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ABSTRACT
No longer reserved for nerdy geeks, nowadays smartwatches have
gain their popularities rapidly, and become one of the most desir-
able gadgets that the general public would like to own. However,
such popularity also introduces potential vulnerability. Until now,
the de facto solution to protect smartwatches are passwords, i.e.
either PINs or Android Pa�ern Locks (APLs). Unfortunately, those
types of passwords are not robust against various forms of a�acks,
such as shoulder sur�ng or touch/motion based side channel at-
tacks. In this paper, we propose a novel authentication approach
for smartwatches, which adds another layer of security on top of
the traditional passwords by considering the unique motion sig-
natures when di�erent users input passwords on their watches. It
uses a deep recurrent neural networks to analyse the subtle mo-
tion signals of password input, and distinguish the legitimate users
from malicious impostors. Following a privacy-preserving man-
ner, our proposed approach does not require users to upload their
passcodes for model training but only the motion data and iden-
tity labels.Extensive experiments on large-scale datasets collected
real-world show that the proposed approach outperforms the state-
of-the-art signi�cantly, even in the most challenging case where a
user has multiple distinct passcodes.
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1 INTRODUCTION
Arm and wrist-worn devices such as �tness trackers or smart-
watches are seeing growing adoption. Many of these devices have
screen displays for interaction, aka. smartwatches. It is estimated
that 43 million smartwatches will be shipped in 2017, with sales dou-
bling over the next four years to 86 million units in 2021. As they are
currently designed as complementary accessories to smartphones,
safeguarding on smartwatches have been overlooked. However,
driven by the major players such as Google and Apple, smart-
watches are expected to become more independent and able to
revolve the mobile ecosystem. Even now, it is already to pay via a
smartwatch without its paired phones [1]. Meanwhile, more private
information are stored or pasted from smartphones to smartwac-
thes. Some recent apps also enable users to make personal photo
galleries and save crucial health/�tness data on their smartwatches.

Featuring diversi�ed apps and sensors, smartwatch greatly ex-
tends the functionality of traditional watch, but also appears to
be a be�er option for a�ackers. PINs and Android Pa�ern Lock
(APL) have been widely used in smartwatches for user authentica-
tion. However, recent studies found that a�ackers could leverage
a bunch of side-channels to steal users’ passcodes. For example,
an a�acker could leverage the oily residues le� on the screen of a
smart device to infer the pa�ern-like passcodes [2]. Motion sensors
on smart devices are also found to leak passcodes, as screen taps of
PINs results in changes of accelerometer and gyroscope readings.
Although the above works mainly focus on smartphones, it is trivial
to transfer these side channel a�acks to smartwatches. �erefore, it
is important to enhance the smartwatch’s user authentication with
a non-invasive user veri�cation method, which is user-friendly and
is able to further verify if the successfully logged-in user is the true
owner of a smartwatch.

In this paper, we thrive to utilize user behaviors of entering
passcodes for veri�cation on smartwatches. �e rationale behind
our work is that watch owners have their own unique behavior
pa�erns while entering their passcodes. Sharing the same �avor
of other behavior-biometric based authentication, our proposed
method can be leveraged to enhance the a�acking resilience of
smartwatches. In other words, we aim to design a complementary
authentication tool of PIN- and APL-based systems that is able to
deny the access of an a�acker, even he accessed to the victim’s
passcode.

Although previous works have studied such behavior-based ver-
i�cation [8, 14, 20, 22], the problem we are going to solve in this
work is more challenging in the following ways. First, the keys on
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Figure 1: �ework �ow of proposed VeriNet, where the user
authentication system is trained without the need of collect-
ing users’ passcodes but only passcode-enteringmotion data
to the back-end cloud.

the much smaller smartwatch screen are very close to each other
(compared to that on smartphone keypad or external keyboards),
which makes identity inference di�cult from motion data. Second,
traditional methods need to access the users’ passcodes for training
the veri�cation model. Not only this collection breaches users’ pri-
vacy, but poses security threats when the passcode database leaks
when back-end cloud is a�acked.

Unlike previous works, we propose VeriNet, a deep recurrent
neural network based user veri�cation method that takes input as
the motion data of passcode-entering behaviors. In order to demon-
strate the e�ectiveness of our proposed approach, we collected
more than 50k tuples of password-entering data (PIN and APL)
and user identity, and successfully train VeriNet without passcode
information. We show that VeriNet is able to handle subtle motions
on smartwathes and preserve users’ privacy (passcodes) to train a
veri�cation model.

