
IEEE International Conference on Data Engineering (ICDE)
Long Beach, March 2nd, 2010

Approximate Confidence Computation in
Probabilistic Databases

http://www.comlab.ox.ac.uk/projects/SPROUT/

Dan Olteanu (Oxford), Jiewen Huang (Oxford), Christoph Koch (Cornell)

http://www.comlab.ox.ac.uk/projects/SPROUT/


Uncertain and Probabilistic Data

Uncertain and probabilistic data is commonplace:

Information extraction

Processing manually entered data (such as census forms)

Data cleaning, data integration

Risk management: Decision support queries, hypothetical queries

Social network analysis

. . .

Recent years have seen advances in developing

representation models for uncertain/probabilistic data,

uncertainty-aware query languages, and

query evaluation techniques for such data.
◮ scope of this work.



Contributions of this Work

Efficient deterministic technique for confidence computation.

◮ approximate confidences with error guarantees
⋆ positive relational algebra queries
⋆ U-relational databases

◮ exact confidences for known tractable queries in polynomial time
⋆ hierarchical conjunctive queries without self-joins, max-one inequality queries
⋆ tuple-independent probabilistic databases

Implementation of this technique in the SPROUT query engine.

◮ extends PostgreSQL backend with confidence computation operators

◮ used by MayBMS (maybms.sourceforge.net)

Experimental comparison with existing techniques.

◮ fastest technique so far for tractable queries (previous SPROUT)

◮ Monte Carlo algorithm (MayBMS)

maybms.sourceforge.net


U-relational Probabilistic Databases

Syntax.

Probabilistic databases are relational databases where

There is a finite set of independent random variables X = {x1, . . . , xn} with
finite domains Domx1 , . . . ,Domxn .

Each tuple is associated with a conjunction of atomic events of the form
xi = a or xi 6= a where xi ∈ X and a ∈ Domxi .

There is a probability distribution over the assignments of each variable.

Semantics.

Possible worlds defined by total assignments θ over X.

The world defined by assignment θ
◮ consists of all tuples with condition φ such that θ(φ) = true.
◮ has probability defined by the product of probabilities of each assignment in θ.

This formalism can represent any discrete probability distribution over relational databases.



Example: Probabilistic Databases

Consider a simplified TPC-H scenario with customers (Cust) and orders (Ord):

Cust
ckey name V1 P1 V2 P2

1 Joe x1 0.1 x3 0.1
2 Dan x1 0.9 x4 0.5
3 Li x2 0.3 x4 0.5
4 Mo x2 0.7 x5 0.2

Ord
okey ckey date V3 P3 V4 P4

1 1 1995-01-10 y1 0.1 x5 0.2
2 1 1996-01-09 y2 0.2 x4 0.5
3 2 1994-11-11 y3 0.3 x3 0.1

Variables are Boolean (wlog); write x instead of x = 1, x instead of x = 0.

A pair (Vi ,Pi ) states that the variable assignment given by Vi has the
probability given by Pi .

Conditions can represent arbitrary correlations between tuples, eg,

◮ (1,Joe) and (3,Li) are independent: They use disjoint sets of variables.
◮ (1,Joe) and (2,Dan) are mutually exclusive: x1 is either true or false.



Query Evaluation in Probabilistic Databases

Semantically, the query is evaluated in each world.
◮ Too expensive for any practical purpose!

Common approach:
1 Evaluate the query directly on the representation.

⋆ Done with relational query plans for our probabilistic data formalism.
⋆ In addition to standard evaluation, copy the input conditions to the output.

2 Compute the confidence of each answer tuple.
⋆ Reducible to probability computation of Boolean formulas over random

variables

⋆ Known to be #P-hard already for positive bipartite DNF formulas!



Example: Query Evaluation

Query asking for the probability that customer ’Joe’ has placed orders:

Q = π∅(σname=′Joe′ (Cust) 1ckey Ord)
V1 P1 V2 P2 V3 P3 V4 P4

x1 0.1 x3 0.1 y1 0.1 x5 0.2
x1 0.1 x3 0.1 y2 0.2 x4 0.5

Probability of the answer tuple is the probability of the associated DNF
x1x3y1x5 + x1x3y2x4.

Difficulty:

The sets of satisfying assigments of any two clauses in the DNF may overlap.

It may require to iterate over its (exponentially many) satisfying assignments.

Approximate computation, if done quickly enough, may suffice in most applications.



Approximate Confidence Computation in SPROUT

Basic algorithm:

decompose the DNF into an equivalent form that allows for efficient
probability computation.

after each decomposition step, compute lower and upper bounds on the
probabilities of the DNFs obtained by decomposition and of the initial DNF.

stop when the desired approximation is obtained or on timeout.

otherwise, continue with a new decomposition step.

In practice, good approximations can be obtained after a few well-chosen

decomposition steps.



Types of Decompositions

Given DNF formula Φ. Apply the following steps in the given order.

1 Independent-or ⊗: Partition Φ into independent DNFs Φ1,Φ2 ⊂ Φ
such that Φ ≡ Φ1 ∨ Φ2.

2 Independent-and ⊙: Partition Φ into independent DNFs Φ1 and Φ2

such that Φ ≡ Φ1 ∧ Φ2.

3 Exclusive-or ⊕: Choose a variable x in Φ. Then,

Φ ≡
⊕

a∈Domx ,Φ|x=a 6=∅

(

(x = a)⊙ Φ |x=a

)

.

