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Factorised Representations of Relations

Cust
ckey name
1 Joe
2 Dan
3 Li
4 Mo

Ord
ckey okey date
1 1 1995
1 2 1996
2 3 1994
2 4 1993
3 5 1995
3 6 1996

Item
okey disc
1 0.1
1 0.2
3 0.4
3 0.1
4 0.4
5 0.1

Consider a query joining the three relations above:

Cust ✶ckey Ord ✶okey Item
ckey name okey date disc
1 Joe 1 1995 0.1
1 Joe 1 1995 0.2
2 Dan 3 1994 0.4
2 Dan 3 1994 0.1
2 Dan 4 1993 0.4
3 Li 5 1995 0.1



Factorised Representations of Relations

Cust ✶ckey Ord ✶okey Item
ckey name okey date disc
1 Joe 1 1995 0.1
1 Joe 1 1995 0.2
2 Dan 3 1994 0.4
2 Dan 3 1994 0.1
2 Dan 4 1993 0.4
3 Li 5 1995 0.1

A flat relational algebra expression of the query result is:

〈1〉 × 〈Joe〉 × 〈1〉 × 〈1995〉 × 〈0.1〉 ∪

〈1〉 × 〈Joe〉 × 〈1〉 × 〈1995〉 × 〈0.2〉 ∪

〈2〉 × 〈Dan〉 × 〈3〉 × 〈1994〉 × 〈0.4〉 ∪

〈2〉 × 〈Dan〉 × 〈3〉 × 〈1994〉 × 〈0.1〉 ∪

〈2〉 × 〈Dan〉 × 〈4〉 × 〈1993〉 × 〈0.4〉 ∪

〈3〉 × 〈Li〉 × 〈5〉 × 〈1995〉 × 〈0.1〉

It uses relational product (×), union (∪), and unary relations (e.g., 〈1〉).



Factorised Representations of Relations

〈1〉 × 〈Joe〉 × 〈1〉 × 〈1995〉 × 〈0.1〉 ∪

〈1〉 × 〈Joe〉 × 〈1〉 × 〈1995〉 × 〈0.2〉 ∪

〈2〉 × 〈Dan〉 × 〈3〉 × 〈1994〉 × 〈0.4〉 ∪

〈2〉 × 〈Dan〉 × 〈3〉 × 〈1994〉 × 〈0.1〉 ∪

〈2〉 × 〈Dan〉 × 〈4〉 × 〈1993〉 × 〈0.4〉 ∪

〈3〉 × 〈Li〉 × 〈5〉 × 〈1995〉 × 〈0.1〉

A factorised representation (or f-representation) of the query result is:

〈1〉 × 〈Joe〉 × 〈1〉 × 〈1995〉 × (〈0.1〉 ∪ 〈0.2〉)∪

〈2〉 × 〈Dan〉 × (〈3〉 × 〈1994〉 × (〈0.4〉 ∪ 〈0.1〉) ∪ 〈4〉 × 〈1993〉 × 〈0.4〉)∪

〈3〉 × 〈Li〉 × 〈5〉 × 〈1995〉 × 〈0.1〉

There are several algebraically equivalent factorised representations defined by
distributivity of product over union and commutativity of product and union.



Applications of Factorised Representations

Succinct representation of large intermediate/final results in query evaluation
◮ Equality joins induce regularity in the query result and make it factorisable.

Provenance databases and probabilistic databases
◮ Compact encoding of large provenance (10MB/record in GeneOntology DB)
◮ Factorisation of provenance polynomials is used for efficient query evaluation.

Incompleteness and non-determinism (choice) in design specifications
◮ Whenever we need to deal with a large space of possibilities or choices.

Compiled relational databases
◮ Compile data into compact factorised representation to speed up processing of

many subsequent queries.

Configuration problems
◮ Represent the space of feasible solutions (valid combinations of components)



Properties of Factorised Representations of Relations

Factorised Representations

Are relational algebra expressions.

