IEEE International Conference on Data Engineering (ICDE) Long Beach, March 2nd, 2010

Approximate Confidence Computation in Probabilistic Databases

http://www.comlab.ox.ac.uk/projects/SPROUT/

Dan Olteanu (Oxford), Jiewen Huang (Oxford), Christoph Koch (Cornell)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Uncertain and Probabilistic Data

Uncertain and probabilistic data is commonplace:

- Information extraction
- Processing manually entered data (such as census forms)
- Data cleaning, data integration
- Risk management: Decision support queries, hypothetical queries

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへ⊙

Social network analysis

• . . .

Recent years have seen advances in developing

- representation models for uncertain/probabilistic data,
- uncertainty-aware query languages, and
- query evaluation techniques for such data.
 - scope of this work.

Contributions of this Work

- Efficient deterministic technique for confidence computation.
 - approximate confidences with error guarantees
 - ★ positive relational algebra queries
 - ★ U-relational databases
 - exact confidences for known tractable queries in polynomial time
 - * hierarchical conjunctive queries without self-joins, max-one inequality queries

- * tuple-independent probabilistic databases
- Implementation of this technique in the SPROUT query engine.
 - extends PostgreSQL backend with confidence computation operators
 - used by MayBMS (maybms.sourceforge.net)
- Experimental comparison with existing techniques.
 - fastest technique so far for tractable queries (previous SPROUT)
 - Monte Carlo algorithm (MayBMS)

U-relational Probabilistic Databases

Syntax.

Probabilistic databases are relational databases where

- There is a finite set of independent random variables $\mathbf{X} = \{x_1, \dots, x_n\}$ with finite domains $\text{Dom}_{x_1}, \dots, \text{Dom}_{x_n}$.
- Each tuple is associated with a conjunction of atomic events of the form $x_i = a$ or $x_i \neq a$ where $x_i \in \mathbf{X}$ and $a \in \text{Dom}_{x_i}$.
- There is a probability distribution over the assignments of each variable.

Semantics.

- Possible worlds defined by total assignments θ over X.
- The world defined by assignment $\boldsymbol{\theta}$
 - consists of all tuples with condition ϕ such that $\theta(\phi) = true$.
 - has probability defined by the product of probabilities of each assignment in θ .

This formalism can represent any discrete probability distribution over relational databases.

Example: Probabilistic Databases

Consider a simplified TPC-H scenario with customers (Cust) and orders (Ord):

Cust				Ord						
		V_1 P_1 V_2 P_2	-	okey	ckev	date	Va	Pa	V.	P.
1	Joe	x ₁ 0.1 x ₃ 0.1	-	леу	5					
2	Dam	$\frac{1}{2}$ 0.0 × 0.5		1	1	1995-01-10	y_1	0.1	$\overline{x_5}$	0.2
2	Dan	$\overline{x_1}$ 0.9 x_4 0.5		2	1	1996-01-09	Va	02	XA	0.5
3	Li	$x_2 \ 0.3 \ \overline{x_4} \ 0.5$		2	-	1004 11 11	<i>y</i> 2	0.2	74	0.0
4	Мо	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	2	1994-11-11	<i>y</i> ₃	0.3	<i>x</i> 3	0.1

- Variables are Boolean (wlog); write x instead of x = 1, \overline{x} instead of x = 0.
- A pair (V_i, P_i) states that the variable assignment given by V_i has the probability given by P_i .
- Conditions can represent arbitrary correlations between tuples, eg,
 - ▶ (1, Joe) and (3, Li) are independent: They use disjoint sets of variables.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへ⊙

• (1, Joe) and (2, Dan) are mutually exclusive: x_1 is either true or false.

Query Evaluation in Probabilistic Databases

- Semantically, the query is evaluated in each world.
 - Too expensive for any practical purpose!
- Common approach:
 - Evaluate the query directly on the representation.
 - * Done with relational query plans for our probabilistic data formalism.
 - * In addition to standard evaluation, copy the input conditions to the output.

- Ompute the confidence of each answer tuple.
 - * Reducible to probability computation of Boolean formulas over random variables
 - * Known to be #P-hard already for positive bipartite DNF formulas!

Example: Query Evaluation

Query asking for the probability that customer 'Joe' has placed orders:

$\mathit{Q} = \pi_{\emptyset}(\sigma_{\mathit{name}='\mathit{Joe'}}(Cust) \Join_{\mathit{ckey}} Ord)$											
	$V_1 P_1$	$V_2 P_2$	$V_3 P_3$	$V_4 P_4$							
	<i>x</i> ₁ 0.1	x ₃ 0.1	<i>y</i> ₁ 0.1	x ₅ 0.2							
	<i>x</i> ₁ 0.1	<i>x</i> ₃ 0.1	<i>y</i> ₂ 0.2	$\begin{array}{c} \overline{x_5} & 0.2 \\ \overline{x_4} & 0.5 \end{array}$							

• Probability of the answer tuple is the probability of the associated DNF $x_1x_3y_1\overline{x_5} + x_1x_3y_2\overline{x_4}$.

Difficulty:

- The sets of satisfying assigments of any two clauses in the DNF may overlap.
- It may require to iterate over its (exponentially many) satisfying assignments.

Approximate computation, if done quickly enough, may suffice in most applications.