2 BACKGROUND
In this section, we introduce the basics of the authentication systems
on standard smartwatches. We then explain rationale behind the
design of VeriNet.

2.1 Motion Induced by Passcode Input
Intuitively, entering both tapped and swiped passcodes will induce
forces and orientation changes on the smartwatch. Since human
skin has a certain level of elasticity, tapping on the smartwatch
screen will cause minor displacement at the contact point along
the vertical direction, i.e. the watch body will rotate for a small
angle. Tapping causes an underdamped impulsive wave to develop,
which causes small oscillations, shown in Fig. 2. On the other hand,
when swiping passcodes, the pressing and friction force between
the user’s �nger and touch screen will “drag” the smartwatch to
move along both vertical and horizontal directions. �is gives
rise to small slip-pulse waves which have a longer duration than
impulsive taps.

Recent studies show that the habits of entering passcodes vary
a lot among people [7, 18], which can be used to further facilitate
users. �e rich variety of sensors on smartwatches make it possible
to capture the di�erences of habits and we aim to capture them
from motion. As shown in Fig. 2, as the user and impostor have

di�erent passcode-entering behavior, the induced motion data have
di�erent pa�erns.

In practice, induced motion of entering passcodes can be picked
up by the Inertial Measurement Units (IMUs) embedded on most of
the commercial smartwatches. IMU sensors have been widely used
in many mobile sensing scenarios, since they are able to capture
displacement and rotation of the devices in 3-D space, and become
increasingly cheap and power e�cient. Concretely in this work we
consider both accelerometers and gyroscopes, which capture the
linear acceleration and angular velocity (roll, pitch and yaw) with
respect to the three axis.

2.2 Key Challenges
Sensor Noises: �e idea of using motion data to decision-support
authentication has been exploited on smartphones. However, ver-
ifying a user from motion data harvested on smartwatches is far
more challenging than that on smartphones. Fig. 2 shows examples
where the motion sensor readings change as the user taps a PIN
or swipes an Android Pa�ern Lock (APL) on the smartwatch. As
we can see, since smartwatches are physically much smaller than
smartphones, the motion induced by passcode entries can be tiny,
especially for APLs. Fig. 2 also con�rms this with the signal-to-
noise (SNR) ratio of motion sensors on di�erent devices. We see
that motion signals on smartwatches are far noisier, and can be
20-40dB worse than that of smartphones or high-end IMUs. In
the presence of such low SNR, existing techniques designed for
smartphones [17, 22] typically fail to work, since they use hand
engineered features given the much weaker and noisier motion
signals on smartwatches.
Privacy v.s. Accuracy: Developing a behavior-oriented veri�ca-
tion system is essentially learning a classi�er which takes sensor
readings as inputs and returns user identi�cations. To this end,
traditional methods [8, 14] collect both user’s passcode and their
respective motion samples on the client side and then uploads them
to the cloud for classi�er training. However, sending user’s pass-
codes to the cloud already raises privacy concerns. �is problem
gets severer when the users have multiple passcodes to maintain,
no prior art is able to cope with this scenario. A privacy-preserved
mechanism [12, 15] should be considered to protect users’ pass-
codes. By contrast, as shown in Fig. 1, VeriNet is free of asking
users for their passcodes but only motion data.

3 DEEPLY LEARNED BEHAVIOR
VERIFICATION

Unlike existing work, VeriNet considers a novel deep learning based
authentication system, which does not rely on hand-cra�ed features,
and is able to verify multiple passcodes of the same user.

3.1 Behavior Veri�cation via Classi�cation
As in [17, 22], we consider the task of user authentication as a
classi�cation problem, where category labels are a set of users. We
expect the users are crowd-sourced participants. �en given the
motion data captured by IMU sensors (accelerometers and gyro-
scopes), the problem of user authentication that the user has just
input becomes that of �nding a label within the identity database I ,
which can best explain the observed motion data. Notably, unlike



VeriNet: User Verification on Smartwatches CrowdSenSys, November 6–8, 2017, Del�, Netherlands

