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Abstract We study the problem of recovering an un-

derlying 3D shape from a set of images. Existing learn-

ing based approaches usually resort to recurrent neural

nets, e.g., GRU, or intuitive pooling operations, e.g.,

max/mean poolings, to fuse multiple deep features en-

coded from input images. However, GRU based ap-

proaches are unable to consistently estimate 3D shapes

given different permutations of the same set of input

images as the recurrent unit is permutation variant. It is

also unlikely to refine the 3D shape given more images

due to the long-term memory loss of GRU. Commonly

used pooling approaches are limited to capturing par-

tial information, e.g., max/mean values, ignoring other

valuable features. In this paper, we present a new feed-

forward neural module, named AttSets, together with

a dedicated training algorithm, named FASet, to at-
tentively aggregate an arbitrarily sized deep feature set

for multi-view 3D reconstruction. The AttSets module

is permutation invariant, computationally efficient and

flexible to implement, while the FASet algorithm en-

ables the AttSets based network to be remarkably robust

and generalize to an arbitrary number of input images.

We thoroughly evaluate FASet and the properties of

AttSets on multiple large public datasets. Extensive

experiments show that AttSets together with FASet al-

gorithm significantly outperforms existing aggregation

approaches.
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1 Introduction

The problem of recovering a geometric representation of

the 3D world given a set of images is classically defined

as multi-view 3D reconstruction in computer vision. Tra-

ditional pipelines such as Structure from Motion (SfM)

(Ozyesil et al., 2017) and visual Simultaneous Local-

ization and Mapping (vSLAM) (Cadena et al., 2016)

typically rely on hand-crafted feature extraction and

matching across multiple views to reconstruct the un-

derlying 3D model. However, if the multiple viewpoints

are separated by large baselines, it can be extremely

challenging for the feature matching approach due to sig-

nificant changes of appearance or self occlusions (Lowe,

2004). Furthermore, the reconstructed 3D shape is usu-

ally a sparse point cloud without geometric details.

Recently, a number of deep learning approaches, such

as 3D-R2N2 (Choy et al., 2016), LSM (Kar et al., 2017),

DeepMVS (Huang et al., 2018) and RayNet (Paschali-

dou et al., 2018) have been proposed to estimate the

3D dense shape from multiple images and have shown

encouraging results. Both 3D-R2N2 (Choy et al., 2016)

and LSM (Kar et al., 2017) formulate multi-view recon-

struction as a sequence learning problem, and leverage

recurrent neural networks (RNNs), particularly GRU,

to fuse the multiple deep features extracted by a shared

encoder from input images. However, there are three

limitations. First, the recurrent network is permutation

variant, i.e., different permutations of the input image

sequence give different reconstruction results (Vinyals

et al., 2015). Therefore, inconsistent 3D shapes are es-

timated from the same image set with different per-
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Fig. 1 Overview of our attentional aggregation module for multi-view 3D reconstruction. A set of N images is passed through
a common encoder to be a set of deep features, one element for each image. The network is trained with our FASet algorithm.

mutations. Second, it is difficult to capture long-term

dependencies in the sequence because of the gradient

vanishing or exploding (Bengio et al., 1994; Kolen and

Kremer, 2001), so the estimated 3D shapes are unlikely

to be refined even if more images are given during train-

ing and testing. Third, the RNN unit is inefficient as

each element of the input sequence must be sequentially

processed without parallelization (Martin and Cundy,

2018), so is time-consuming to generate the final 3D

shape given a sequence of images.

The recent DeepMVS (Huang et al., 2018) applies

max pooling to aggregate deep features across a set of

unordered images for multi-view stereo reconstruction,

while RayNet (Paschalidou et al., 2018) adopts average

pooling to aggregate the deep features corresponding to

the same voxel from multiple images to recover a dense

3D model. The very recent GQN (Eslami et al., 2018)

uses sum pooling to aggregate an arbitrary number of

orderless images for 3D scene representation. Although

max, average and summation poolings do not suffer

from the above limitations of RNN, they tend to be

‘hard attentive’, since they only capture the max/mean

values or the summation without learning to attentively

preserve the useful information. In addition, the above

pooling based neural nets are usually optimized with a

specific number of input images during training, there-

fore being not robust and general to a dynamic number

of input images during testing. This critical issue is also

observed in GQN (Eslami et al., 2018).