Approximate Confidence Computation in SPROUT

Basic algorithm:

- decompose the DNF into an equivalent form that allows for efficient probability computation.
- after each decomposition step, compute lower and upper bounds on the probabilities of the DNFs obtained by decomposition and of the initial DNF.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへ⊙

- stop when the desired approximation is obtained or on timeout.
- otherwise, continue with a new decomposition step.

In practice, good approximations can be obtained after a few *well-chosen* decomposition steps.

Types of Decompositions

Given DNF formula Φ . Apply the following steps in the given order.

- $\label{eq:constraint} \begin{gathered} \bullet $ $ Independent-or \otimes: Partition Φ into independent DNFs $\Phi_1, $\Phi_2 \subset Φ such that $\Phi \equiv \Phi_1 \lor \Phi_2$. } \end{gathered}$
- Solution Exclusive-or \oplus : Choose a variable x in Φ . Then,

$$\Phi \equiv \bigoplus_{a \in \mathrm{Dom}_x, \Phi|_{x=a} \neq \emptyset} \left((x = a) \odot \Phi \mid_{x=a} \right).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへ⊙

For DNFs of query answers, the decompositions

- preserve equivalence,
- are efficiently computable, and
- allow for efficient probability computation.

D-trees: Decomposition Trees

A *d-tree* is a formula constructed from \otimes , \oplus , \odot and nonempty DNFs (as "leaves"). If each leaf holds one clause, the *d*-tree is *complete*.

Example: Complete d-tree for

Lower and Upper Bounds for D-trees

Bounds [L, U] on the probability of a d-tree can be computed efficiently if each leaf of a d-tree has lower L_i and upper U_i bounds of its probability.

Example: D-tree for $\Phi = \Phi_1 \otimes \{[(x = 1) \odot \Phi_2] \oplus \Phi_3\}$:

Then,

$$L(\Phi) = L_1 \otimes [Pr(x=1) \odot L_2 \oplus L_3]$$
$$U(\Phi) = U_1 \otimes [Pr(x=1) \odot U_2 \oplus U_3]$$

・ロト ・日ト ・ヨト ・ヨー うへで

How to Efficiently Compute Probability Bounds for Leaves?

Many possible approaches. We used the following simple approach:

- Given a leaf (that is, a DNF) Ψ .
- Choose a maximal subset S of pairwise independent clauses in Ψ .
- Then, P(S) is a lower bound for $P(\Psi)$, and

• min
$$(1, P(S) + \sum_{c \in (\Psi - S)} (P(c)))$$
 is an upper bound for $P(\Psi)$.

Rationale: We want a quick solution for computing the bounds, since this operation needs to be done for each node of the d-tree.

• We compute in one scan over Ψ the lower and upper bounds for $P(\Psi)$.

Absolute and Relative Approximation Errors

- \hat{p} is an <u>absolute</u> ϵ -approximation of p if $p \epsilon \leq \hat{p} \leq p + \epsilon$.
- \hat{p} is a <u>relative</u> ϵ -approximation of p if $(1-\epsilon) \cdot p \leq \hat{p} \leq (1+\epsilon) \cdot p$.

Given a DNF Φ , a fixed error ϵ , and a d-tree for Φ with bounds [L, U].

- If $U \epsilon \le L + \epsilon$, then any value in $[U \epsilon, L + \epsilon]$ is an absolute ϵ -approximation of $P(\Phi)$.
- If $(1-\epsilon) \cdot U \leq (1+\epsilon) \cdot L$, then any value in $[(1-\epsilon) \cdot U, (1+\epsilon) \cdot L]$ is a relative ϵ -approximation of $P(\Phi)$.

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー わらぐ

Memory-Efficient Version of the Algorithm

The previous algorithm keeps the entire d-tree in main memory.

Improvement idea:

- Construct the d-tree in depth-first traversal.
- When at a leaf, decide locally whether we should further decompose it or *close* it, that is, move up the tree to the following *open* leaf.

When can we close a leaf?

- compute the bounds of the d-tree with largest difference for any possible probability each open leaf may take.
- these bounds must satisfy the condition for an ϵ -approximation.
- efficient way: bounds computed by choosing for each open leaf the bounds $[L_i, L_i]$, where L_i is a lower bound for that leaf.

Example: Memory-efficient Algorithm

Assume Φ_1 is closed, Φ_2 is current, Φ_3 is open. Let absolute error $\epsilon = 0.012$.

Test at Φ_2 whether

- we can stop with an absolute ϵ -approximation.
 - NO! Check by considering all leaves closed and compute the bounds.
 - ▶ $U L = 0.644 0.595 = 0.049 \le 2 \cdot 0.012 = 0.024$ does not hold.
- we can close Φ₂.
 - YES! Check by considering all preceding leaves closed and all following leaves open, then compute the bounds.
 - $U' L = 0.6173 0.595 = 0.0223 \le 0.024$ holds.

Tractable Queries on Tuple-Independent Databases

Our d-trees naturally capture DNFs for tractable queries:

- DNFs for any tractable conjunctive query without self-joins can be compiled in polynomial time into complete d-trees with nodes ⊗ and ⊙.
 - In this case, the d-trees correspond to read-once functions.
- DNFs for existing (max-one) tractable inequality queries can be compiled in polynomial time into complete d-trees with nodes ⊕.

In both cases, the d-trees have sizes linear in the number of literals in the DNF.

Experiments

Scale factor 1, probabilities of input tuples in (0,0.01)

Thanks!

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで