
ar
X

iv
:1

80
9.

05
68

1v
2

 [
cs

.C
R

]
 2

6
Ja

n
20

19

What’s in a Downgrade? A Taxonomy of

Downgrade Attacks in the TLS Protocol and

Application Protocols Using TLS

Eman Salem Alashwali1,2 (�) and Kasper Rasmussen1

1 University of Oxford, Oxford, United Kingdom
{eman.alashwali,kasper.rasmussen}@cs.ox.ac.uk

2 King Abdulaziz University (KAU), Jeddah, Saudi Arabia
ealashwali@kau.edu.sa

Abstract. A number of important real-world protocols including the
Transport Layer Security (TLS) protocol have the ability to negotiate
various security-related choices such as the protocol version and the cryp-
tographic algorithms to be used in a particular session. Furthermore,
some insecure application-layer protocols such as the Simple Mail Trans-
fer Protocol (SMTP) negotiate the use of TLS itself on top of the ap-
plication protocol to secure the communication channel. These protocols
are often vulnerable to a class of attacks known as downgrade attacks

which targets this negotiation mechanism. In this paper we create the
first taxonomy of TLS downgrade attacks. Our taxonomy classifies pos-
sible attacks with respect to four different vectors: the protocol element
that is targeted, the type of vulnerability that enables the attack, the
attack method, and the level of damage that the attack causes. We base
our taxonomy on a thorough analysis of fifteen notable published at-
tacks. Our taxonomy highlights clear and concrete aspects that many
downgrade attacks have in common, and allows for a common language,
classification, and comparison of downgrade attacks. We demonstrate the
application of our taxonomy by classifying the surveyed attacks.

1 Introduction

A number of important real-world protocols, such as the Transport Layer Secu-
rity protocol (TLS) [13] [29], which is used by billions of people everyday to secure
internet communications, support multiple protocol versions and algorithms, and
allow the communicating parties to negotiate them during the handshake. Fur-
thermore, some important legacy application-layer protocols that are not secure
by design such as the Simple Mail Transfer Protocol (SMTP) [22] allow the
communicating parties to negotiate upgrading the communication channel to a
secure channel over a TLS layer. However, experience has shown that protocol
developers tend to maintain support for weak protocol versions and algorithms,
mainly to provide backward compatibility. In addition, empirical analysis of real-
world deployment shows that a high percentage of SMTP servers that support

http://arxiv.org/abs/1809.05681v2

TLS and are capable of upgrading SMTP to SMTP-Secure (SMTPS) are config-
ured in the “opportunistic security” mode [15], meaning that they “fail open”,
and operate in an unauthenticated plaintext mode if the upgrade failed for any
reason, favoring functionality over security [9] [17].

In a typical downgrade attack, an active network adversary1 interferes with
the protocol messages, leading the communicating parties to operate in a mode
that is weaker than they prefer and support. In recent years, several studies
illustrated the practicality of downgrade attacks in widely used protocols such
as TLS. More dangerously, downgrade attacks can succeed even when only one
of the communicating parties supports weak choices as in [2] [4].

There are plenty of reported downgrade attacks in the literature that pertain
to TLS such as [17] [2] [4] [6] [27] [16] [33] [5] [24] [3]. A close look at these
attacks reveals that they are not all identical: they target various elements of
the protocol, exploit various types of vulnerabilities, use various methods, and
result in various levels of damage.

The existing literature lacks a taxonomy that shows the big picture outlook
of downgrade attacks that allows classifying and comparing them. To bridge
this gap, this paper presents a taxonomy of downgrade attacks with a focus on
the TLS protocol based on an analysis of fifteen notable published attacks. The
taxonomy helps in deriving answers to the following questions that arise in any
downgrade attack:

1. What has been downgraded?

2. How is it downgraded?

3. What is the impact of the downgrade?

Our downgrade attack taxonomy classifies downgrade attacks with respect
to four vectors: element (to answer: What has been downgraded?), vulnerability
and method (to answer: How is it downgraded?), and damage (to answer: What
is the impact of the downgrade?).

The aim of this paper is to provide a reference for researchers, protocol
designers, analysts, and developers that contributes to a better understanding
of downgrade attacks and its anatomy. Although our focus in this paper is on
the TLS protocol and the application protocols that use it, this does not limit
the paper’s benefit to TLS. The paper can benefit the design, analysis, and
implementation of any protocol that has common aspects of TLS.

Our contribution is twofold: First, we provide the first taxonomy of TLS
downgrade attacks based on a thorough analysis of fifteen surveyed attacks.
Our taxonomy dissects complex downgrade attacks into clear categories and
provides a clean framework for reasoning about them. Second, although our
paper is not meant to provide a comprehensive survey, however, as a necessary
background, we provide a brief survey of all notable published TLS downgrade
attacks. Unlike the existing general surveys on TLS attacks, our survey is focused
on a particular family of attacks that are on the rise, and covers some important

1 Throughout the paper we will use the terms: active network attacker, active network
adversary, and man-in-the-middle interchangeably

recent downgrade attacks that none of the existing surveys [26] [10] (which date
back to 2013) have covered.

The rest of the paper is organised as follows: in section 2, we summarise re-
lated work. In section 3, we provide an illustrative example of downgrade attacks.
In section 4, we describe the attacker model that we consider in our taxonomy.
In section 5, we describe the methodology we use to devise the taxonomy. In
section 6, we briefly survey fifteen cases of downgrade attacks in TLS. In section
7, we present our taxonomy. In section 8, we provide a discussion. In section 9,
we conclude. Finally, Appendix A provides a background in the TLS protocol.

2 Related Work

Bhargavan et al. [5] provide a formal treatment of downgrade resilience in cryp-
tographic protocols and define downgrade security. In our work, we look at down-
grade attacks from an informal and pragmatic point of view. We also consider
downgrade attacks in a context beyond the key-exchange, e.g. in negotiating the
use of TLS layer in multi-layers protocols such as SMTP.

The work of [10] and [26] provide surveys on TLS attacks in general. Their
surveys cover some of the TLS downgrade attacks that we cover. However, our
work is not meant to survey TLS downgrade attacks, but to analyse them to
create a taxonomy of downgrade attacks and to provide a framework to reason
about them. Furthermore, our work covers state-of-the-art TLS downgrade at-
tacks that have not been covered in previous surveys such as downgrade attacks
in draft-10 of the coming version of TLS (TLS 1.3) [5], the SLOTH attack [6],
the DROWN attack [3], among others.

Howard and Longstaff [21] present a general taxonomy of computer and net-
work attacks. Our approach is similar to the one taken in [21] in terms of present-
ing the taxonomy in logically connected steps. We have some common categories
such as the vulnerability, but we also introduce our own novel categories such
as the element and damage which classifies downgrade attacks at a lower level.

