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Questions

Based on slides by Christopher Manning, Danqi Chen, Karl Moritz Hermann, and Edward Grefenstette.
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Questions
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Why do we care about question answering (QA)?
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Questions (again)
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Questions (again)
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Question answering depends on three kinds of data

And this gives us a good system for thinking about various QA tasks.
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Question Taxonomy

8/79



QA Taxonomy Discovery
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Areas in Question Answering
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Question Answering: Example
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Question Answering and Reading Comprehension
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A Brief History of Reading Comprehension
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Datasets and Models for QA/RC
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Datasets and Models for QA/RC
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Datasets and Models for QA/RC
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Datasets and Models for QA/RC
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Reading Comprehension
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Machine Comprehension

(Burges 2013)
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MCTest Reading Comprehension

“MCTest: A challenge dataset for the open-domain machine comprehension of text”, Richardson et al., 2013.
https://aclweb.org/anthology/D/D13/D13-1020.pdf
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MCTest Reading Comprehension
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MCTest Reading Comprehension
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MCTest Reading Comprehension
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A Brief History of Open-domain Question Answering
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Stanford Question Answering Dataset (SQuAD)

“SQuAD: 100,000+ questions for machine comprehension of text”, Rajpurkar et al., 2016.
https://arxiv.org/pdf/1606.05250.pdf
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Stanford Question Answering Dataset (SQuAD)
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SQuAD Evaluation, v1.1
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SQuAD v1.1 Leaderboard, 2019-02-07
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SQuAD 2.0

https://rajpurkar.github.io/SQuAD-explorer/
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SQuAD 2.0 Example
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SQuAD 2.0 leaderboard, 2019-02-07
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Example

Good systems are great, but still basic NLU errors:
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SQuAD Limitations
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bAbI Dataset (Facebook)

https://research.fb.com/downloads/babi/
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bAbI Dataset (Facebook)
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CNN / Daily Mail Dataset (DeepMind)

https://github.com/deepmind/rc-data/
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CNN / Daily Mail Dataset (DeepMind)
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CNN / Daily Mail Dataset (DeepMind)
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CNN / Daily Mail Dataset (DeepMind)
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CNN / Daily Mail Dataset (DeepMind)
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CNN / Daily Mail Dataset (DeepMind)
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What’s missing in datasets?
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Turn-of-the-Millennium Full NLP QA

Architecture of LCC (Harabagiu/Moldovan) QA system, 2003.

Complex systems but they did work fairly well on factoid questions.
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Semantic Parsing
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Knowledge Bases for QA with Semantic Parsing
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KBs are cheap — Supervised Data is expensive!
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A Deep Learning Approach to Semantic Parsing
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Semantic Parsing Summary
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Stanford Attentive Reader

“A thorough examination of the CNN/Daily Mail reading
comprehension task”, Chen et al., 2016.
https://arxiv.org/pdf/1606.02858.pdf

Improved version of Attentive Reader in “Teaching machines to
read and comprehend”, Hermann et al., 2015.
https://arxiv.org/pdf/1506.03340.pdf
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CNN / Daily Mail Dataset (DeepMind)
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Stanford Attentive Reader
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Stanford Attentive Reader
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Stanford Attentive Reader
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Stanford Attentive Reader
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Stanford Attentive Reader
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Stanford Attentive Reader
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Stanford Attentive Reader
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Stanford Attentive Reader
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Stanford Attentive Reader
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Stanford Attentive Reader++

“Reading Wikipedia to answer open-domain questions”, Chen et al., 2017.
https://arxiv.org/pdf/1704.00051.pdf
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Stanford Attentive Reader++
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Stanford Attentive Reader++
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Stanford Attentive Reader++
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Stanford Attentive Reader++
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Stanford Attentive Reader++
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What do these neural models do?

Exact match (EM), Paraphrasing (Para.), Partial clue (Partial), Multiple

sentences (Multi), Coreference errors (Coref E), Ambiguous / hard (Hard)
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Multiple sentences
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Coreference errors
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Ambiguous / hard
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BiDAF: Bi-Directional Attention Flow for Machine Comprehension

“Bidirectional attention flow for machine comprehension”, Seo et al., 2016.
https://arxiv.org/pdf/1611.01603.pdf
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BiDAF: Bi-Directional Attention Flow for Machine Comprehension
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BiDAF: Bi-Directional Attention Flow for Machine Comprehension
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BiDAF: Bi-Directional Attention Flow for Machine Comprehension
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Recent, more advanced architectures
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Dynamic Coattention Networks for Question Answering

“Dynamic coattention networks for question answering”, Xiong et al., 2016.
https://arxiv.org/pdf/1611.01604.pdf
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Coattention Encoder
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Coattention layer
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FusionNet

Tries to combine many forms of attention

“FusionNet: Fusing via fully-aware attention with application to machine comprehension”, Huang et al., 2017.
https://arxiv.org/pdf/1711.07341.pdf
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Recent, more advanced architectures

(1) Word-level fusion, (2) high-level fusion, (2’) high-level fusion (alter-

native), (3) self-boosted fusion, and (3’) self-boosted fusion (alternative).
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