In this paper, we introduce a simple yet efficient

attentional aggregation module, named AttSets 1. It

can be easily included in an existing multi-view 3D

reconstruction network to aggregate an arbitrary num-

ber of elements of a deep feature set. Inspired by the

attention mechanism which shows great success in nat-

ural language processing (Bahdanau et al., 2015; Raffel

and Ellis, 2016), image captioning (Xu et al., 2015),

etc., we design a feed-forward neural module that can

automatically learn to aggregate each element of the

input deep feature set. In particular, as shown in Fig-

ure 1, given a variable sized deep feature set, which

1 Code is available at https://github.com/Yang7879/AttSets

are usually learnt view-invariant visual representations

from a shared encoder (Paschalidou et al., 2018), our

AttSets module firstly learns an attention activation

for each latent feature through a standard neural layer

(e.g., a fully connected layer, a 2D or 3D convolutional

layer), after which an attention score is computed for

the corresponding feature. Subsequently, the attention

scores are simply multiplied by the original elements of

the deep feature set, generating a set of weighted fea-

tures. At last, the weighted features are summed across

different elements of the deep feature set, producing a

fixed size of aggregated features which are then fed

into a decoder to estimate 3D shapes. Basically, this

AttSets module can be seen as a natural extension of

sum pooling into a “weighted” sum pooling with learnt

feature-specific weights. AttSets shares similar concepts

with the concurrent work (Ilse et al., 2018), but it does

not require the additional gating mechanism in (Ilse

et al., 2018). Notably, our simple feed-forward design

allows the attention module to be separately trainable

according to the property of its gradients.

In addition, we propose a new Feature-Attention

Separate training (FASet) algorithm that elegantly

decouples the base encoder-decoder (to learn deep fea-

tures) from the AttSets module (to learn attention scores

for features). This allows the AttSets module to learn

desired attention scores for deep feature sets and guar-

antees the AttSets based neural networks to be robust

and general to dynamic sized deep feature sets. Ba-

sically, in the proposed training algorithm, the base

encoder-decoder neural layers are only optimized when

the number of input images is 1, while the AttSets mod-

ule is only optimized where there are more than 1 input

images. Eventually, the whole optimized AttSets based

neural network achieves superior performance with a

large number of input images, while simultaneously be-

ing extremely robust and able to generalize to a small

number of input images, even to a single image in the

extreme case. Comparing with the widely used feed-

forward attention mechanisms for visual recognition

(Jie Hu et al., 2018; Rodŕıguez et al., 2018; Liu et al.,

2018; Sarafianos et al., 2018; Girdhar and Ramanan,

2017), our FASet algorithm is the first to investigate
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and improve the robustness of attention modules to dy-

namically sized input feature sets, whilst existing works

are only applicable to fixed sized input data.

Overall, our novel AttSets module and FASet algo-

rithm are distinguished from all existing aggregation

approaches in three ways. 1) Compared with RNN ap-

proaches, AttSets is permutation invariant and compu-

tationally efficient. 2) Compared with the widely used

pooling operations, AttSets learns to attentively select

and weight important deep features, thereby being more

effective to aggregate useful information for better 3D
reconstruction. 3) Compared with existing visual at-

tention mechanisms, our FASet algorithm enables the

whole network to be general to variable sized sets, be-

ing more robust and suitable for realistic multi-view

3D reconstruction scenarios where the number of input

images usually varies dramatically.

Our key contributions are:

– We propose an efficient feed-forward attention mod-

ule, AttSets, to effectively aggregate deep feature sets.

Our design allows the attention module to be sepa-

rately optimizable according to the property of its

gradients.

– We propose a new two-stage training algorithm, FASet,

to decouple the base encoder/decoder and the atten-

tion module, guaranteeing the whole network to be

robust and general to an arbitrary number of input

images.

– We conduct extensive experiments on multiple pub-

lic datasets, demonstrating consistent improvement

over existing aggregation approaches for 3D object

reconstruction from either single or multiple views.

2 Related Work

(1) Multi-view 3D Reconstruction. 3D shapes can

be recovered from multiple color images or depth scans.

