IEEE International Conference on Data Engineering (ICDE)
Long Beach, March 2nd, 2010

Approximate Confidence Computation in

Probabilistic Databases
http://www.comlab.ox.ac.uk/projects/SPROUT/

B \)
\!"

—

MAYES

Dan Olteanu (Oxford), Jiewen Huang (Oxford), Christoph Koch (Cornell)

http://www.comlab.ox.ac.uk/projects/SPROUT/

Uncertain and Probabilistic Data
Uncertain and probabilistic data is commonplace:
@ Information extraction
Processing manually entered data (such as census forms)
Data cleaning, data integration

Q
Q
@ Risk management: Decision support queries, hypothetical queries
@ Social network analysis

Q

Recent years have seen advances in developing
@ representation models for uncertain/probabilistic data,
@ uncertainty-aware query languages, and
@ query evaluation techniques for such data.

» scope of this work.

Contributions of this Work

@ Efficient deterministic technique for confidence computation.

» approximate confidences with error guarantees
* positive relational algebra queries
* U-relational databases
» exact confidences for known tractable queries in polynomial time

* hierarchical conjunctive queries without self-joins, max-one inequality queries
* tuple-independent probabilistic databases

@ Implementation of this technique in the query engine.

» extends PostgreSQL backend with confidence computation operators

> used by MayBMS (maybms.sourceforge.net)

@ Experimental comparison with existing techniques.

> fastest technique so far for tractable queries (previous)

» Monte Carlo algorithm (MayBMS)

maybms.sourceforge.net

U-relational Probabilistic Databases
Syntax.
Probabilistic databases are relational databases where

@ There is a finite set of independent random variables X = {x, ..., x,} with
finite domains Dom,,, ..., Dom,,.

@ Each tuple is associated with a conjunction of atomic events of the form
X; = aor x; # a where x; € X and a € Dom,,.

@ There is a probability distribution over the assignments of each variable.

Semantics.

9 Possible worlds defined by total assignments 6 over X.
@ The world defined by assignment 6

» consists of all tuples with condition ¢ such that 6(¢) = true.
» has probability defined by the product of probabilities of each assignment in 6.

This formalism can represent any discrete probability distribution over relational databases.

Example: Probabilistic Databases

Consider a simplified TPC-H scenario with customers (Cust) and orders (Ord):

Cust Ord
Ckley "j’o”;e % (’; 11 v (f 21 okey | ckey date Vs P; V, P
Do Q 09 f 05 1 1 | 1995-01-10 || y1 0.1 xs 0.2
1o g 2 1 | 1996-01-09 || y» 0.2 X 05

Li x2 0.3 xz 0.5
Mo % 07 % 02 3 2 1994-11-11 y3 0.3 x3 0.1

S N

@ Variables are Boolean (wlog); write x instead of x = 1, X instead of x = 0.

@ A pair (V;, P;) states that the variable assignment given by V; has the
probability given by P;.

@ Conditions can represent arbitrary correlations between tuples, eg,

> (1,Joe) and (3,Li) are independent: They use disjoint sets of variables.
> (1,Joe) and (2,Dan) are mutually exclusive: xi is either true or false.

Query Evaluation in Probabilistic Databases

@ Semantically, the query is evaluated in each world.
» Too expensive for any practical purpose!

@ Common approach:
@ Evaluate the query directly on the representation.

* Done with relational query plans for our probabilistic data formalism.
* |In addition to standard evaluation, copy the input conditions to the output.

©Q Compute the confidence of each answer tuple.

* Reducible to probability computation of Boolean formulas over random
variables

* Known to be #P-hard already for positive bipartite DNF formulas!

Example: Query Evaluation
Query asking for the probability that customer "Joe’ has placed orders:

Q= W@(Uname:/Joe’ (CUSt) chey Ord)
Vi Ph| Vo Pp| V3 P3| V4 Py
xt 01| x3 01 | y1 0.1 | x5 0.2
x; 0.1 x3 0.1 yo 0.2 xz 0.5

@ Probability of the answer tuple is the probability of the associated DNF

X1X3Y1X5 + X1X3Y2Xa,.

Difficulty:
@ The sets of satisfying assigments of any two clauses in the DNF may overlap
@ It may require to iterate over its (exponentially many) satisfying assignments.

Approximate computation, if done quickly enough, may suffice in most applications.

Approximate Confidence Computation in

Basic algorithm:

@ decompose the DNF into an equivalent form that allows for efficient
probability computation.

@ after each decomposition step, compute lower and upper bounds on the
probabilities of the DNFs obtained by decomposition and of the initial DNF.

@ stop when the desired approximation is obtained or on timeout.

@ otherwise, continue with a new decomposition step.

In practice, good approximations can be obtained after a few well-chosen
decomposition steps.

Types of Decompositions

Given DNF formula ®. Apply the following steps in the given order.

@ Independent-or ®: Partition ® into independent DNFs ®1,®, C ¢
such that ® = ¢ v ¢,.

@ Independent-and ®: Partition ® into independent DNFs ®; and $,
such that ® = ¢©; A ®s,.

