Living with Flight Dynamics
: Proposals and Possible Pitfalls for Harmonising Flight Dynamics Systems with EGOS

Shamal Faily
Consultant
A case for harmonisation

- Minimise maintenance by maximising re-use.
- Increased productivity = more time to deal with evolving Flight Dynamics user requirements.
Agenda

• 4 proposals for harmonisation
 – Telemetry Monitoring Software
 – Low Level/Common Components
 – Open Source/COTS usage
 – Generic Software Requirements

• For each proposal
 – The case for harmonisation
 – The possible pitfalls
EGOS and ORATOS

- SCOS-2000/ORATOS commonality study indicated commonalities do exist.
- Both architectures have evolved since study, but commonalities should still hold.
Telemetry Software Harmonisation: Proposal

- Analogies between EGOS (Telemetry Monitoring Desktop) and ORATOS (Generic Telemetry Processor)
Telemetry Software Harmonisation: Proposal

- Both applications make use of plugins

<soda remote_host="gomcd" data_stream="1">
 <packet_id id="10" />
</soda>

<mapping name="suntime" switchable="TRUE">
 <parameter name="RECEPTION_TIME" />
 <user_defined function="SUNTIME" shareable_object="$(EXAMPLES)/Receiver.so" />
</mapping>

<di name="crs1" configFile="$(EXAMPLES)/crs1.xml" />

Telemetry Software Harmonisation: Proposal
Telemetry Software Harmonisation: Proposal

- GTP Mission specific configuration can be non-trivial.
Telemetry Software Harmonisation : Proposal

• GTP Parameter visualisation uses “best-of-breed” open source.
• Supporting End-User Development (EUD) is important!

• EUD experiences lead to new ORATOS requirements.
- What is the QoS impact of selections?
- What is the maintainability impact of selection given extra artificial complexity?
- Does it meet our operational requirements?
- Misunderstanding implicit assumptions can lead to unsustainable architectural mismatch.
- ..which may be unnecessary.
Low-Level / Common Components Harmonisation: Proposal

- Similarity between low-level and common component use and design principles.
- Components developed for Flight Dynamics may be re-usable in other Algorithmic/Scientific applications.
Low-Level / Common Components Harmonisation: Possible Pitfalls

- ORATOS component re-use traditionally driven by tacit knowledge.
- Agreed interfaces need to be negotiated.
- What are the supportability requirements?
Open Source / COTS usage Harmonisation : Proposal

- ORATOS relies on Open-Source.
• Re-use of lessons learned replacing closed with open-source.

• Harmonisation of products and versions eases idiomatic software re-use.
• Vendor supported “stable” versions not always stable when integrated with Flight Dynamics software.

• Flight Dynamics Open-Source selection based on experience developing and maintaining it as part of the Flight Dynamics infrastructure.

 – Subversion more robust than CVS when updating the repository structure.

 – ICE easier to use and components easier to maintain than CORBA (ACE/TAO).
Generic Software Requirements Harmonisation: Proposal

- Many EGOS Generic Software Requirements already implicitly met, e.g. Cluster awareness requirements.
- Harmonising means setting common standards for 3rd parties to develop components used in Flight Dynamics Systems.
• Current design and implementation constraints heavily biased towards C++ and Java.

• Mandating use of explicit CASE tools stifles the initiative of those who wish to use complementary tools and methods.
A foundation for harmonisation exists.

All pitfalls can be overcome by requirements negotiation.

Flight Dynamics users as stake-holders of EGOS should be the basis of subsequent requirements negotiation.
Thank you for listening!

- Any questions?