For DNFs of query answers, the decompositions

preserve equivalence,

are efficiently computable, and

allow for efficient probability computation.



D-trees: Decomposition Trees

A d-tree is a formula constructed from ⊗, ⊕, ⊙ and nonempty DNFs (as
“leaves”). If each leaf holds one clause, the d-tree is complete.

Example: Complete d-tree for

x = 1∨

x = 2 ∧ y = 1∨

x = 2 ∧ z = 1∨

u = 1 ∧ v = 1∨

u = 2.

⊗

⊕

x = 1 ⊙

x = 2 ⊗

y = 1 z = 1

⊕

⊙

u = 1 v = 1

u = 2



Lower and Upper Bounds for D-trees

Bounds [L,U] on the probability of a d-tree can be computed efficiently
if each leaf of a d-tree has lower Li and upper Ui bounds of its probability.

Example: D-tree for Φ = Φ1 ⊗ {[(x = 1)⊙ Φ2]⊕ Φ3}:

⊗

Φ1[L1,U1] ⊕

⊙

x = 1 Φ2[L2,U2]

Φ3[L3,U3]

Then,

L(Φ) = L1 ⊗ [Pr(x = 1)⊙ L2 ⊕ L3]

U(Φ) = U1 ⊗ [Pr(x = 1)⊙ U2 ⊕ U3]



How to Efficiently Compute Probability Bounds for Leaves?

Many possible approaches. We used the following simple approach:

Given a leaf (that is, a DNF) Ψ.

Choose a maximal subset S of pairwise independent clauses in Ψ.

Then, P(S) is a lower bound for P(Ψ), and

min(1,P(S) + Σ
c∈(Ψ−S)

(P(c))) is an upper bound for P(Ψ).

Rationale: We want a quick solution for computing the bounds, since this
operation needs to be done for each node of the d-tree.

We compute in one scan over Ψ the lower and upper bounds for P(Ψ).



Absolute and Relative Approximation Errors

p̂ is an absolute ǫ-approximation of p if p − ǫ ≤ p̂ ≤ p + ǫ .

p̂ is a relative ǫ-approximation of p if (1− ǫ) · p ≤ p̂ ≤ (1 + ǫ) · p .

Given a DNF Φ, a fixed error ǫ, and a d-tree for Φ with bounds [L,U].

If U − ǫ ≤ L+ ǫ , then any value in [U − ǫ, L+ ǫ] is an absolute
ǫ-approximation of P(Φ).

If (1− ǫ) · U ≤ (1 + ǫ) · L , then any value in [(1− ǫ) · U , (1 + ǫ) · L] is a

relative ǫ-approximation of P(Φ).



Memory-Efficient Version of the Algorithm

The previous algorithm keeps the entire d-tree in main memory.

Improvement idea:

Construct the d-tree in depth-first traversal.

When at a leaf, decide locally whether we should further decompose it or
close it, that is, move up the tree to the following open leaf.

When can we close a leaf?

compute the bounds of the d-tree with largest difference for any possible
probability each open leaf may take.

these bounds must satisfy the condition for an ǫ-approximation.

efficient way: bounds computed by choosing for each open leaf the bounds
[Li , Li ], where Li is a lower bound for that leaf.



Example: Memory-efficient Algorithm

⊗

Φ1[0.1, 0.11] ⊕

⊙

(x = 1)[0.5, 0.5] Φ2[0.4, 0.44]

Φ3[0.35, 0.38]

Assume Φ1 is closed, Φ2 is current, Φ3 is open. Let absolute error ǫ = 0.012.

Test at Φ2 whether

we can stop with an absolute ǫ-approximation.

◮ NO! Check by considering all leaves closed and compute the bounds.
◮ U − L = 0.644 − 0.595 = 0.049 ≤ 2 · 0.012 = 0.024 does not hold.

we can close Φ2.
◮ YES! Check by considering all preceding leaves closed and all following leaves

open, then compute the bounds.
◮ U

′
− L = 0.6173 − 0.595 = 0.0223 ≤ 0.024 holds.



Tractable Queries on Tuple-Independent Databases

Our d-trees naturally capture DNFs for tractable queries:

DNFs for any tractable conjunctive query without self-joins can be compiled
in polynomial time into complete d-trees with nodes ⊗ and ⊙.

◮ In this case, the d-trees correspond to read-once functions.

DNFs for existing (max-one) tractable inequality queries can be compiled in
polynomial time into complete d-trees with nodes ⊕.

In both cases, the d-trees have sizes linear in the number of literals in the DNF.



Experiments

 10

 100

 300

1 15 B1 B6 B16 B17

W
al

l-c
lo

ck
 ti

m
e 

in
 s

ec
 (

ln
 s

ca
le

)

Tractable TPC-H queries (aggregations/ineq-joins dropped) on tuple-independent tables

Scale factor 1, probabilities of input tuples in (0,0.01)

Timeout
aconf(rel error 0.01)
d-tree(rel error 0.01)

d-tree(error 0)
SPROUT

 0.1

 1

 10

 100

 300

 0.0001 0.0005 0.001 0.005 0.01 0.05

T
im

e 
in

 s
ec

 (
ln

 s
ca

le
)

Relative error (ln scale)

Dolphin social network

Timeout

aconf-p2
aconf-s2

aconf-t
d-tree-p3
d-tree-p2
d-tree-s2

d-tree-t



Thanks!