© Exclusive-or @: Choose a variable x in ®. Then,

o= @ ((x:a)®¢|x:a)-

a€Domy,P|—,7#0

For DNFs of query answers, the decompositions
@ preserve equivalence,
@ are efficiently computable, and

9 allow for efficient probability computation.

D-trees: Decomposition Trees

A d-tree is a formula constructed from ®, &, ® and nonempty DNFs (as
“leaves”). If each leaf holds one clause, the d-tree is complete.

Example: Complete d-tree for

x =1V
x=2Ay=1V
x=2ANz=1V
u=1Av=1V
u=2.
/®\

S (S3)
7\ /N
x=1 ® ©} u=2
7\ RN
x=2 ® u=1 v=1
RN
y=1 z=1

Lower and Upper Bounds for D-trees

Bounds [L, U] on the probability of a d-tree can be computed efficiently
if each leaf of a d-tree has lower L; and upper U; bounds of its probability.

Example: D-tree for ® = ®; @ {[(x = 1) © ®>] & ®3}:

&
cl’1[/-1, U1] \EB\
®/ d3[Ls, Us)
x=1 CDQ[LQ, U2]

Then,

L(®) = L1 ®[Pr(x =1) © L, ® L3]
U(®) = Uy @ [Pr(x =1) © U @ Us]

How to Efficiently Compute Probability Bounds for Leaves?

Many possible approaches. We used the following simple approach:
@ Given a leaf (that is, a DNF) V.

@ Choose a maximal subset S of pairwise independent clauses in W.
@ Then, P(S) is a lower bound for P(V), and

e min(1, P(S) + (“Zl 5)(P(C))) is an upper bound for P(V).
ce(V—

Rationale: We want a quick solution for computing the bounds, since this
operation needs to be done for each node of the d-tree.

@ We compute in one scan over W the lower and upper bounds for P(¥).

Absolute and Relative Approximation Errors

@ D is an absolute e-approximation of pif p—e<p<p-+e.

@ P is a relative e-approximation of pif (1—¢€)-p<p<(1+¢€)-p.

Given a DNF ®, a fixed error €, and a d-tree for & with bounds [L, U].

o If U—e<L+e, thenanyvaluein[U —¢,L+ €] is an absolute
e-approximation of P(®).

o If (1—¢)-U<(1+¢€)-L,thenanyvaluein[(1—¢€)-U,(1+¢)-L]isa
relative e-approximation of P(®).

Memory-Efficient Version of the Algorithm
The previous algorithm keeps the entire d-tree in main memory.

Improvement idea:
@ Construct the d-tree in depth-first traversal.

@ When at a leaf, decide locally whether we should further decompose it or
close it, that is, move up the tree to the following open leaf.

When can we close a leaf?

@ compute the bounds of the d-tree with largest difference for any possible
probability each open leaf may take.

@ these bounds must satisfy the condition for an e-approximation.

@ efficient way: bounds computed by choosing for each open leaf the bounds
[L;, L;], where L; is a lower bound for that leaf.

Example: Memory-efficient Algorithm

®
$,[0.1,0.11] o
® $5[0.35,0.38]
(x = 1)[0.5,0.5] $,[0.4,0.44]

Assume P is closed, ®, is current, ®3 is open. Let absolute error ¢ = 0.012.

Test at ®, whether
@ we can stop with an absolute e-approximation.

» NO! Check by considering all leaves closed and compute the bounds.
» U—L=0.644 —0.595 = 0.049 < 2.0.012 = 0.024 does not hold.
@ we can close ®5.

» YES! Check by considering all preceding leaves closed and all following leaves
open, then compute the bounds.
» U — L=0.6173 — 0.595 = 0.0223 < 0.024 holds.

Tractable Queries on Tuple-Independent Databases

Our d-trees naturally capture DNFs for tractable queries:

@ DNFs for any tractable conjunctive query without self-joins can be compiled
in polynomial time into complete d-trees with nodes ® and ©.

» In this case, the d-trees correspond to read-once functions.

@ DNFs for existing (max-one) tractable inequality queries can be compiled in
polynomial time into complete d-trees with nodes .

In both cases, the d-trees have sizes linear in the number of literals in the DNF.

Experiments

Wall-clock time in sec (In scale)

w
S
S}

=
1)
S}

=
o

Scale factor 1, probabilities of input tuples in (0,0.01)

T T T T T T
aconf(rel error 0.01) ===
d-tree(rel error 0.01) === Timeout.
d-tree(error 0) =
SPROUT ——1

i

1 15 B1 B6 B16 B17
Tractable TPC-H queries (aggregations/ineg-joins dropped) on tuple-independent tables

Dolphin social network

T T - T
300 [o TlmeDuF,B

100

E‘

=
5]

aconf-p2
aconf-s2 ---
aconf-t -
s d-tree-p3

1 e 2o d-tree-p2
R d-tree-s2
d-tree-t

Time in sec (In scale)

>

| | | | | |
0.05 0.01 0.005 0.001 0.0005 0.0001
Relative error (In scale)

Thanks!