Can be exponentially more succinct than the relations they encode.

Allow for fast (constant-delay) enumeration of tuples

Reduce data redundancy and boost query performance using a mixture of
◮ vertical data partitioning (product) and
◮ horizontal data partitioning (union).



Key Challenges and Talk Overview

1. Characterise conjunctive queries based on succinctness of their factorised results.

2. Build a relational DBMS that uses f-representations at the physical layer.

Overview of the Rest of the Talk:

Factorisations whose nesting structures are inferred from the query

Tight bounds on size and readability of factorised query results

FDB: Query engine for factorised databases



Factorisation Trees

A factorisation tree (f-tree) T over relational schema S is a rooted forest with
nodes labelled by attributes from S.

T defines a nesting structure for f-representations of relations over S.

Example f-trees and corresponding factorisations over S = {A,B ,C}:

A

B C

←→
⋃

a∈A

(

〈a〉 ×
(

⋃

b∈B

〈b〉
)

×
(

⋃

c∈C

〈c〉
))

.

A

B

C

←→
⋃

a∈A

(

〈a〉 ×
(

⋃

b∈B

〈b〉 ×
(

⋃

c∈C

〈c〉
)))

.



Factorisation Trees for Relations

However, not all f-trees work for all relations.

The f-tree
A

B C

cannot factorise the relation R

R

A B C
1 1 1
1 2 2

because

For A = 1, the values of B and C are dependent, i.e.,

Relation πB,CσA=1(R) cannot be factorised as (
⋃

b∈B

〈b〉)× (
⋃

c∈C

〈c〉):

[(〈1〉 ∪ 〈2〉)× (〈1〉 ∪ 〈2〉)] 6= [(〈1〉 × 〈1〉) ∪ (〈2〉 × 〈2〉)]



Factorisation Trees for Query Results

We statically infer from queries which f-trees always work for their results.

For a query Q (without projections) and f-tree T

the result Q(D) can be factorised according to T for any database

iff

for all relations of Q, all attributes are on a single root-to-leaf path.

Similar but more involved condition holds for arbitrary conjunctive queries.



Factorisation Trees for Query Results

Consider query Q = σφ(R × S × T × U), with

schemas R(AR ,BR ,C ), S(AS ,BS ,D), T (AT ,ET ), and U(EU ,F ),

condition φ = (AR = AS = AT ,BR = BS ,ET = EU).

AR ,AS ,AT

BR ,BS

C D

ET ,EU

F

ET ,EU

AR ,AS ,AT

BR ,BS

C D

F

F-representations modelled on the left f-tree have the structure:

⋃

a∈AR ,AS ,AT

[

〈a〉 ×
⋃

b∈BR ,BS

(

〈b〉 ×
(

⋃

c∈C

〈c〉
)

×
(

⋃

d∈D

〈d〉
))

×
⋃

e∈ET ,EU

(

〈e〉 ×
(

⋃

f∈F

〈f 〉
))]



Size of Factorised Representations

The size of an f-representation is the number of its singleton data elements.

|(〈1〉 ∪ 〈2〉 ∪ 〈3〉)(〈1〉 ∪ 〈2〉)| = 5,

|(〈1〉〈1〉 ∪ 〈1〉〈2〉 ∪ 〈2〉〈1〉 ∪ 〈2〉〈2〉 ∪ 〈3〉〈1〉 ∪ 〈3〉〈2〉)| = 12.

The two sizes above differ, although

(〈1〉 ∪ 〈2〉 ∪ 〈3〉)(〈1〉 ∪ 〈2〉) = (〈1〉〈1〉 ∪ 〈1〉〈2〉 ∪ 〈2〉〈1〉 ∪ 〈2〉〈2〉 ∪ 〈3〉〈1〉 ∪ 〈3〉〈2〉)

How much space do we save by factorisation?