Tapping PIN ‘9999’ User’ Behaviour Impostor’s Behaviour Swipe Tap
0

20

40

60

80

S
N

R
 (

d
B

)

 iPhone  Nexus  Xsens  watch

Swipe Tap
0

20

40

60

80

100

120

S
N

R
 (

d
B

)

 iPhone  Nexus  Xsens  watch

Figure 2: Le�: examples of motion sensor data changes induced by tapping the same PIN but di�erent people. �e dashed
watchface frames are the positions a�er or before a tap. Tapping a PIN on watch screen induces several impulse waves and
gaps in between, and shows di�erent entering habits. Right: SNR of motions sensors on di�erent mobile ends.

previous works, VeriNet does not train di�erent classi�ers for every
possible passcode, since it is unrealistic due to the searching spaces
(389, 112 APLs and 10,000 PINs) and raises privacy concerns when
asking users for their passcodes. Instead, our proposed method can
take input as any motion samples of various passcodes, as long as it
comes from the same user, i.e., same label. �e rationale behind this
we expect to design a classi�er that accurate enough to di�erentiate
users and impostors, and powerful enough to recognize various
pa�erns of di�erent passcodes of the same user.

3.2 Recurrent Neural Networks (RNNs) based
Sequence Learning

�e goal of Veri�cation is associating the passcode-entering be-
havior to the user identity in database I . As discussed in Sec. 2,
behavior di�erences among users can be re�ected by the motion
data captured by IMU sensors, when entering the passcodes on
the watch. Compared with existing works on sequence modeling,
our context is more di�cult in the following ways: a) the motion
data has variable size; and b) the temporal decencies in motion
data implies identity information, e.g. the transitions from one
digit to another contain vital content about user habits (see Fig. 2).
�erefore, in this paper we use RNNs to model the motion data
[21], which can take arbitrary length of input, and return the most
likely identity label as output. We started from explaining how the
RNN architecture work in our context.
Basic RNN Architecture: At each timestamp t a standard RNN
maintains its internal hidden state ht to interpret the temporal
correlations, and given an input xt , the RNN updates its state by:

ht = H (Wxhxt +Whhht−1 + bh )

ut =Whuht + bu
(1)

where Wxh , Whh are the weights of the current input xt and
previous state ht−1, and bh is the bias vector. H is an element-
wise non-linear activation function, e.g., sigmoid or hyperbolic
tangent function. �e network output ut is evaluated as a linear
combination of the updated hidden state ht and a bias vector bu .

Note that, ut may appear at multiple timestamp, or only exist at
a single (in most cases the last) timestamp. As discussed above, the
problem studied in this paper is to compute the most likely user
(i.e. label) within the database I given the sequence of motion data.
We hence only focus on those RNNs with a single output (at last
timestep). Fig.3 (Le�) illustrate the work �ow of standard RNN.

Although in theory RNN is able to model sequences with ar-
bitrary length, in practice it o�en su�ers from the gradient van-
ishing and exploding problems [10]. �at is, it cannot capture the
long-term dependencies well when the length of input sequences
becomes large. As in our case the length of input sequences are
o�en of hundreds of samples, we adopted Long Short Term Memory
(LSTMs) [11] units in our RNNs, which is proved to be e�ective in
preserving long-term dependencies.
Bi-directional RNN (BRNN): Standard RNN forwardly propa-
gates information from the header of the sequence to the tail. LSTM
helps to solve the long-term dependencies problem, but the begin-
ning information is hard to pass through to the end due to the
nature of any forward recurrent network. �is issue gets severer
when the input sequences are relatively long. However, as we
can see in Fig. 4, the duration of entering passcodes are very long
compared to normal study cases of RNN. Some APLs can last for
above 5 seconds which leads long motion sequences with the size
above 1,000 data points (sampling rate at 200Hz). �e output at
the last timestep contains li�le information about the beginning
part of the data. Unfortunately, as pointed out in [8, 9], the header
motion data of entering passcodes conveys certain information of
user habits (from tapping the �rst digit to the second digit), losing
it will degrade the overall classi�cation performance.

To address this, VeriNet proposes a Bidirectional RNN (B-RNN)
to capture the rich temporal dependencies within the input motion
data. Unlike standard RNN, at each timestamp k the proposed B-
RNN keeps two hidden states

←−
h t and

−→
h t , which incorporate the

future (t + 1, …, T ) and past (1, …, t − 1) information in the input
sequence respectively, as shown in Fig. 3 (Right). �en B-RNN
uses the same strategy as in RNN to update those states from both
directions. However, there are two output nodes in the network:
one
−→
hT at the end and the other

←−
h 1 at the beginning. �erefore

B-RNN maintains information �ows from both the start and the end
of the input sequence, and the output of the network is generated
from the concatenation of the two output variables

−→
hT and

←−
h 1.