In [31] a taxonomy of man-in-the-middle attacks is provided. It is based on
four tiers: “state”, “target”, “behaviour”, and “vulnerability”. Our taxonomy is
particularly focused on downgrade attacks, thus provides further insights over
the general man-in-the-middle taxonomy. We also have different perspectives.
For example, although we share the vulnerability category, [31] present it in an
exhaustive list of vulnerabilities such as “cipher block chaining”, “compression”,
“export key”, etc. while our approach is to focus on the source of the flaw that
allows the attack. We end up with three vulnerability sub-categories: implemen-
tation, design, and trust-model, which are more likely to capture future attacks.

3 Downgrade Attacks, an Illustrative Example

Figure 1 shows an illustrative example of downgrade attacks in a simplified ver-
sion of the TLS 1.2 protocol inspired by the Logjam attack [2]. Throughout the
paper in the message sequence diagrams, we denote the communicating parties

Client (I) MITM (M) Server (R)

nI ,[...,ALG,...] nI ,[ALG EXPORT]

nR,ALG EXPORTnR,ALG

certRcertR

pkR,sign(skR,hash(nI |nR|pkR))pkR,sign(skR,hash(nI |nR|pkR))

pkI pkI

key derivation
(pms,ms,kI ,kR)

key recovery
(pms,ms,kI ,kR)

key derivation
(pms,ms,kI ,kR)

MAC(ms,hash(transcriptI)) MAC(ms,hash(transcript'I))

MAC(ms,hash(transcriptR))MAC(ms,hash(transcript'R))

[Application Data]kR [Application Data']kR

[Application Data]kI[Application Data']kI

Fig. 1: Illustrative example of downgrade attack in a simplified version of TLS.

by client (initiator I) and server (responder R). We denote the man-in-the-
middle by (MITM M). A background on the TLS protocol that is necessary to
comprehend the example is provided in Appendix A.

In this example, we assume certificate-based unilateral server-authentication
mode using ephemeral Diffie-Hellman (DHE) key-exchange algorithm, and Mes-
sage Authentication Code (MAC) to authenticate the exchanged handshake mes-
sages (the transcript). As depicted in Figure 1 the client starts the handshake by
sending its nonce (nI) and a list of ciphersuites ([...,ALG,...]) to the server. The
ciphersuite is a string (ALG) that defines the algorithms to be used in a particu-
lar session. In this example, we assume that the client’s ciphersuites list contains
only strong ciphersuites. The server must select one of the offered ciphersuites
to be used in subsequent messages of the protocol. A man-in-the-middle mod-
ifies the client’s proposed ciphersuites such that they offer only export-grade2

ciphersuite ([ALG EXPORT]), e.g. key-exchange with 512-bit DHE group. If
the server supports export-grade ciphersuites, for example, to provide backward
compatibility to legacy clients, it will select an export-grade one, misguided by
the modified client message that offered only export-grade ciphersuites. Then,
the server sends its nonce (nR) and its selected ciphersuite ALG EXPORT to
the client. To avoid detection, the man-in-the-middle modifies the server’s choice
from ALG EXPORT to ALG to make it acceptable for the client that may not

2 Export-grade ciphers are weak ciphers with a maximum of 512-bit key for asymmetric
encryption, and 40-bit key for symmetric encryption [34].

support export-grade ciphersuites as is the case in most updated web browsers
today. Then, the server sends its certificate (certR), followed by a message that
contains the server’s public-key parameter pkR, and a signed hash of the nonces
(nI and nR) and the server’s public-key parameters pkR. The signature is used
to authenticate the nonces and the server’s selected key parameters. However,
in TLS 1.2 and below, the server’s signature does not cover the server’s selected
ciphersuite (ALG EXPORT in our example). Therefore, even if the client sup-
ports only strong ciphersuites, if it accepts arbitrary key parameters (e.g. non
standard DHE groups), it will not distinguish whether the selected ciphersuite
is export-grade or strong, and will generate weak keys based on the server’s
weak key parameters, despite the client’s support for only strong ciphersuites.
After that, the client sends its key parameter (pkI). Then, both parties should
be able to compute the pre-master secret (pms), the master secret (ms), and
the client and server session keys, (kI) and (kR), respectively. The exchanged
weak public-key parameters enable a man-in-the-middle to recover secret values
from the weak public-keys, e.g. recover the private exponent from one or both
parties’ public-keys using Number Field Sieve (NFS) discrete log (dlog) (since
we assume DHE key). Consequently, be able to compute the pms, ms, kI , and
kR in real-time. As a result of breaking the ms, the attacker can forge the MACs
that are used to provide transcript integrity and authentication, hence, circum-
vent downgrade detection. Since the man-in-the-middle has the session keys, he
can decrypt messages between the client and server as illustrated in Figure 1.
This general example is similar to the Logjam [2] attack. This example is not the
only form of TLS downgrade attacks as the paper will elaborate in the coming
sections.

4 Attacker Model

In our taxonomy, we assume an external man-in-the-middle attacker who can
passively eavesdrop on, as well as actively inject, modify, or drop messages be-
tween the communicating parties. The attacker can also connect to multiple
servers in parallel. Furthermore, the attacker has access to bounded computa-
tional resources that allow him to break weak cryptographic primitives.

5 Methodology

First, to devise the taxonomy, we analyse fifteen published cases of downgrade
attacks that relate to TLS from: [17] [2] [4] [6] [27] [16] [33] [5] [24] [3] (some
papers have more than one attack). These attacks represent all of the notable
published downgrade attacks that we are aware of, starting from the first version
of TLS (SSL 2.0) until draft-10 of the upcoming version (TLS 1.3). We summarise
them in section 6. Second, we extract the features that characterise each attack
(which we refer to as vectors), namely: the attacker targets an element that
defines the mode of the protocol which can be the protocol algorithms, version,
or the TLS layer, in order to modify or remove. The attacker also needs to exploit

a vulnerability, which can be due to implementation, design, or trust-model. The
downgrade is achieved by using a method which can be message modification,
dropping, or injection. Finally, the attack results in a damage which can be either
broken security or weakened security. These four main vectors are intrinsic to any
downgrade attack under the specified attacker model and can therefore be used
to characterise each attack in that model. Third, after identifying the vectors,
we devise the taxonomy. We define the notions of the taxonomy’s categories
and sub-categories in section 7. Finally, we show the taxonomy’s application in
classifying known TLS downgrade attacks.

6 Downgrade Attacks in TLS, a Brief Survey

In this section, we briefly survey the TLS downgrade attacks that we have anal-
ysed in order to devise the taxonomy. We highlight the attack names in Bold
and we use these names throughout the paper. We assume the reader’s famil-
iarity with the TLS technical details. The unfamiliar reader is advised to read
Appendix A, which provides the required background to comprehend the rest of
the paper.