Tight Bounds on the Size of Factorised Representations

Given a query Q, for any f-tree T of Q there is a rational number s(T ) such that:

For any database D, the factorisation of Q(D) over T has size O(|D|s(T )).

There exist arbitrarily large databases D for which the factorisation of Q(D)
over T has size Θ(|D|s(T )).

The parameter s(T ) is

a feasible solution to a linear program,

the fractional edge cover number of a sub-query of Q.
◮ this sub-query depends on the shape of T .
◮ 1 ≤ s(T ) ≤ |Q|.



Example of Computing s(T )

Consider the following f-tree T .

Attributes with the same colour belong to the same input relation.

AR ,AS ,AT

BR ,BS

C D

ET ,EU

F

Number of relations covering the path from root to any node X :

For each node X except for F , this number is 1.

For node F , this number is 2.

s(T ) is the maximum of the number of covering relations for each node.

Thus, s(T ) = 2.



Tight Bounds on the Size of Factorised Representations

Size bounds for f-trees can be lifted to queries by finding an optimal f-tree:

s(Q) = min
T

s(T ).

s(Q) characterises queries by factorisability of their results.

For any database D, there is a factorisation of Q(D) with size O(|D|s(Q)).

For f-trees derived from Q, this bound is best possible.



Readability of Factorised Representations

Assume we annotate tuples by distinct variables (= provenance, keys).

Factorised representations can be seen as polynomials over such variables
◮ ∪ becomes sum (+) and × becomes product (·).

Readability:

A representation Φ is read-k if the maximum number of occurrences of any
variable in Φ is k .

The readability of Φ is the smallest number k such that there is a read-k
representation equivalent to Φ.

Readability has been proposed in the context of factorisation of Boolean
functions [Golumbic et al.’06].

Example: ψ1 is read-3 and ψ2 is read-1. They are equivalent and have
readability one.

ψ1 = c1o1i1 + c1o1i2 + c2o3i3 + c2o3i4 + c2o4i5 + c3o5i6.

ψ2 = c1o1(i1 + i2) + c2(o3(i3 + i4) + o4i5) + c3o5i6.



Two Readability Dichotomies

1. Let Q be a query.

If Q is hierarchical, the readability of Q(D) for any database D is bounded by
a constant.

If Q is non-hierarchical, for any f-tree T of Q there exist arbitrarily large
databases D such that T (D) is read-Ω(|D|).

2. Let Q be a query without repeating relation symbols.

If Q is hierarchical, the readability of Q(D) is 1 for any database D.

If Q is non-hierarchical, there exist arbitrarily large databases D such that the
readability of Q(D) is Ω(

√

|D|).



What are these hierarchical queries?

Hierarchical query Q:

For any two equivalence classes of attributes in Q, either their sets of relation
symbols are disjoint, or one is included in the other.

This is a key property for query characterisation in many applications:

In probabilistic databases, any tractable non-repeating conjunctive query is
hierarchical; non-hierarchical queries are intractable [Suciu&Dalvi’07].

In the finite cursor machine model of computation [Grohe et al’07], any query
that can be evaluated in one pass is hierarchical; non-hierarchical queries
need more passes.

◮ Assumption: we are allowed to first sort the input relations.

In the Massively Parallel computation model, any query that can be
evaluated with one synchronisation step is hierarchical. [Suciu et al’11]



Readability Width of a Query

There is a rational number r(Q) with properties similar to those of s(Q):

For any database D, the readability of the query result Q(D) is at most
M · |D|r(Q), where M is the max number of repeating relation symbols in Q.

For any f-tree T of Q there exist arbitrarily large databases D such that the
f-representation T (D) is at least read-(|D|/|Q|)r(Q).

r(Q) = 0 for hierarchical queries Q only and r(Q) > 0 for all others.

r(Q) defines the readability width of Q.