To estimate the underlying 3D shape from multiple

color images, classic SfM (Ozyesil et al., 2017) and

vSLAM (Cadena et al., 2016) algorithms firstly extract

and match hand-crafted geometric features (Hartley

and Zisserman, 2004) and then apply bundle adjust-

ment (Triggs et al., 1999) for both shape and camera

motion estimation. Ji et al. (Ji et al., 2017b) use “max-

imizing rigidity” for reconstruction, but this requires

2D point correspondences across images. Recent deep

neural net based approaches tend to recover dense 3D

shapes through learnt features from multiple images

and achieve compelling results. To fuse the deep fea-

tures from multiple images, both 3D-R2N2 (Choy et al.,

2016) and LSM (Kar et al., 2017) apply the recurrent

unit GRU, resulting in the networks being permutation

variant and inefficient for aggregating long sequence

of images. Recent SilNet (Wiles and Zisserman, 2017,

2018) and DeepMVS (Huang et al., 2018) simply use

max pooling to preserve the first order information of

multiple images, while RayNet (Paschalidou et al., 2018)

applies average pooling to reserve the first moment infor-

mation of multiple deep features. MVSNet (Yao et al.,

2018) proposes a variance-based approach to capture

the second moment information for multiple feature ag-

gregation. These pooling techniques only capture partial

information, ignoring the majority of the deep features.
Recent SurfaceNet (Ji et al., 2017a) and SuperPixel

Soup (Kumar et al., 2017) can reconstruct 3D shapes

from two images, but they are unable to process an arbi-

trary number of images. As for multiple depth image

reconstruction, the traditional volumetric fusion method

(Curless and Levoy, 1996; Cao et al., 2018) integrates

multiple viewpoint information by averaging truncated

signed distance functions (TSDF). Recent learning based

OctNetFusion (Riegler et al., 2017) also adopts a sim-

ilar strategy to integrate multiple depth information.

However, this integration might result in information

loss since TSDF values are averaged (Riegler et al.,

2017). PSDF (Dong et al., 2018) is recently proposed

to learn a probabilistic distribution through Bayesian

updating in order to fuse multiple depth images, but it is

not straightforward to include the module into existing

encoder-decoder networks.

(2) Deep Learning on Sets. In contrast to traditional

approaches operating on fixed dimensional vectors or

matrices, deep learning tasks defined on sets usually

require learning functions to be permutation invariant

and able to process an arbitrary number of elements in a

set (Zaheer et al., 2017). Such problems are widespread.

Zaheer et al. introduce general permutation invariant

and equivariant models in (Zaheer et al., 2017), and they

end up with a sum pooling for permutation invariant

tasks such as population statistics estimation and point

cloud classification. In the very recent GQN (Eslami

et al., 2018), sum pooling is also used to aggregate an

arbitrary number of orderless images for 3D scene rep-

resentation. Gardner et al. (Gardner et al., 2017) use

average pooling to integrate an unordered deep fea-

ture set for classification task. Su et al. (Su et al., 2015)

use max pooling to fuse the deep feature set of multi-

ple views for 3D shape recognition. Similarly, PointNet

(Qi et al., 2017) also uses max pooling to aggregate the

set of features learnt from point clouds for 3D classifi-

cation and segmentation. In addition, the higher-order

statistics based pooling approaches are widely used for

3D object recognition from multiple images. Vanilla bi-

linear pooling is applied for fine-grained recognition

in (Lin et al., 2015) and is further improved in (Lin and
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Fig. 2 Attentional aggregation module on sets. This module learns an attention score for each individual deep feature.

Maji, 2017). Concurrently, log-covariance pooling is

proposed in (Ionescu et al., 2015), and is recently gener-

alized by harmonized bilinear pooling in (Yu et al.,

2018). Bilinear pooling techniques are further improved

in the recent work (Yu and Salzmann, 2018; Lin et al.,

2018). However, both first-order and higher-order pool-

ing operations ignore a majority of the information of

a set. In addition, the first-order poolings do not have

trainable parameters, while the higher-order poolings

have only few parameters available for the network to

learn. These limitations lead to the pooling based neural

networks to be optimized with regards to the specific

statistics of data batches during training, and therefore

unable to be robust and generalize well to variable sized

deep feature sets during testing.

(3) Attention Mechanism. The attention mechanism

was originally proposed for natural language processing

(Bahdanau et al., 2015). Being coupled with RNNs, it

achieves compelling results in neural machine translation

(Bahdanau et al., 2015), image captioning (Xu et al.,

2015), image question answering (Yang et al., 2016), etc.
However, all these coupled attention approaches are per-

mutation variant and computationally time-consuming.

Dispensing with recurrence and convolutions entirely

and solely relying on attention mechanism, Transformer

(Vaswani et al., 2017) achieves superior performance

in machine translation tasks. Similarly, being decou-
pled with RNNs, attention mechanisms are also applied

for visual recognition (Jie Hu et al., 2018; Rodŕıguez

et al., 2018; Liu et al., 2018; Sarafianos et al., 2018;

Zhu et al., 2018; Nakka and Salzmann, 2018; Girdhar

and Ramanan, 2017), semantic segmentation (Li et al.,

2018), long sequence learning (Raffel and Ellis, 2016),

and image generation (Zhang et al., 2018). Although

the above decoupled attention modules can be used

to aggregate variable sized deep feature sets, they are

literally designed to operate on fixed sized features for

tasks such as image recognition and generation. The

robustness of attention modules regarding dynamic deep

feature sets has not been investigated yet.