Downgrade attacks have existed since the very early versions of TLS: SSL 2.0
[19] and SSL 3.0 [18]. SSL 2.0 suffers from the “ciphersuite rollback” attack,
where the attacker limits SSL 2.0 strength to the “least common denominator”,
i.e. the weakest ciphersuite, by modifying the ciphersuites list in one or both of
the Hello messages that both parties exchange so that they offer the weakest
ciphersuite [33] [32], e.g. export-grade or “NULL” encryption ciphersuites. To
mitigate such attacks, SSL 3.0 mandated a MAC of the protocol’s transcript
in the Finished messages which needs to be verified by both parties to ensure
identical views of the transcript (i.e. unmodified messages).

However, SSL 3.0 is vulnerable to the “version rollback” attack that works
by modifying the client’s proposed version from SSL 3.0 to SSL 2.0 [33]. This in
turn leads SSL 3.0 servers that support SSL 2.0 to fall back to SSL 2.0. Hence,
all SSL 2.0 weaknesses will be inherited in that handshake including the lack of
integrity and authentication checks for the protocol’s transcript as we described
above, which render the downgrade undetected.

Another design flaw in SSL 3.0 allows a theoretical attack named the “key-
exchange rollback” attack, which is a result of lack of authentication for the
server’s selected ciphersuite (which includes the name of the key-exchange algo-
rithm) before the Finished MACs [33]. In this attack, the attacker modifies the
client’s proposed key-exchange algorithm from RSA to DHE, which makes the
communicating parties have different views about the key-exchange algorithm.
That is, the server sends DHE key parameters in the ServerKeyExchange mes-
sage while the client treats them according to export-grade RSA algorithm.
These mismatched views about the key-exchange result in generating breakable
keys which are then used by the attacker to forge the Finished MACs to hide
the attack, impersonate each party to the other, and to decrypt the application
data.

In [24], an attack which we call the “DHE key-exchange rollback” is pre-
sented. It can be considered a variant of the “key-exchange rollback” in [33].
In this attack the attacker modifies the client’s proposed key-exchange algorithm
from DHE to ECDHE. As a result, the server sends a ServerKeyExchange that
contains ECDHE parameters based on the client offer while the client treats
them as DHE parameters. The client does not know the selected key-exchange
algorithm by the server since the selected ciphersuite (which includes the key-
exchange algorithm) is not authenticated in the ServerKeyExchange. Similar to
the “key-exchange rollback” attack in [33], these mismatched views about
the key-exchange algorithm result in breakable keys, which allow the attacker to
recover the pre-master and master secretes. Consequently, be able to forge the
Finished MACs to hide the modifications in the Hello messages, impersonate
each party to the other, and decrypt the application data.

Version downgrade is not exclusive to SSL 3.0. The Padding Oracle On Down-
graded Legacy Encryption (POODLE) attack [27] shows the possibility of ver-
sion downgrade in recent versions of TLS (up to TLS 1.2) by exploiting the
“downgrade dance”, a client-side implementation technique that is used by some
TLS clients (e.g. web browsers). It makes the client fall back to a lower version
and retries the handshake if the initial handshake failed for any reason [27]. In
the POODLE attack, a man-in-the-middle abuses this mechanism by dropping
the ClientHello to lead the client to fall back to SSL 3.0. This in turn brings
the specific flaw that is in the CBC padding in all block ciphers in SSL 3.0,
which allows the attacker to decrypt some of the SSL session’s data such as the
cookies that may contain login passwords.

In [2], the Logjam attack is presented. It uses a method similar to the one we
explained in the illustrative example in section 3. The Logjam attack is applicable
to DHE key-exchange. It works by modifying the Hello messages to misguide
the server into selecting an export-grade DHE ciphersuite which result in weak
DHE keys. As stated earlier, TLS up to version 1.2 does not authenticate the
server’s selected ciphersuite (which includes the key-exchange algorithm) until
the Finished MACs. As a result, the client receives weak key parameters and
generates weak keys based on the server’s weak parameters. The lack of early
authentication of the server’s selected ciphersuite gives the attacker a window of
time to recover the master secret from the weakly generated keys in real-time,
before the Finished MACs. Consequently, the attacker can forge the Finished
MACs to hide the modifications in the Hello messages, and decrypt the the
application data.

A similar attack called the Factoring RSA Export Keys (FREAK) at-
tack [4] is performed using a method similar to the one used in the Logjam
attack [2], which leads the server into selecting an export-grade ciphersuite.
However, FREAK is applicable to RSA key-exchange and requires a client imple-
mentation vulnerability that makes a client that does not support export-grade
ciphersuites accept a ServerKeyExchangemessage with weak ephemeral export-
grade RSA key parameters, while the key-exchange algorithm is RSA (note that
the ServerKeyExchangemessage must not be sent when the key-exchange algo-

rithm is non-export-grade RSA [13]). However, the ServerKeyExchange is sent
in export-grade RSA or in (EC)DHE key-exchange. This implementation vul-
nerability leads the client to use the export-grade RSA key parameters that are
provided in the ServerKeyExchange to encrypt the pre-master secret instead of
encrypting it with the long-term (presumably strong) RSA key that is provided
in the server’s Certificate. This results in breakable keys that can be used to
forge the Finished MACs and decrypt the application data.

In [3], a variant of the Decrypting RSA using Obsolete and Weakened eN-
cryption (DROWN) attack (the “special DROWN”) that exploits an OpenSSL
server implementation bug [1] is presented. The attack enables a man-in-the-
middle to force a client and server into choosing RSA key-exchange algorithm
despite their preference for non-RSA (e.g. (EC)DHE) by modifying the Hello

messages. The attacker then make use of a known flaw that can be exploited
if the server’s RSA key is shared with an SSLv2 server using an attack called
Bleichenbacher attack [8] which enables the attacker to recover the plaintext of
an RSA encryption (i.e. the pre-master secret) by using the SSLv2 server as a
decryption oracle. If the attacker can break the pre-master secret, he can break
the master secret and forge the Finished MACs to hide the attack, and be able
to decrypt the application data.

Another case of downgrade attack is the “Forward Secrecy rollback”
attack [4], in which the attacker exploits an implementation vulnerability to
make the client fall back from Forward Secrecy (FS)3 mode to non-FS mode
by dropping the ServerKeyExchangemessage. However, non-FS mode does not
result in immediate breakage of any security guarantee such as secrecy unless
the long-term key that encrypts the session keys got broken after the session
keys have been used to encrypt application data.