FDB: A Query Engine for Factorised Databases

Uses f-representations to encode relational data

Query evaluation
◮ Relational operators: selection, projection, product
◮ New operators for restructuring factorisations
◮ Any query can be evaluated by a sequence of operators

Query optimisation
◮ Find the best query and factorisation plan

Implementation of an in-memory engine in C++
◮ flat/factorised data → flat/factorised data

Experimental evaluation with FDB and relational engines
◮ Factorised query results up to 6 orders of magnitude smaller than equivalent

relations.
◮ FDB up to 5 orders of magnitude faster than PostgreSQL/SQLite/our

in-memory relational engine.



Thanks!



Query Operators

Restructuring operators

Normalisation factors out expressions common to all terms of a union.
Example: f-tree nodes A and B do not have dependent attributes.

· · ·

A

B

TB

TA

7→ · · ·

B

TB

A

TA

Swap exchanges a node with its parent while preserving normalisation.
Example: TA depends on A only, TB depends on B only, TAB depends on
both A and B

· · ·

A

TA B

TAB TB

7→ · · ·

B

A

TA TAB

TB



Query Operators

Selection operators A = B , where A and B label nodes A and B respectively.

Merge siblings A and B into a single node

· · ·

A

TA

B

TB

7→ · · ·

A,B

TA TB

Absorb B into its ancestor A. Example: Ti depends on B and Ci

· · ·

A

C1

· · ·

Ck

B

T0 T1 . . . Tk

7→ · · ·

A,B

T0 C1

T1 · · ·

· · · Ck

Tk

Select Aθc does not change the f-tree; it removes from the f-representation all
products containing A-singletons 〈a〉 for which a¬θc .



Query Operators

Further query algebra operators

Cartesian product of two f-trees is their forest

Projection on attribute list Ā removes from the f-tree all attributes but those
in Ā; empty leaf nodes are removed.

◮ The projection operation is more involved if the resulting f-tree must not allow
f-representations with duplicates.

Work in progress: Order-by, Group-by, Aggregates.



Query Optimisation

Goal: Find the best f-plan = query and factorisation plan

Optimal f-representation of the query result

Minimal computation cost, i.e., the sizes of intermediate results

Cost computation based on s(Q) or cardinality and selectivity estimates

Search space defined by

selection operators may require several swaps before application,

choice of selection operators and f-tree transformations for each join,

choice of order for join conditions,

projection push-downs.



Query Optimisation: Example

Build f-plan for selection B = F on the leftmost f-tree, with dependencies
{A,B ,C} and {D,E ,F}.
Alternative f-plans (cost given by max s(Ti ) over all Ti ’s in the f-plan):

1 Input and output f-trees with cost 1, intermediate with cost 2

A,D

B

C

E

F

swap {A,D},B
7→ B

A,D

C E

F

absorb B,F
7→ B ,F

A,D

C E

2 All three f-trees have cost 1.

A,D

B

C

E

F

swap E ,F
7→ A,D

B

C

F

E

merge B,F
7→ A,D

B ,F

C E



Experimental Evaluation

Query optimisation. K equalities on R relations with A = 40 attributes.
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exhaustive search used above.

heuristics perform up to 4 orders of magnitude better, the cost differs by at
most 0.5.



Experimental Evaluation

Query evaluation on flat data: FDB vs. Relational DB (RDB).
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The trend is the same for time performance.



Experimental Evaluation

Query evaluation on factorised data: FDB (dotted lines) vs. RDB (solid lines).
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In search for the rational number s(Q) - step 1

Disclaimer: Discussion for queries without projection!

For any attribute A in an f-tree T , the number of occurrences of A-values in the
factorisation of Q(D) over T is |πpath(A)(Q(D))|.

AR ,AS ,AT

BR ,BS

C D

ET ,EU

F

Example

path(F ) = {AR ,AS ,AT ,ET ,EU ,F}.

The number of occurrences of F -values is then |πpath(F )(Q(D))|.

Next step:

The trouble is that πpath(A)(Q(D)) requires to know Q(D).