As shown in the next section, the B-RNN based VeriNet is able to
preserve the long-term dependencies in the motion signals, and
achieves be�er accuracy than standard RNN based one.

3.3 Post-process Probabilistic Predictions
A limitation of above classi�cation framework is that it only infers
identities in the database. Unfortunately, in real world, the motion
samples and identities of impostors are hardly to obtain. When
the crowd-sourced identity database is large enough, this issue will
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Figure 3: �e architecture of Deep RNNs. Le�: basic RNN.
Right: B-RNN.

become alleviated as impostors’ passcode-entering behavior will
somehow be similar to someone in the database. As long as the
‘most similar’ person is not the device owner, VeriNet still works
well in such scenario for its high in-database classi�cation accuracy.
However, to be more robust to impostors, VeriNet adopts a post-
process procedure. Fortunately, the so�max layer of BRNN returns
the probability (likelihood) of all the identities, which makes it
possible to �lter out invaders outside the database. Instead of using
the hard labels by the network, VeriNet �rstly rejects guests when
their predictions are far from everyone in the database. In other
words, the probabilities computed by the so�max layer tends to be
�at, and con�rms they are outside impostors. We empirically set
this threshold of �atness to be 0.7 for the max probability in the
predictions.

4 EVALUATION
We evaluate the proposed VeriNet extensively on large-scale real
world datasets collected in three di�erent sites: Oxford, Shanghai
and Harbin. �e study involved 310 participants and accumulated
over 60k passcode entries, with users wearing the smartwatch on
the le� hand1.

4.1 Experiment Setup
Participants Enrollment: As discussed in Sec. 3, VeriNet veri�es
user identities by classifying the motion data of passcode-entering
behavior into one of identities in the database I . 265 students from
Oxford, Shanghai and Harbin participated as the user cohort. 155 of
them are APL users and the other 110 are PIN users. On the other
hand, we also recruited an impostor cohort, which consists of 45
students (in total 310 participants). �e user cohort contributes
their motion data of entering di�erent passcodes on the smartwacth
(Sony SW3 and iWacth) and we use these data for training identity
inference model. We then ask the impostor cohort to reproduce
the same passcodes on users’ watches and use their samples for
testing.
Passcode Surveying: To justify the experiment design and fol-
lowing passcode selection rule in [22], the involved passcodes in
the evaluation are popular passcodes. However, we can not ask
above cohorts to provide their own passcodes as it breaks our ethical
agreement and there are no o�-the-shelf database for use. �erefore,
we surveyed anonymous participants for their personal passcodes

1�e study has received ethical approval R50768.
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Figure 4: PDF of passcode input duration. Le�: PIN. Right:
APL.

(both PIN and APL) through a web app. We have made sure that
this survey complied with data privacy policies, and there is no link
between the collected data and any individual participant. We have
�rst obtained the participants’ consent that their data will be used
in a scienti�c study to evaluate password security on smartwatches.
If a participant agreed to proceed, she was then given a link to
the website, where we asked her to contribute her passcodes via a
designed web app. �rough this way, we avoid any link between
passcodes and cohorts who entering passcodes on the smartwach
as well. A�er the survey, we fortunately obtained 112 PINs and
the same amount of APLs. Among them we have 79 distinct PINs
and 64 distinct APLs. Note that, we do not need passcode labels
for training VeriNet, we do this survey step to ensure our that
tested passcodes not favor us but follows the real-world passcode
distribution.
Passcode-entering Data Collection: Each participant of user
and impostor cohort was randomly given 6 APLs and 6 PINs from
our surveyed passcode pool. �is step is to simulate the case in real
world that a user may have multiple passcodes. �e participants
were asked to wear the smartwaches on their le� wrist but in
the most comfortable way, and then enter each password in our
data collection app about 20 times. To avoid over�ting the motion
samples, we split the 20 times in several days (5 days on average
per user) to make the data from the same user contains certain
diversity. �e app logs the ground truth by monitoring tap/swipe
on the smartwatch screen, and saves the motion data at the same
time. In total, we have collected 36, 569 valid samples, each of
which contains an user identity and the motion data when it was
entered. Note that, VeriNet can be trained without passcodes but
only identity labels, therefore we do not collect the passcodes user
entered.
Competing Approaches: We implement the deep RNNs consid-
ered in VeriNet using Keras [5] with �eano [3] backend, and train
them on NVIDIA K80 GPUs with the Adam Optimiser [13]. To the
best of our knowledge, VeriNet is the �rst work to study the problem
of user veri�cation on smartwatches. �erefore, we compare Ver-
iNet with the state-of-the-art typing behavior approaches, which
are originally designed for smartphones. We evaluated two most
known passcode-entering behavior-based approaches: ICNP14 [22]
and Mobicom13 [17], both of them use handcra�ed features and
train speci�c classi�er for every passcode. ICNP14 extracts 4 sets of
features including acceleration of tapping, touch pressure, touched
size and password-entering time. It then uses an one-class learning
model to reject impostors as long as the ‘distance’ between testing
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Figure 5: Average ROC curves of VeriNet and competing ap-
proaches. Le�: PIN. Right: APL.