In [6], a downgrade attack in TLS 1.0 and TLS 1.1 is illustrated. The at-
tack comes under a family of attacks named Security Losses from Obsolete and
Truncated Transcript Hashes (SLOTH). This attack is possible due to the use
of non collision resistant hash functions (MD5 and SHA-1) in the Finished

MACs. The use of MD5 and SHA-1 is mandated by the TLS 1.0-1.1 specifica-
tions [11] [12]. Non collision resistant hash functions allow the attacker to modify
the Hello messages without being detected in the Finished MACs by creating
a prefix-collision in the transcript hashes [6].

Downgrade attacks in multi-layered protocols that negotiate upgrading the
connection to operate over TLS have been shown to be prevalent based on an em-
pirical analysis of SMTP deployment in the IPv4 internet space [17]. In [17] they
found evidence for corrupted STARTTLS commands which downgrade SMTPS
to SMTP in more than 41,000 mail servers.

3 Forward Secrecy (FS) is a property that guarantees that a compromised long-term
key does not compromise past session keys [25])

Similarly, downgraded TLS as a result of proxied HTTPS connections4

has been shown to be prevalent. In [16], empirical data show that 10-40% of the
proxied TLS connections advertise known broken cryptographic choices [16].

Downgrade attacks continued to appear until draft-10 of the coming ver-
sion of TLS (TLS 1.3 [28]), where [5] report three possible downgrade attacks
in TLS 1.3 draft-10. The first attack is similar in spirit to SSL 3.0 “version
rollback” attack that we explained earlier in this section. In this attack, the
attacker modifies the proposed version to TLS 1.2 and enjoys the vulnerabilities
in TLS 1.2 that (in the presence of export-grade ciphersuites either on the server
side or in both sides) enable him to break the master secret before the Finished
MACs as in [2] [4], hence circumventing downgrade detection.

The second attack in TLS 1.3 draft-10, which we call the “downgrade dance
version rollback” attack, employs a method similar to the one employed in
the POODLE attack [27], i.e. the attacker drops the initial handshake message
one or more times to lead the clients that implement the “downgrade dance”
mechanism to fall back to a lower version such as TLS 1.2, hence circumvent
detection due to downgrade security weaknesses in TLS 1.2 and lower versions.

Finally, the third reported downgrade attack in TLS 1.3 draft-10, which we
call the “HelloRetry downgrade” attack, occurs when an attacker injects a
HelloRetryRequest message to downgrade the (EC)DHE group to a less pre-
ferred group despite the client and server preference to use another group. This
attack can circumvent detection because the transcript hash restarts with ev-
ery HelloRetryRequest [5]. However, consequent TLS 1.3 drafts mitigated this
attack by continuing the hashes over retries [5].

7 Taxonomy of Downgrade Attacks

Based on the surveyed attacks in section 6, we distill four vectors that charac-
terise the surveyed downgrade attacks, namely: element, vulnerability, method,
and damage. These vectors represent the taxonomy’s main categories. We define
the notions of the categories and sub-categories that we use in our taxonomy.
Figure 2 summarises the taxonomy.

1. Element: The element refers to the protocol element that is being negoti-
ated between the communicating parties. The element’s value is intrinsic in
defining the protocol mode, i.e. the security level of the protocol run. The
element is targeted by the attacker because either modifying or removing it
will result in either a less secure, non secure, or less preferred mode of the
protocol. We categorise the element into three sub-categories as follows:
(a) Algorithm: The algorithm refers to the cryptographic algorithms, e.g.

key-exchange, encryption, hash, signature, etc. and their parameters such

4 A proxy refers to an entity that is located between the client and server and splits
the TLS session into two separate sessions. As a result, the client encrypts the data
using the proxy’s public-key.

Version

Algorithm

Layer

Design

Implementation

Trust-Model

Dropping

Modification

Injection

Broken

Weakened

Element Vulnerability Method Damage

1 targets 2 & exploits 3 & uses 4 & causes

Attacker

Fig. 2: A taxonomy of downgrade attacks in the TLS protocol and application proto-
cols using TLS.

as block cipher modes of operation and key lengths, that are being nego-
tiated to be used in subsequent messages of the protocol. Generally, in
TLS, the main algorithms are represented by the ciphersuite, but they
can also be represented by other parameters that are not part of the
ciphersuite such as the extensions.

(b) Version: The version refers to the protocol version. A number of protocols
including TLS allow their communicating parties to support multiple
versions, negotiate the protocol version that both communicating parties
will run, and allow them to fall back to a lower version to match the other
party’s version if the versions at both ends do not match.

(c) Layer: The layer refers to the whole TLS layer which is negotiated and op-
tionally added in some legacy protocols. In such protocols like SMTP [22]
for example, TLS encapsulation is negotiated through specific upgrade
messages, e.g. STARTTLS [20], in order to upgrade the protocol from an
insecure (plaintext and unauthenticated) to a secure (encrypted and/or
authenticated) mode.

2. Vulnerability: Like any attack performed by an external man-in-the-middle,
downgrade attacks require a vulnerability to be exploited. We categorise the
vulnerability into three sub-categories as follows:
(a) Implementation: An implementation vulnerability refers to a faulty pro-

tocol implementation. The existence of implementation vulnerabilities
can be due to various reasons, for example, a programmer’s fault, a
state-machine bug, or a malware that corrupted the code.

(b) Design: A design vulnerability refers to a flaw in the protocol design
(i.e. the specifications). The protocol design is independent of the imple-
mentation. That is, even if the protocol was perfectly implemented, an
attacker can exploit a design flaw to perform a downgrade attack.

(c) Trust-Model: A trust-model vulnerability refers to a flaw in the archi-
tectural aspect (the TLS ecosystem in our case) and the trusted parties
involved in this architecture which is independent of the protocol design
and implementation.

3. Method: The method refers to the method used by the attacker to per-
form the downgrade. We categorise the method into three sub-categories as
follows:

(a) Modification: In the modification method, the attacker modifies the con-
tent of one or more protocol messages that negotiate the element (i.e.
algorithm, version, layer). If the protocol does not employ any integrity
nor authentication checks for the handshake transcript, the downgrade
attack can be trivially performed. Otherwise, the attacker needs to find
ways to circumvent the checks, for example, break the master secret or
create colliding hashes for the transcript.

(b) Dropping: In the dropping method, the attacker drops one or more pro-
tocol messages (possibly more than once).

(c) Injection: In the injection method, the attacker sends a new message to
one of the communicating parties by impersonating the party’s peer, for
example to request a different algorithm or version than what is initially
offered by the communicating party. The injection method is trivial in
the absence of transcript integrity and authentication checks. Otherwise,
it requires circumventing the integrity and authentication checks.