Compared with the original attention mechanism,

our AttSets does not couple with RNNs. Instead, AttSets

is a simplified feed-forward module which shares similar

concepts with the concurrent work (Ilse et al., 2018).

However, our AttSets is much simpler, without requiring

the additional gating mechanism in (Ilse et al., 2018).

Besides, we further propose a dedicated FASet algorithm,

enabling the AttSets based network to be remarkably

robust and general to arbitrarily sized deep sets. This

algorithm is the first to investigate and improve the

robustness of feed-forward attention mechanisms.

3 AttSets

3.1 Problem Definition

This paper considers the problem of aggregating an

arbitrary number of elements of a set A into a fixed

single output y. Each element of set A is a feature

vector extracted from a shared encoder, and the fixed
dimension output y is fed into a subsequent decoder,

such that the whole network can process an arbitrary

number of input elements.

Given N elements in the input deep feature set A =

{x1,x2, · · · ,xN}, xn ∈ R1×D, where N is an arbitrary

value, while D is fixed for a specific encoder, and the

output y ∈ R1×D, which is then fed into the subsequent

decoder, our task is to design an aggregation function f

with learnable weights W : y = f(A,W ), which should

be permutation invariant, i.e., for any permutation π:

f({x1, · · · ,xN},W ) = f({xπ(1), · · · ,xπ(N)},W ) (1)

The common pooling operations, e.g., max/mean/sum,

are the simplest instantiations of function f where W ∈
∅. However, these pooling operations are predefined to

capture partial information.

3.2 AttSets Module

The basic idea of our AttSets module is to learn an

attention score for each latent feature of the whole deep

feature set. In this paper, each latent feature refers to

each entry of an individual element of the feature set,



Robust Attentional Aggregation of Deep Feature Sets for Multi-view 3D Reconstruction 5

x1

x2

xN

a set of
features

y
aggregated

features

AttSets
g: fc()

AttSets
g: conv2d()
stride=(1, 1)

x2

x1

xN

a set of 
2D features

aggregated
2D features

y x2

x1

xN

a set of 
3D features

AttSets
g: conv3d()

stride=(1, 1, 1) aggregated
3D features

y

Fig. 3 Implementation of AttSets with fully connected layer, 2D ConvNet, and 3D ConvNet. These three variants of AttSets
can be flexibly plugged into different locations of an existing encoder-decoder network.

with an individual element usually represented by a la-

tent vector, i.e., xn. The learnt scores can be regarded as

a mask that automatically selects useful latent features

across the set. The selected features are then summed

across multiple elements of the set.

As shown in Figure 2, given a set of features A =

{x1,x2, · · · ,xN}, xn ∈ R1×D, AttSets aims to fuse it

into a fixed dimensional output y, where y ∈ R1×D.

To build the AttSets module, we first feed each ele-

ment of the feature set A into a shared function g which

can be a standard neural layer, i.e., a linear transforma-

tion layer without any non-linear activation functions.

Here we use a fully connected layer as an example,

the bias term is dropped for simplicity. The output

of function g is a set of learnt attention activations

C = {c1, c2, · · · , cN}, where

cn = g(xn,W ) = xnW ,

(xn ∈ R1×D, W ∈ RD×D, cn ∈ R1×D)
(2)

Secondly, the learnt attention activations are nor-

malized across the N elements of the set, computing a

set of attention scores S = {s1, s2, · · · , sN}. We choose

softmax as the normalization operation, so the atten-

tion scores for the nth feature element are

sn = [s1n, s
2
n, · · · , sdn, · · · , sDn ],

sdn =
ec
d
n∑N

j=1 e
cdj
, cdn, c

d
j are the dth entry of cn, cj.

(3)

Thirdly, the computed attention scores S are multi-

plied by their corresponding original feature set A, gen-

erating a new set of deep features, denoted as weighted

features O = {o1,o2, · · · ,oN}, where

on = xn ∗ sn (4)

Lastly, the set of weighted features O are summed

up across the total N elements to get a fixed size feature

vector, denoted as y, where

y = [y1, y2, · · · , yd, · · · , yD],

yd =

N∑
n=1

odn, odn is the dth entry of on.
(5)

In the above formulation, we show how AttSets grad-

ually aggregates a set of N feature vectors A into a

single vector y, where y ∈ R1×D.

