π−A

◮ projects away the attribute A, if A is a leaf in T .

The operators need quasilinear time in the data input

and output sizes. The evaluation time for f is

O(|D|s(f) · log |D|), where s(f) = max(s(T0),s(T1), . . . ,s(Tk)).

Query Optimisation

Two optimisation objectives (in this order):

1. find a factorisation plan with minimal cost, and

2. find a small factorisation of the query result.

Cost based on asymptotic bounds (i.e., s(f)) or estimates.

Search space defined by the order of join, swap, and

projection operators. Two optimisers:

1. Exhaustive/full search

2. Greedy search: always choose the cheapest operator.

Applications

◮ Succinct representation of large query results

◮ Knowledge compilation in relational databases

◮ Compile data into compact factorised form
◮ Speed up processing of many subsequent queries

◮ Natural fit for large search spaces

◮ AND/OR trees used in design specification
◮ World-set decompositions for incomplete data
◮ Configuration problems in constraint satisfaction

◮ Factorised provenance polynomials

◮ Compact encoding for provenance information
◮ Efficient query evaluation in probabilistic databases

Experiments: Query Optimisation

Full search (slower, top series) vs greedy (faster, bottom series):

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 3 4 5 6 7 8 9a
v
e

ra
g

e
 s

(T
)

o
f

a
n

 o
p

ti
m

a
l
f-

tr
e

e

number K of equalities in query

Average cost of an optimal f-tree for
 random query of K equalities on R relations.

R = 8
R = 6

R = 4
R = 3

R = 2
R = 1

10
-2

10
-1

10
0

 1 2 3 4 5 6 7 8 9

o
p

ti
m

is
a

ti
o

n
 t
im

e
 [
s
e

c
]

number K of equalities in query

Finding an optimal f-tree for
 random query of K equalities on R relations

R = 8
R = 6

R = 4
R = 3

R = 2
R = 1

10
-2

10
-1

10
0

10
1

10
2

 1 2 3 4 5 6 7 8

number K of equalities in input f-tree (K + L < A)

Finding an f-plan for random queries
 L equalities on an input f-tree with

 R=4 relations, A=10 attributes and K equalities.

L = 6
L = 5

L = 4
L = 3

L = 2
L = 1

 1
 1.2
 1.4
 1.6
 1.8

 2

1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 1,2 2,2 3,2 4,2 5,2 6,2 7,2 1,3 2,3 3,3 4,3 5,3 6,3 1,4 2,4 3,4 4,4 5,4 1,5 2,5 3,5 4,5 1,6 2,6 3,6f-
p

la
n

 /
 r

e
s
u

lt
 c

o
s
t

number K of equalities in the input f-tree, number L of equalities in the query to be optimised (K + L < A)

Average costs of f-plans and resulting f-trees, computed by full search and greedy query optimisers. Input f-trees have R = 4 relations, A = 10 attributes.

f-plan cost (full search)
result f-tree cost (full search)

f-plan cost (greedy)
result f-tree cost (greedy)

Experiments: Query Evaluation on Flat Relational Data

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 1000 10000 100000re
s
u

lt
 s

iz
e

 [
#

 o
f
d

a
ta

 e
le

m
e

n
ts

]

size N of each input relation

3 relations with 3 attributes each
 Zipf distribution over [1 .. 100]

K = 2
K = 2

K = 3
K = 3

K = 4
K = 4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 1 2 3 4 5 6 7 8

number K of equalities in query

4 relations with 10 attributes in total
 Zipf distribution over [1..20], size 8

arity

RDB and SQLite
FDB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.001 0.01 0.1 1

fa
c
to

ri
s
e

d
/f
la

t
s
iz

e
 r

a
ti
o

TPC-H scale

Factorised/flat result size ratio
 for selected TPC-H queries.

Q2
Q5

Q7
Q10

QA

10
-2

10
-1

10
0

10
1

10
2

 1000 10000 100000

e
v
a
lu

a
ti
o

n
 t

im
e

 [
s
e

c
]

size N of each input relation

3 relations with 3 attributes each
 Zipf distribution over [1 .. 100]

K = 2
K = 3
K = 4

K = 2
K = 3
K = 4

K = 2
K = 3
K = 4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 1 2 3 4 5 6 7 8

number K of equalities in query

4 relations with 10 attributes in total
 Zipf distribution over [1 .. 20], size 8

arity

SQLite
RDB

FDB

10
-2

10
-1

10
0

10
1

10
2

10
3

 0 1 2 3 4 5 6 7

e
v
a
lu

a
ti
o
n
 t

im
e

 r
a

ti
o
 t

o
 R

D
B

number K of equalities in query

4 relations with 3 attributes each,
 uniform over [1..20], result 10k tuples.

FDB/RDB
FDB+e/RDB

RDB/RDB
SQLite/RDB

Experiments: Query Evaluation on Factorised Data

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 1 2 3 4 5 6 7 8re
s
u

lt
 s

iz
e

 [
#

 o
f
d

a
ta

 e
le

m
e

n
ts

]

number K of equalities in the input f-tree

RDB and FDB result sizes for queries with L equalities
 on results of K equalities on R=4 relations with A=10 attributes.

L = 1
L = 2
L = 3
L = 4
L = 5

L = 1
L = 2
L = 3
L = 4
L = 5

10
-3

10
-2

10
-1

10
0

10
1

10
2

 1 2 3 4 5 6 7 8

e
v
a

lu
a

ti
o
n

 t
im

e
 [

s
e

c
]

number K of equalities in the input f-tree

RDB and FDB performance for queries with L equalities
 on results of K equalities on R=4 relations with A=10 attributes.

L = 1
L = 2
L = 3
L = 4
L = 5

L = 1
L = 2
L = 3
L = 4
L = 5

FDB/RDB: solid/dashed lines, bottom/top series in the right plot

RDB (lightweight purpose-built relational engine):

◮ is three times faster than SQLite.

◮ works on flat data equivalent to the input factorised data.

◮ needs one scan over the input, while FDB needs restructuring.

Factorised Relational Databases WWW: http://www.cs.ox.ac.uk/projects/FDB/

http://www.cs.ox.ac.uk/projects/FDB/