4. Damage: The damage refers to the resulted damage after a successful down-
grade attack. We categorise the damage into two sub-categories as follows:
(a) Broken Security: Broken security refers to downgrade attacks that result

in allowing the attacker to break one or more main security goals that
the protocol claims to guarantee. In TLS the guarantees are: secrecy,
authentication, and integrity.

(b) Weakened Security: Unlike the broken security damage, weakened secu-
rity does not result in immediate breakage of any of the main security
guarantees. Instead, weakened security refers to attacks that result in
making the communicating parties choose a non-recommended or less
preferred mode, which is not broken yet.

8 Discussion

In Table 1, we show the taxonomy’s application in classifying the surveyed TLS
downgrade attacks. Then we discuss our reasoning in some of the noteworthy
cases (we will refer to the attacks by their reference number according to the
numbers in Table 1).

It should be noted that classifying attacks that have implementation is straight-
forward as is the case in the attacks: 04, 06, 07, 08, 09, and 10 where their
classifications in Table 1 are self-explanatory based on mapping the surveyed at-
tacks description in section 6 with the categories in Table 1. On the other hand,
classifying either theoretical attacks such as 01, 02, 03, 05, 13, 14, and 15, or
attacks that have been reported based on evidence from empirical data such as
11 and 12, is less straightforward and requires making some assumptions.

Ideally the taxonomy helps in classifying concrete attacks that have imple-
mentation. However, for the sake of illustration, we make some assumptions
(mostly worst case assumptions) to mimic a concrete attack case from the gen-
eral attack that does not have an implementation. In the following, we elaborate
more on these cases.

No. Attack Element Vuln. Method Damage

A
lg
o
ri
th
m

V
er
si
o
n

L
ay

er

Im
p
le
m
en

ta
ti
o
n

D
es
ig
n

T
ru
st
-m

o
d
el

D
ro
p
p
in
g

M
o
d
ifi
ca
ti
o
n

In
je
ct
io
n

W
ea
k
en

ed
B
ro
k
en

01 SSL 2.0 Ciphersuite rollback [33]* ✓ ✓ ✓ ✓

02 SSL 3.0 Version rollback [33]* ✓ ✓ ✓ ✓

03 SSL 3.0 key-exchange rollback [33]* ✓ ✓ ✓ ✓

04 DHE key-exchange rollback [24] ✓ ✓ ✓ ✓

05 TLS 1.0-1.1 SLOTH [6]* ✓ ✓ ✓ ✓

06 POODLE version downgrade [27] ✓ ✓ ✓ ✓

07 FREAK [4] ✓ ✓ ✓ ✓

08 DROWN [3] ✓ ✓ ✓ ✓

09 Forward Secrecy rollback [4] ✓ ✓ ✓ ✓

10 Logjam [2] ✓ ✓ ✓ ✓

11 SMTPS to SMTP [17]* ✓ ✓ ✓ ✓

12 Proxied HTTPS [16]* ✓ ✓ ✓ ✓

13 TLS 1.3 Version rollback [5]* ✓ ✓ ✓ ✓

14 TLS 1.3 Downgrade-dance version fallback [5]* ✓ ✓ ✓ ✓

15 TLS 1.3 HelloRetry downgrade [5]* ✓ ✓ ✓ ✓

Table 1: Classifying the surveyed downgrade attacks using our taxonomy. Attacks
that are followed by “*” do not have an implementation and are either theoretical or
based on evidence from measurement studies.

Attacks 01, 02, and 03 are theoretical. We classify the damage on these
attacks based on the worst case assumption as follows: In 01, we assume that
the attacker can select export-grade or “NULL” encryption ciphersuites, which
breaks a main security guarantees of TLS. In 02, once the attacker downgrades
SSL 3.0 to SSL 2.0, he can perform attack 01 without being detected due to lack
of downgrade security in SSL 2.0. In 03, we assume that the attacker can break
the master secret. Similar to the FREAK [4] and Logjam [2] attacks, this allows
the attacker to forge the Finished MACs which enables him to impersonate the
client and/or the server and decrypt the application data, and this breaks main
security guarantees.

Attack 05 is a theoretical attack. Based on the worst case assumption, we
classify the downgraded element under the version element. The attacker can
modify the version as well as the algorithms and hide the attack by producing
prefix collision in the transcript hashes which are computed using non collision
resistant hashes (MD-5 and SHA1 based on the protocol design and specifica-
tions) that go into the FinishedMACs. If the attacker succeeded in downgrading
the version to a broken version such as SSL 3.0, he can break main security guar-
antees (e.g. the CBC flaw in the symmetric encryption in SSL 3.0), hence the
damage in attack 05 is classified under broken category.

Although attack 08 has an implementation but it is quite complex attack and
its vulnerability classification is noteworthy. We classified its vulnerability under
the trust model. By contemplating the main cause that allows this downgrade
attack to succeed we find the main reason lies in breaking the the pre-master
the master secret that is then used to forge the Finished MACs, otherwise the
attack will be detected. In this attack, the attacker can decrypt the pre-master
secret if it is encrypted with an RSA key (even a strong 2048-bit RSA key), if the
key is shared with an SSLv2 server (e.g. both servers uses the same certificate).
Sharing RSA keys among servers is a trust-model vulnerability that allows the
key sharing, rather than a protocol design nor implementation.

Attack 11 is based on evidence from real-world deployment. Based on the
reported evidence described in [17], the method is classified under modification.
However, dropping can also work as another method based on the STARTTLS
specifications [20]. Since forcing TLS is not mandated by the SMTP protocol
design and specifications, we do not consider the “fail open” local policy as an
implementation vulnerability but a design one.

Attack 12 is widely known as HTTPS interception, where a man-in-the-
middle (represented by a proxy) has full control over the TLS channel, which
gives him the ability to downgrade TLS (algorithm, version, or layer). The empir-
ical results in [16] shows an evidence of downgraded TLS version and algorithm
due to proxied HTTPS. However, in fact, the man-in-the-middle can send the
client’s data to the server in cleartext. Therefore, based on the worst case as-
sumption, the targeted element is classified under layer. The method is classified
under injection since the man-in-the-middle injects a new message to the server
by impersonating the client.

Attack 13 is similar in spirit to 02 that occurs in SSL 3.0 which is due to a
design vulnerability. In TLS 1.3, the attack has been mitigated by redesigning
the server’s nonce to signal the received client’s version [29].

Attack 14 is similar in spirit to 06 which targets the protocol version. If
the attacker succeed in downgrading the version to a flawed version that has
downgrade security weaknesses (as is the case in TLS 1.2 and below), the attacker
can break main security guarantees based on the worst case assumption.

Attack 15 damage is classified under weakened security because as of this
writing, no known broken (EC)DHE group elements are allowed in TLS 1.3 by
design. Therefore, under the worst case assumption, the resulted damage leads
both parties to agree on the least preferred DHE group.