3.3 Permutation Invariance

The output of AttSets module y is permutation invariant

with regard to the input deep feature set A. Here is the

simple proof.

[y1, · · · yd · · · , yD] = f({x1, · · ·xn · · · ,xN},W ) (6)

In Equation 6, the dth entry of the output y is

computed as follows:

yd =

N∑
n=1

odn =

N∑
n=1

(xdn ∗ sdn)

=

N∑
n=1

(
xdn ∗

ec
d
n∑N

j=1 e
cdj

)

=

N∑
n=1

(
xdn ∗

e(xnw
d)∑N

j=1 e
(xjwd

)

)

=

∑N
n=1

(
xdn ∗ e(xnw

d)
)

∑N
j=1 e

(xjwd)
, (7)

where wd is the dth column of the weights W . In above

Equation 7, both the denominator and numerator are a

summation of a permutation equivariant term. Therefore

the value yd, and also the full vector y, is invariant

to different permutations of the deep feature set A =

{x1,x2, · · · ,xn, · · · ,xN} (Zaheer et al., 2017).

3.4 Implementation

In Section 3.2, we described how our AttSets aggregates

an arbitrary number of vector features into a single vec-

tor, where the attention activation learning function g

embeds a fully connected (fc) layer. AttSets can also
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be easily implemented with both 2D and 3D convolu-

tional neural layers to aggregate both 2D and 3D deep

feature sets, thus being flexible to be included into a

2D encoder/decoder or 3D encoder/decoder. Particu-

larly, as shown in Figure 3, to aggregate a set of 2D

features, i.e., a tensor of (width× height× channels),
the attention activation learning function g embeds a

standard conv2d layer with a stride of (1 × 1). Sim-

ilarly, to fuse a set of 3D features, i.e., a tensor of

(width×height×depth× channels), the function g em-

beds a standard conv3d layer with a stride of (1×1×1).
For the above conv2d/conv3d layer, the filter size can

be 1, 3 or many. The larger the filter size, the learnt

attention score is considered to be correlated with the

larger local spatial area.

Instead of embedding a single neural layer, the func-

tion g is also flexible to include multiple layers, but the

tensor shape of the output of function g is required to be

consistent with the input element xn. This guarantees

each individual feature of the input set A will be associ-

ated with a learnt and unique weight. For example, a

standard 2-layer or 3-layer ResNet module (He et al.,

2016) could be a candidate of the function g. The more

layers that g embeds, the capability of AttSets module

is expected to increase accordingly.

Compared with fc enabled AttSets, the conv2d or

conv3d based AttSets variants tend to have fewer learn-

able parameters. Note that both the conv2d and conv3d

based AttSets are still permutation invariant, as the

function g is shared across all elements of the deep fea-

ture set and it does not depend on the order of the

elements (Zaheer et al., 2017).

4 FASet

4.1 Motivation

Our AttSets module can be included in an existing

encoder-decoder multi-view 3D reconstruction network,

replacing the RNN units or pooling operations. Basically,

in an AttSets enabled encoder-decoder net, the encoder-

decoder serves as the base architecture to learn visual

features for shape estimation, while the AttSets module

learns to assign different attention scores to combine

those features. As such, the base network tends to have

robustness and generality with regard to different input

image content, while the AttSets module tends to be

general regarding an arbitrary number of input images.

However, to achieve this robustness is not straight-

forward. The standard end-to-end joint optimization

approach is unable to guarantee that the base encoder-

decoder and AttSets are able to learn visual features

and the corresponding scores separately, because there

are no explicit feature score labels available to directly

supervise the AttSets module.

Let us revisit the previous Equation 7 as follows and

draw insights from it.

yd =

∑N
n=1

(
xdn ∗ e(xnw

d)
)

∑N
j=1 e

(xjwd)
(8)

where N is the size of an arbitrary input set and wd are

the AttSets parameters to be optimized. If N is 1, then

the equation can be simplified as

yd = xdn (9)

∂yd

∂xdn
= 1,

∂yd

∂wd
= 0, N = 1 (10)

This shows that all parameters, i.e., wd, of the AttSets

module are not going to be optimized when the size of

the input feature set is 1.

However, if N > 1, Equation 8 is unable to be

simplified to Equation 9. Therefore,

∂yd

∂xdn
6= 1,

∂yd

∂wd
6= 0, N > 1 (11)

This shows that both the parameters of AttSets and the

base encoder-decoder layers will be optimized simulta-

neously, if the whole network is trained in the standard

end-to-end fashion.