samples and user templates are larger than a pre-di�ned thresh-
old. Mobicom13, on the other hand, extracted 7 sets of features of
two categories. �e stoke based category contains inter-stroke time,
stroke displacement magnitude and stroke displacement direction.
�e sub-stroke based category includes velocity magnitude, velocity
direction and device acceleration. A SVM classi�er is trained to
determine the users or impostors based on the extraction features.
Evaluation Metrics: Following previous works [8, 14, 17, 22], we
introduce the concepts of false positive rate (FPR), true positive
rate (TPR), equal error rate (EER) as our evaluation metrics and and
receiver operating characteristic (ROC). EER and ROC are de�ned
as follows:

• EER: a biometric security system algorithm used to prede-
termines the threshold values for its FPR and TPR. When
the rates are equal, the common value is referred to as
the equal error rate. �e value indicates that the propor-
tion of false acceptances is equal to the proportion of false
rejections.

• ROC: A graphical plot that visualizes the performance of a
binary classi�er as its discrimination threshold varies. ROC
is created by plo�ing the fraction of the true positive rate
(i.e., rejection rate when the user is invalid) vs the false
positive rate (i.e., rejection rate when the user is valid),
at various threshold se�ing ROC is a more complicated
indicator, which re�ects the performance of a system under
di�erent se�ings.

Although our problem formulation given in Sec. 3.1 is essentially
a multi-class classi�er, its predictions can be trivially transferred
to binary veri�cation results for user/impostor identi�cation. �e
ROC is computed with the transferred binary results.

Passcode Method FPR(%) TPR(%) EER(%)

PIN
VeriNet 10.24 79.23 7.17

MobiCom13 24.60 52.96 29.76
ICNP14 19.44 63.95 20.64

APL
VeriNet 19.91 85.79 6.09

MobiCom13 26.63 71.16 21.63
ICNP14 24.00 54.49 28.67

Table 1: Performance comparison betweenVeriNet and com-
peting approaches
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Figure 6: Impact of network architecture in VeriNet. Le�:
PIN. Right: APL.

4.2 Results
Overall Performance: �is experiment evaluates the perfor-
mance of identity veri�cation given the passcode-entering motion
data. As shown in Fig. 5, VeriNet completely outperforms compet-
ing approaches in terms of ROC on both PIN and APL datasets.
For PINs, the area Area Under Curve (AUC) of VeriNet is nearly
20% be�er than the best competing approach MobiCom13. �e per-
formance gap stays signi�cant when it comes to APLs, though
the best competing approach changes to ICNP14. �is is because
MobiCom13 is originally designed for swipe-based passcodes like
APLs, while ICNP14 focuses on the tap-based passcodes. More spe-
cially, as shown in Tab. 1, VeriNet is able to achieve 3 to 4 fold
be�er performances in terms of all metrics. Its average EER for
PINs is 7.17% and even lower for APLs with an average EER of
6.09%. By contrast, the average EER of both competing approaches
are above 20%, which makes them impractical as a complementary
authentication mechanism on smartwatches.
Impact of Network Architecture: As discussed in Sec. 3.2, we
adopted the bi-directional RNN (BRNN) architecture over RNN in
VeriNet. Fig. 6 shows the impacts of di�erent network architec-
tures. �e AUC of BRNN-based model is nearly 7% superior to
the RNN-based one for both PIN and APL cases. But as we can
see, even the RNN-based VeriNet is still signi�cantly superior to
the best competing approaches in two cases. More specially, the
EER improvement is ∼ 2% on both PIN and APL datasets, which
implies that both ends of the passcode-entering data reveal identity
information and should be considered for veri�cation.