Finally, as Table 1 shows, in most of the cases the resulted damage is broken
security except in two cases.

9 Conclusion and Future Work

In conclusion, we introduce the first taxonomy of downgrade attacks in the TLS
protocol and application protocols using TLS. Our taxonomy classifies down-
grade attacks with respect to four vectors: element, vulnerability, method, and
damage. It is based on a through analysis of fifteen TLS downgrade attack

cases under the assumption of an external man-in-the-middle attacker model. In
addition, we provided a brief survey of all notable published TLS downgrade at-
tacks to date. Finally, we demonstrate our taxonomy’s application in classifying
known TLS downgrade attacks. For future work, we plan to test the taxonomy
on downgrade attacks in protocols other than TLS for potential generalisation of
the taxonomy. Furthermore, we believe that the taxonomy has the potential of
serving as a useful tool in devising downgrade attack severity assessment model,
which can enable ranking the attack severity, which can help in identifying the
attacks that require more research efforts to mitigate them.

10 Acknowledgment

The authors would like to thank Prof. Kenny Paterson, Prof. Andrew Martin,
and Nicholas Moore for their feedback, and Mary Bispham, Ilias Giechaskiel,
Jacqueline Eggenschwiler, and John Gallacher for proofreading earlier versions
of this paper.

References

1. CVE-2015-3197 (2015), https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3197
2. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman,

J.A., Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wus-
trow, E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect Forward Secrecy: How
Diffie-Hellman Fails in Practice. In: Proceedings of Conference on Computer and
Communications Security (CCS). pp. 5–17 (2015)

3. Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N., Dankel, M., Steube, J.,
Valenta, L., Adrian, D., Halderman, J.A., Dukhovni, V., Käsper, E., Cohney, S.,
Engels, S., Paar, C., Shavitt, Y.: DROWN: Breaking TLS Using SSLv2. In: Pro-
ceedings of USENIX Security Symposium. pp. 689–706 (2016)

4. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.Y., Zinzindohoue, J.K.: A Messy State of the Union: Taming
the Composite State Machines of TLS. In: Proceedings of IEEE Symposium on
Security and Privacy (SP). pp. 535–552 (2015)

5. Bhargavan, K., Brzuska, C., Fournet, C., Green, M., Kohlweiss, M., Zanella-
Béguelin, S.: Downgrade Resilience in Key-Exchange Protocols. In: Proceedings
of IEEE Symposium on Security and Privacy (SP). pp. 506–525 (2016)

6. Bhargavan, K., Leurent, G.: Transcript Collision Attacks: Breaking Authentica-
tion in TLS, IKE, and SSH. In: Proceedings of Network and Distributed System
Security Symposium (NDSS) (2016)

7. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B.: Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) (2006),
https://tools.ietf.org/html/rfc4492

8. Bleichenbacher, D.: Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standard PKCS-1. In: Proceedings of Advances in Cryptology
(CRYPTO 98). pp. 1–12. Springer (1998)

9. Bursztein, E.: Understanding How TLS Down-
grade Attacks Prevent Email Encryption (2015),
https://www.elie.net/blog/understanding-how-tls-downgrade-attacks-prevent-email-encryption

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3197
https://tools.ietf.org/html/rfc4492
https://www.elie.net/blog/understanding-how-tls-downgrade-attacks-prevent-email-encryption

10. Clark, J., van Oorschot, P.C.: SoK: SSL and HTTPS: Revisiting Past Challenges
and Evaluating Certificate Trust Model Enhancements. In: Proceedings of IEEE
Symposium on Security and Privacy (SP). pp. 511–525 (2013)

11. Dierks, T., Allen, C.: The TLS Protocol Version 1.0 (1999),
https://www.ietf.org/rfc/rfc2246.txt

12. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.1
(2006), https://tools.ietf.org/html/rfc4346

13. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2
(2008), https://tools.ietf.org/html/rfc5246

14. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

15. Dukhovni, V.: Opportunistic Security: Some Protection Most of the Time (2014),
https://tools.ietf.org/html/rfc7435

16. Durumeric, Z., Ma, Z., Springall, D., Barnes, R., Sullivan, N., Bursztein, E., Bailey,
M., Halderman, J., Paxson, V.: The Security Impact of HTTPS Interception. In:
Proceedings of Network and Distributed Systems Symposium (NDSS) (2017)

17. Durumeric, Z., Adrian, D., Mirian, A., Kasten, J., Bursztein, E., Lidzborski, N.,
Thomas, K., Eranti, V., Bailey, M., Halderman, J.A.: Neither Snow Nor Rain Nor
MITM...: An Empirical Analysis of Email Delivery Security. In: Proceedings of
Internet Measurement Conference (IMC). pp. 27–39 (2015)

18. Freier, A., Karlton, P., Kocher, P.: The Secure Sockets Layer (SSL) Protocol Ver-
sion 3.0 (2011), https://tools.ietf.org/html/rfc6101

19. Hickman, K.: SSL 0.2 Protocol Specification (2008),
http://www-archive.mozilla.org/projects/security/pki/nss/ssl/draft02.html

20. Hoffman, P.: SMTP Service Extension for Secure SMTP over Transport Layer
Security (2002), https://tools.ietf.org/html/rfc3207

21. Howard, J.D., Longstaff, T.A.: A Common Language for Computer Security Inci-
dents (1998), https://prod.sandia.gov/techlib-noauth/

22. Klensin, J.: Simple Mail Transfer Protocol (2001),
https://www.ietf.org/rfc/rfc2821.txt

23. Langley, A., Modadugu, N., Moeller, B.: Transport Layer Security (TLS) False
Start (2016), https://tools.ietf.org/html/rfc7918

24. Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., Preneel, B.: A Cross-
protocol Attack on the TLS Protocol. In: Proceedings of Conference on Computer
and Communications Security (CCS). pp. 62–72 (2012)

25. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC press (1996)

26. Meyer, C., Schwenk, J.: SoK: Lessons Learned from SSL/TLS Attacks. In: Proceed-
ings of International Workshop on Information Security Applications. pp. 189–209
(2013)

27. Möller, B., Duong, T., Kotowicz, K.: This POODLE Bites: Exploiting the SSL 3.0
Fallback (2014), https://www.openssl.org/~bodo/ssl-poodle.pdf

28. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 draft-ietf-
tls-tls13-10 (2015), https://tools.ietf.org/html/draft-ietf-tls-tls13-10

29. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 draft-ietf-
tls-tls13-25 (2018), https://tools.ietf.org/html/draft-ietf-tls-tls13-25

30. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public-key Cryptosystems. Commun. ACM 21(2), 120–126 (1978)