Here arises the critical issue. When N > 1, all deriva-

tives of the parameters in the encoder are different from

the derivatives when N = 1 due to the chain rule of

differentiation applied backwards from ∂yd

∂xdn
. Put sim-

ply, the derivatives of encoder are N-dependent. As a
consequence, the encoded visual features and the learnt

attention scores would be N-biased if the whole net-

work is jointly trained. This biased network is unable

to generalize to an arbitrary value of N during testing.

To illustrate the above issue, assuming the base

encoder-decoder and the AttSets module are jointly

trained given 5 images to reconstruct every object, the

base encoder will be eventually optimized towards 5-

view object reconstruction during training. The trained

network can indeed perform well given 5 views during

testing, but it is unable to predict a satisfactory object

shape given only 1 image.

To alleviate the above problem, a naive approach

is to enumerate various values of N during the jointly

training, such that the final optimized network can be

somehow robust and general to arbitrary N during test-

ing. However, this approach would inevitably optimize

the encoder to learn the mean features of input data

for varying N . The overall performance will hence not

be optimal. In addition, it is impractical and also time-

consuming to enumerate all values of N during training.
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Algorithm 1 Feature-Attention Separate training of an AttSets enabled network. M is batch size, N is image number.

Stage 1:
for number of training iterations do
• Sample M sets of images {I1, · · · , Im, · · · , IM} and sample N images for each set, i.e., Im = {i1m, · · · , inm, · · · , iNm}.

Sample M 3D shape labels {v1, · · · , vm, · · · , vM}.

• Update the base network by ascending its stochastic gradient:

∇Θbase
1

MN

M∑
m=1

N∑
n=1

[`(v̂nm, vm)] , where v̂nm is the estimated 3D shape of single image {inm}.

Stage 2:
for number of training iterations do
• Sample M sets of images {I1, · · · , Im, · · · , IM} and sample N images for each set, i.e., Im = {i1m, · · · , inm, · · · , iNm}.

Sample M 3D shape labels {v1, · · · , vm, · · · , vM}.

• Update the AttSets module by ascending its stochastic gradient:

∇Θatt
1

M

M∑
m=1

[`(v̂m, vm)] , where v̂m is the estimated 3D shape of the image set Im.

The gradient-based updates can use any gradient optimization algorithm.

4.2 Algorithm

To resolve the critical issue discussed in Section 4.1,

we propose a Feature-Attention Separate training

(FASet) algorithm that decouples the base encoder-
decoder and the AttSets module, enabling the base

encoder-decoder to learn robust deep features and the

AttSets module to learn the desired attention scores for

the feature sets.

In particular, the base encoder-decoder neural layers

are only optimized when the number of input images

is 1, while the AttSets module is only optimized where

there are more than 1 input images. In this regard, the

parameters of the base encoding layers would have con-
sistent derivatives in the whole training stage, thus being

optimized steadily. In the meantime, the AttSets module

would be optimized solely based on multiple elements

of learnt visual features from the shared encoder.

The trainable parameters of the base encoder-decoder

are denoted as Θbase, and the trainable parameters of

AttSets module are denoted as Θatt, and the loss func-

tion of the whole network is represented by ` which

is determined by the specific supervision signal of the

base network. Our FASet is shown in Algorithm 1. It

can be seen that Θbase and Θatt are completely decou-

pled from one another, thus being separately optimized

in two stages. In stage 1, the Θbase is firstly well op-

timized until convergence, which guarantees the base

encoder-decoder is able to learn robust and general vi-

sual features. In stage 2, the Θatt is optimized to learn

attention scores for individual visual features. Basically,

this module learns to select and weight important deep

features automatically.

3D GRU

AttSets (fc)
fc+relu+
reshape

1x1024 4x4x4x128
Nx10242D Encoder 3D Decoder

AttSets (fc)
1x160

Nx1602D Encoder 2D Decoder

input image 
viewing angles

query image 
viewing angle

Fig. 4 The architecture of Baser2n2-AttSets for multi-view
3D reconstruction network. The base encoder-decoder is the
same as 3D-R2N2.

3D GRU

AttSets (fc)
fc+relu+
reshape

1x1024 4x4x4x128
Nx10242D Encoder 3D Decoder

AttSets (fc)
1x160

Nx1602D Encoder 2D Decoder

input image 
viewing angles

query image 
viewing angle

Fig. 5 The architecture of Basesilnet-AttSets for multi-view
3D shape learning. The base encoder-decoder is the same as
SilNet.