Moreover, we also observed that the regardless what network
architecture is used, VeriNet has worse FAR but be�er TPR on
APL dataset, compared to the results on the PIN dataset. It implies
that, the behavior of tapping PINs varies more than swiping APLs
for the same user; however, the behavior of swiping APLs is not
discrimination enough among people as the one of tapping PINs.

Passcode Method FPR(%) TPR(%) EER(%)

PIN BRNN 10.24 79.23 7.17
RNN 11.72 74.71 9.72

APL BRNN 19.91 85.79 6.09
RNN 19.88 79.78 8.03

Table 2: Impact of network architecture on veri�cation per-
formance
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5 RELATEDWORK
5.1 Inferring Information fromMotion Sensors
Researchers have a�empted to infer keystrokes on smart wearables
via motion sensors [4, 16, 19]. �e core idea behind these works is
similar: keystrokes on device screen lead to distinct force/a�itude
pa�erns. �e motion data on smart wearables can thus be used to
infer entered secrets. TouchLogger [4] and ACCessory [16] are early
works, where ACCessory uses accelerometer only and TouchLogger
utilizes both accelerometer and gyroscope to infer PINs. Similarly,
TapLogger [19] re�nes previous techniques and uses a gyroscope to
predict PIN-like secrets on smartphones. TapLogger uses a k-means
clustering approach to extract the most likely classes (typically top
3). Given substantial observations of the secret (e.g. 32 PIN entry
events), this is su�cient to estimate the true secret.

VeriNet obviously di�ers from them as we use motion data to
harvest users’ habits of password entering rather than inferring the
input secrets.

5.2 User Authentication via Keystroke
Operations

Using keystroke operations to authenticate users is relatively new
topic that has yet to capture extensive research a�entions. Sev-
eral recent work has studied how to improve the touch unlocking
mechanism by considering touch biometrics. Such work includes
[6, 8, 22]. De Luca et al. in [6] propose to track touch data of slide
operations to unlock the screen. Touch data including time, posi-
tion, size and pressure are used directly to authenticate users. Frank
et al. conducted a study on touch input analysis for smartphone
user authentication, which is referred to as touch biometrics [8].
Based on a set of 30 behavioral features, the authors built proof-of-
concept classi�ers that can pinpoint a target user among 41 users
with very low equal error rate. Shahzad et al. discuss a slide-based
user authentication scheme, where a series of customized slides are
used jointly to authenticate users [17]. �e extracted features works
well for swipe-based passcodes, e.g., APLs. By contrast, Zheng et al.
designs the feature of keystrokes that is suitable to the tap-based
passcodes, e.g., PINs. Moreover, it is able to train a veri�cation
model without the data from the impostors’ side, which �ts in the
real world well. Yang et. at. further improve previous works that
harvest multiple sensor modalities to classify �nger tap events on
smartphones. However, all prior arts needs the user’s passcode and
become cumbersome when a user has multiple passcodes.

Unlike above work, VeriNet is the �rst veri�cation work based
on passcode-entering behaviors that designed for smartwatches.
Not only the SNR is much lower for the smartwatch case, VeriNet
avoids collecting users’ passcodes for classi�er training and the
learnt classi�er is powerful enough to accommodate authentication
for multiple passcodes from the same user.

6 CONCLUSION
In this paper, we propose a novel authentication approach for smart-
watches, which adds another layer of security on top of the tra-
ditional passwords by considering the unique motion signatures
when di�erent users input passwords on their watches. It uses a
deep recurrent neural networks to analyse the subtle motion signals

of password input, and distinguish the legitimate users from mali-
cious impostors. Unlike prior art, VeriNet is free of collecting users’
passcodes for classi�er training and the learnt classi�er is powerful
enough to accommodate authentication for multiple passcodes from
the same user. Having collected tested on 310 participants, VeriNet
is demonstrated to be 3-4 fold be�er than competing approaches.
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