31. Stricot-Tarboton, S., Chaisiri, S., Ko, R.K.: Taxonomy of Man-In-The-Middle At-
tacks on HTTPS. In: Proceedings of IEEE Trustcom/BigDataSE/ISPA. pp. 527–
534 (2016)

https://www.ietf.org/rfc/rfc2246.txt
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc7435
https://tools.ietf.org/html/rfc6101
http://www-archive.mozilla.org/projects/security/pki/nss/ssl/draft02.html
https://tools.ietf.org/html/rfc3207
https://prod.sandia.gov/techlib-noauth/
https://www.ietf.org/rfc/rfc2821.txt
https://tools.ietf.org/html/rfc7918
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-10
https://tools.ietf.org/html/draft-ietf-tls-tls13-25

32. Turner, S., Polk, T.: Prohibiting Secure Sockets Layer (SSL) Version 2.0 (2011),
https://tools.ietf.org/html/rfc6176

33. Wagner, D., Schneier, B.: Analysis of the SSL 3.0 Protocol. In: Proceedings of
USENIX Workshop on Electronic Commerce (EC 96). pp. 29–40 (1996)

34. Wikipedia: Export of Cryptography from the United States (2017),
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States

Appendix A The TLS Protocol

A.1 TLS, a General Overview

The main goal of TLS is to provide a secure communication channel between
two communicating parties [13], ideally client (initiator I) and server (responder
R). TLS consists of two sub-protocols: the handshake protocol and the record
protocol [13]. Briefly, the handshake protocol is responsible for version and ci-
phersuite negotiation, client and server authentication, and key exchange. On
the other hand, the record protocol is responsible for carrying the protected
application data, encrypted with the just negotiated keys in the handshake. As
of this writing, TLS 1.2 [13] is the currently deployed standard. The coming
version of TLS, TLS 1.3 [29], is still work in progress. Figure 3 shows the mes-
sage sequence diagram for TLS 1.2 using Ephemeral Diffie-Hellman (EC)DHE5

key-exchange [14], Figure 4 shows TLS 1.2 using Rivest-Shamir-Adleman (RSA)
key-exchange [30], and Figure 5 illustrates the changes in the Hello messages in
TLS 1.3 based on the latest draft (draft-25 as of this writing) [29]. Our scope
in this paper is TLS in certificate-based unilateral server-authentication mode.
In the diagrams, the messages are represented by their initials (e.g. CH refers to
ClientHello). Throughout the paper, the protocol messages are distinguished
by a TypeWriter font.

A.2 TLS 1.2 Handshake Protocol

We briefly describe the TLS 1.2 handshake protocol in certificate-based unilat-
eral server-authentication mode based on the Internet Engineering Task Force
(IETF) standard’s specifications [13]. A detailed description of the protocol can
be found in [13]. As depicted in Figure 3, the handshake protocol works as fol-
lows: First, the client sends a ClientHello (CH) message to initiate a connection
with the server. This message contains: the maximum version of TLS that the
client supports (vmax I); the client’s random value (nI); optionally, a session
identifier if the session is resumed (sessionID); a list of ciphersuites that the
client supports ordered by preference ([a1, ..., an]); a list of compression meth-
ods that the client supports ordered by preference ([c1, ..., cn]); and finally, an
optional list of extensions ([e1, ..., en]).

Second, the server responds with a ServerHello (SH) message. This mes-
sage contains: the server’s selected TLS version (vR); the server’s nonce (nR);

5 We use (EC)DHE as an abbreviation for: Elliptic-Curve Ephemeral Diffie-Hellman
(ECDHE) or Ephemeral Diffie-Hellman (DHE).

https://tools.ietf.org/html/rfc6176
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States

optionally, a session identifier in case of session resumption (sessionID); the
selected ciphersuite based on the client’s proposed list (aR); the selected com-
pression method from the client’s proposed list (cR); and optionally, a list of
the extensions that are requested by the client and supported by the server
([e1, ..., en]). After that, the server sends a ServerCertificate (SC), which con-
tains the server’s certificate (certR) if server authentication is required. Then, if
the key-exchange algorithm is (EC)DHE (see [14] for details about the DH al-
gorithm), the server sends a ServerKeyExchange (SKE) message. This message
must not be sent when the key-exchange algorithm is RSA (see [30] for de-
tails about the RSA algorithm). The ServerKeyExchange contains the server’s
(EC)DHE public-key parameters and a signature over a hash of the nonces (nI

and nR) and the (EC)DHE key parameters. In case of DHE (i.e. Finite Field
DHE), the key parameters are: the prime (p), the generator (g), and the server’s
public value (gb). We omit describing the ECDHE parameters and we refer the
reader to [7] for details about ECDHE key parameters. Finally, the server sends
a ServerHelloDone (SHD) to indicate to the client that it finished its part of the
key-exchange.

Third, upon receiving the ServerHelloDone the client should verify the
server’s certificate and the compatibility of the server’s selected parameters in
the ServerHello. After that, the client sends a ClientKeyExchange (CKE) to
set the pre-master secret. The content of the ClientKeyExchange depends on
the key-exchange algorithm. If the key-exchange algorithm is RSA, the client
sends the pre-master secret encrypted with the server’s long-term RSA public-
key ([pms]pkR) as illustrated in Figure 4. If the key-exchange algorithm is DHE,
the client sends its DHE public value (ga) to allow the server to compute the
shared DHE secret-key (gab) as illustrated in Figure 3. After that, both parties
compute the master secret (ms) and the session keys: (kI) for the client, and
(kR) for the server, using Pseudo Random Functions PRFs as follows: (kdfms)
takes the pms and nonces as input and produces the ms , while (kdfk) takes the
ms and nonces as input and produces the session keys kI and kR. There are more
than a pair for the session keys, i.e. separate key pairs for encryption and authen-
tication, but we abstract away from these details and refer to the session keys in
general by the key pair kI and kR. Finally, the client sends ChangeCipherSpec
(CCS) (this message is not considered part of the handshake and is not included
in the transcript hash), followed by a ClientFinished (CF) which is encrypted
by the just negotiated algorithms and keys. The ClientFinished verifies the
integrity of the handshake transcript (i.e. the log (We adopted the term log

from [5]). The ClientFinished content is computed using a PRF which serves
as a Message Authentication Code (MAC) that we denote it by (mac) over a
hash of the handshake transcript starting from the ClientHello up to, but not
including, the ClientFinished (i.e. mac of log1 as shown in Figure 3 and Figure
4), using the ms as a key. This mac needs to be verified by the server.