We would like to express it as a function of Q and D.



In search for the rational number s(Q) - step 2

Restrict Q = πP(σφ(R1 × · · · × Rn)) and D to the attributes in path(A):

QA = σφpath(A)
(πpath(A)R1 × · · · × πpath(A)Rn),

DA obtained by projecting D onto path(A).

Then number of A-values = |πpath(A)(Q(D))| ≤ |QA(DA)|.

Rough estimate:

Cover all attributes of QA by k ≤ |QA| relations.

Then, |QA(DA)| ≤ |D|k .

Best k is the edge cover number of the hypergraph of QA.

Better estimate:

From edge cover number k to fractional edge cover number ρ∗(QA).



In search for the rational number s(Q) - step 3

For a query Q = σφ(R1 × · · · × Rn), the fractional edge cover number ρ∗(Q) is
the cost of an optimal solution to the linear program with variables {xRi

}ni=1:

minimising
∑

i xRi

subject to
∑

i :Ri∈rel(A) xRi
≥ 1 for all attribute classes A,

xRi
≥ 0 for all Ri .

xRi
is the weight of relation Ri .

rel(A) are relations with attributes in A.

Each node A has to be covered by relations in rel(A) such that the sum of
the weights of these relations is greater than 1.

The objective is to minimise the sum of the weights of all relations.

In the non-weighted edge cover, the variables xRi
can only be assigned the

values 0 and 1.

Then |Q(D)| ≤ |D|ρ
∗(Q) for all databases D. [Atserias, Grohe, Marx; FOCS’08]



In search for the rational number s(Q) - step 4

1. Number of A-values = |πpath(A)(Q(D))| ≤ |QA(DA)| ≤ |DA|
ρ∗(QA) ≤ |D|ρ

∗(QA).

2. Define s(T ) = maxA ρ
∗(QA).

s(T ) = maximal possible ρ∗(QA) over all attributes A from Q.

Then, the size of the factorisation of Q(D) over T is
≤ |Q| · |D|s(T ) = O(|D|s(T )).

3. Define s(Q) = minT s(T ).

s(Q) = minimum possible s(T ) over all f-trees T for Q.

Then, there exists an f-representation of Q(D) with size O(|D|s(Q)).



Example of computing s(Q)

AR ,AS ,AT

BR ,BS

C D

ET ,EU

F

For each node X except for F , we have that ρ∗(QX ) = 1 since all attributes
in path(X ) are covered by one relation.

path(F ) is not covered by one relation and ρ∗(QF ) = 2.

Thus, s(T ) = 2.

s(Q) = 2 since s(T ) = 2 is the smallest possible value for any f-tree T of the
query Q.



Projections

With R(AR ,BR),S(AS ,BS), the query Q = σAR=AS
(R × S) has s(Q) = 1:

AR ,AS

BR CS

However the query Q ′ = πBR ,CS
(σAR=AS

(R × S)) has s(Q ′) = 2.

BR

CS

After projecting away AR ,AS , BR and CS are dependent and cannot be siblings.

⇒ Projection may increase the factorisation size.



More Succinct Representations: DAG

Avoid repeating identical expressions: store them once and use pointers.

AR ,AS ,AT

BR ,BS

C D

ET ,EU

F

⋃

a∈AR ,AS ,AT

[

〈a〉 × · · · ×
⋃

e∈ET ,EU

(

〈e〉 ×
(

⋃

f∈F

〈f 〉
))]

Node {F} only depends on {ET ,EU}.

A fixed 〈e〉 binds with the same
⋃

f∈F 〈f 〉 for each 〈a〉.

⇒ store the mapping 〈e〉 7→
⋃

f∈F 〈f 〉 separately.

⋃

a∈AR ,AS ,AT

[

〈a〉 × · · · ×
⋃

e∈ET ,EU

(

〈e〉 × Ue

)]

;
{

Ue =
⋃

f∈F

〈f 〉
}