In FASet algorithm, once the Θbase is well optimized

in stage 1, it is not necessary to train it again, since the

two-stage algorithm guarantees that optimizing Θbase

is agnostic to the attention module. The FASet algo-

rithm is a crucial component to maintain the superior

robustness of the AttSets module, as shown in Section

5.9. Without it, the feed-forward attention mechanism

is ineffective with respect to dynamic input sets.

5 Evaluation

Base Networks. To evaluate the performance and

various properties of AttSets, we choose the encoder-

decoders of 3D-R2N2 (Choy et al., 2016) and SilNet

(Wiles and Zisserman, 2017) as two base networks.

– Encoder-decoder of 3D-R2N2. The original 3D-R2N2

consists of (1) a shared ResNet-based 2D encoder

which encodes a size of 127 × 127 × 3 images into
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1024 dimensional latent vectors, (2) a GRU module

which fuses N 1024 dimensional latent vectors into a

single 4× 4× 4× 128 tensor, and (3) a ResNet-based

3D decoder which decodes the single tensor into a

32×32×32 voxel grid representing the 3D shape. Figure

4 shows the architecture of AttSets based multi-view

3D reconstruction network where the only difference is

that the original GRU module is replaced by AttSets

in the middle. This network is called Baser2n2-AttSets.

– Encoder-decoder of SilNet. The original SilNet con-

sists of (1) a shared 2D encoder which encodes a size
of 127× 127× 3 images together with image viewing

angles into 160 dimensional latent vectors, (2) a max

pooling module which aggregates N latent vectors into

a single vector, and (3) a 2D decoder which estimates

an object silhouette (57× 57) from the single latent

vector and a new viewing angle. Instead of being ex-

plicitly supervised by 3D shape labels, SilNet aims to

implicitly learn a 3D shape representation from multi-

ple images via the supervision of 2D silhouettes. Figure

5 shows the architecture of AttSets based SilNet where

the only difference is that the original max pooling

is replaced by AttSets in the middle. This network is

called Basesilnet-AttSets.

Competing Approaches. We compare our AttSets

and FASet with three groups of competing approaches.

Note that all the following competing approaches are

connected at the same location of the base encoder-

decoder shown in the pink block of Figure 4 and 5, with

the same network configurations and training/testing

settings.

– RNNs. The original 3D-R2N2 makes use of the GRU

(Choy et al., 2016; Kar et al., 2017) unit for feature

aggregation and serves as a solid baseline.

– First-order poolings. The widely used max/mean/

sum pooling operations (Huang et al., 2018; Paschali-

dou et al., 2018; Eslami et al., 2018) are all imple-

mented for comparison.

– Higher-order poolings. We also compare with the state-

of-the-art higher-order pooling approaches, including

bilinear pooling (BP) (Lin et al., 2015), and the very

recent MHBN (Yu et al., 2018) and SMSO poolings

(Yu and Salzmann, 2018).

Datasets. All approaches are evaluated on four large

open datasets.

– ShapeNetr2n2 Dataset (Choy et al., 2016). The released

3D-R2N2 dataset consists of 13 categories of 43, 783

common objects with synthesized RGB images from

the large scale ShapeNet 3D repository (Chang et al.,

2015). For each 3D object, 24 images are rendered from

different viewing angles circling around each object.

The train/test dataset split is 0.8 : 0.2.

– ShapeNetlsm Dataset (Kar et al., 2017). Both LSM

and 3D-R2N2 datasets are generated from the same

3D ShapeNet repository (Chang et al., 2015), i.e., they

have the same ground truth labels regarding the same

object. However, the ShapeNetlsm dataset has totally

different camera viewing angles and lighting sources

for the rendered RGB images. Therefore, we use the

ShapeNetlsm dataset to evaluate the robustness and

generality of all approaches. All images of ShapeNetlsm
dataset are resized from 224×224 to 127×127 through

linear interpolation.

– ModelNet40 Dataset. ModelNet40 (Wu et al., 2015)

consists of 12, 311 objects belonging to 40 categories.

The 3D models are split into 9, 843 training samples

and 2, 468 testing samples. For each 3D model, it

is voxelized into a 30 × 30 × 30 shape in (Qi et al.,

2016), and 12 RGB images are rendered from different

viewing angles. All 3D shapes are zero-padded to be

32× 32× 32, and the images are linearly resized from

224× 224 to 127× 127 for training and testing.