Fourth, similar to the client, the server sends its ChangeCipherSpec (CCS)
followed by a ServerFinished (SF) that consists of a mac over a hash of the

Client (I) Server (R)

CH(vmax I , nI ,[a1, ..., an],[c1, ..., cn])

SH(vR, nR, aR, cR)

SC(certR)

SKE(p, g, gb,sign(skR,hash(nI |nR|p|g|g
b)))

SHD

CKE(ga)
log1 log1

pms = gab

ms = kdfms(pms,nI |nR)
kI , kR = kdfk(ms,nR|nI)

pms = gab

ms = kdfms(pms,nI |nR)
kI , kR = kdfk(ms,nR|nI)

CCS

[CF(mac(ms ,hash(log1)))]
kI

log2 log2
CCS

[SF(mac(ms ,hash(log2)))]
kR

[ApplicationData]kI

[ApplicationData]kR

Fig. 3: Message sequence diagram for TLS 1.2 with (EC)DHE key-exchange.

server’s transcript up to this point (log2), which also needs to be verified by the
client.

Once each communicating party has verified its peer’s Finished message,
they can now send and receive encrypted data using the established session keys
kI and kR. If “False Start” [23] is enabled, the client can send data just after its
ClientFinished, and before it verifies the ServerFinished.

A.3 TLS 1.3 Handshake, Major Changes

This section is not meant to provide a comprehensive description of TLS 1.3,
but to highlight some major changes in TLS 1.3 over its predecessor TLS 1.2.
Similar to the previous section, we assume certificate-based unilateral server-
authentication mode. A full description of the latest draft of TLS 1.3 (as of this
writing) can be found in [29]. Figure 5 illustrates the Hellomessages in TLS 1.3,
where the TLS version and algorithms are negotiated.

One of the first changes in TLS 1.3 is prohibiting all known weak and un-
recommended cryptographic algorithms such as RC4 for symmetric encryption,
RSA and static DH for key-exchange, etc. In addition, TLS 1.3 enforces Forward
Secrecy (FS) in both modes: the full handshake mode and the session resumption
mode (with the exception of the early data in the Zero Round Trip Time (0-RTT)

Client (I) Server (R)

CH(vmax I , nI ,[a1, ..., an],[c1, ..., cn])

SH(vR, nR, aR, cR)

SC(certR)

SHD

CKE([pms]pkR)
log1 log1

ms = kdfms(pms,nI |nR)
kI , kR = kdfk(ms ,nR|nI)

ms = kdfms(pms,nI |nR)
kI , kR = kdfk(ms ,nR|nI)

CCS

[CF(mac(ms ,hash(log1)))]
kI

log2 log2
CCS

[SF(mac(ms ,hash(log2)))]
kR

[ApplicationData]kI

[ApplicationData]kR

Fig. 4: Message sequence diagram for TLS 1.2 with RSA key-exchange.

mode that is always sent in non-FS mode), compared to TLS 1.2, where FS is
optional in the full handshake mode, and not possible in the session resumption
mode. It also enforces Authenticated Encryption (AE) and standard (i.e. non
arbitrary) DH groups and curves. Furthermore, unlike TLS 1.2 where all hand-
shake messages before the Finished messages are sent in cleartext, all TLS 1.3
handshake messages are encrypted as soon as both parties have computed shared
keys, i.e. after the ServerHello message.

The ClientHello message in TLS 1.3 has major changes. First, in terms of
parameters, the following parameters have been deprecated (but still included
for backward compatibility): the maximum supported TLS version (vmax I) has
been substituted by the “supported versions” extension ([v1, ..., vn]); the session
ID (sessionID) has been substituted by the “pre shared key” extension; the com-
pression methods list [c1,...,cn] are not used any more and sent as a single byte
set to zero (cI). In addition, unlike TLS 1.2 where extensions are optional, in
TLS 1.3, the ClientHello extensions are mandatory and must at least include
the “supported versions” extension. Second, in terms of behaviour, the server
can optionally respond to a ClientHello with a HelloRetryRequest (HRR), a
newly introduced message in TLS 1.3 that can be sent from server to client to re-
quest a new (EC)DHE group that has not been offered in the client’s “key share”
extension ([...,(GI , g

i),...]) which is a list of “key share” entries (“KeyShareEn-
try”) ordered by preference, but is supported in the client’s “supported groups”

Client (I) Server (R)

CH(vmax I , nI ,[a1, .., an],cI ,[...,[...,(GI , g
i),...],[v1, ..., vn],[, ..., GR, ...],...])

HRR(vR,aR,[...,[GR],...])

CH(vmax I , nI ,[a1, .., an],cI ,[...,[(GR, g
i2)],[v1, ..., vn],[..., GR, ...],...])

SH(vR, nR, aR, [(GR, g
r)])

The rest of the handshake and record protocols

Fig. 5: Message sequence diagram for TLS 1.3 Hello messages with DHE key-exchange
and HelloRetryRequest. Deprecated parameters that are included for backward com-
patibility are marked with gray color.

extension ([...,GR,...]). The HelloRetryRequest can also be sent if the client
has not sent any “key share”. After the HelloRetryRequest, the client sends a
second ClientHello with the server’s requested “key share” ([GR, g

i2]).
Upon receiving a ClientHello, if the client’s offered parameters are sup-

ported by the server, the server responds with a ServerHello message. The
ServerHello has two major changes: First, unlike TLS 1.2 where the exten-
sions field is optional, in TLS 1.3, the ServerHello must contain at least the
“key share” or “pre shared key” extensions (the latter is sent in case of session
resumption which is beyond our paper’s scope). Second, as a version downgrade
attack defence mechanism (in addition to other mechanisms), the last eight bytes
of the server’s nonce nR are set to a fixed value that signals the TLS version that
the server has received from the client. This allows the client to verify that the
versions that were sent in the ClientHello have been received correctly by the
server. This is because the nonces are signed in the TLS 1.3 CertificateVerify
and in the TLS 1.2 ServerKeyExchnage as well.

Finally, the TLS 1.2 ServerKeyExchange is not used in TLS 1.3. This is a
result of shifting the key-exchange to the Hello messages, namely to the “key -
share” and “pre shared key” extensions. The signature over the key parameters
that is sent in the ServerKeyExchange in TLS 1.2 to authenticate the server’s
key parameters is now sent in a new message, namely the ServerCertificat-

eVerifywhich is sent after the server’s Certificatemessage. Most importantly,
the signature in the ServerCertificateVerify is computed over a hash of the
full transcript from the Hello messages up to the Certificate, and not only
over the key parameters as in TLS 1.2 ServerKeyExchange. The signature over
the full transcript provides protection against downgrade attacks that exploit the
lack of ciphersuite authentication in the ServerKeyExchange as demonstrated
in [2] and [4].

	What's in a Downgrade? A Taxonomy of Downgrade Attacks in the TLS Protocol and Application Protocols Using TLS