– Blobby Dataset (Wiles and Zisserman, 2017). It con-

tains 11, 706 blobby objects. Each object has 5 RGB

images paired with viewing angles and the correspond-

ing silhouettes, which are generated from Cycles in

Blender under different lighting sources and texture

models.

Metrics. The explicit 3D voxel reconstruction per-
formance of Baser2n2-AttSets and the competing ap-

proaches is evaluated on three datasets: ShapeNetr2n2,

ShapeNetlsm and ModelNet40. We use the mean Intersection-

over-Union (IoU) (Choy et al., 2016) between predicted

3D voxel grids and their ground truth as the metric.

The IoU for an individual voxel grid is formally defined
as follows:

IoU =

∑L
i=1

[
I(hi > p) ∗ I(h̄i)

]∑L
i=1

[
I
(
I(hi > p) + I(h̄i)

)]
where I(·) is an indicator function, hi is the predicted

value for the ith voxel, h̄i is the corresponding ground

truth, p is the threshold for voxelization, L is the total

number of voxels in a whole voxel grid. As there is no

validation split in the above three datasets, to calculate

the IoU scores, we independently search the optimal

binarization threshold value from 0.2 ∼ 0.8 with a step

0.05 for all approaches for fair comparison. In our exper-

iments, we found that all optimal thresholds of different

approaches end up with 0.3 or 0.35.

The implicit 3D shape learning performance of Basesilnet-

AttSets and the competing approaches is evaluated on

the Blobby dataset. The mean IoU between predicted

2D silhouettes and the ground truth is used as the metric

(Wiles and Zisserman, 2017).
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Table 1 Group 1: mean IoU for multi-view reconstruction of all 13 categories in ShapeNetr2n2 testing split. All networks are
firstly trained given only 1 image for each object in Stage 1. The AttSets module is further trained given 2 images per object
in Stage 2, while other competing approaches are fine-tuned given 2 images per object in Stage 2.

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views
Baser2n2-GRU 0.574 0.608 0.622 0.629 0.633 0.639 0.642 0.642 0.641 0.640
Baser2n2-max pooling 0.620 0.651 0.660 0.665 0.666 0.671 0.672 0.674 0.673 0.673
Baser2n2-mean pooling 0.632 0.654 0.661 0.666 0.667 0.674 0.676 0.680 0.680 0.681
Baser2n2-sum pooling 0.633 0.657 0.665 0.669 0.669 0.670 0.666 0.667 0.666 0.665
Baser2n2-BP pooling 0.588 0.608 0.615 0.620 0.621 0.627 0.628 0.632 0.633 0.633
Baser2n2-MHBN pooling 0.578 0.599 0.606 0.611 0.612 0.618 0.620 0.623 0.624 0.624
Baser2n2-SMSO pooling 0.623 0.654 0.664 0.670 0.672 0.679 0.679 0.682 0.680 0.678
Baser2n2-AttSets(Ours) 0.642 0.665 0.672 0.677 0.678 0.684 0.686 0.690 0.690 0.690

Table 2 Group 2: mean IoU for multi-view reconstruction of all 13 categories in ShapeNetr2n2 testing split. All networks are
firstly trained given only 1 image for each object in Stage 1. The AttSets module is further trained given 8 images per object
in Stage 2, while other competing approaches are fine-tuned given 8 images per object in Stage 2.

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views
Baser2n2-GRU 0.580 0.616 0.629 0.637 0.641 0.649 0.652 0.652 0.652 0.652
Baser2n2-max pooling 0.524 0.615 0.641 0.655 0.661 0.674 0.678 0.683 0.684 0.684
Baser2n2-mean pooling 0.632 0.657 0.665 0.670 0.672 0.679 0.681 0.685 0.686 0.686
Baser2n2-sum pooling 0.580 0.628 0.644 0.656 0.660 0.672 0.677 0.682 0.684 0.685
Baser2n2-BP pooling 0.544 0.599 0.618 0.628 0.632 0.644 0.648 0.654 0.655 0.656
Baser2n2-MHBN pooling 0.570 0.596 0.606 0.612 0.614 0.621 0.624 0.628 0.629 0.629
Baser2n2-SMSO pooling 0.570 0.621 0.641 0.652 0.656 0.668 0.673 0.679 0.680 0.681
Baser2n2-AttSets(Ours) 0.642 0.662 0.671 0.676 0.678 0.686 0.688 0.693 0.694 0.694

Table 3 Group 3: mean IoU for multi-view reconstruction of all 13 categories in ShapeNetr2n2 testing split. All networks are
firstly trained given only 1 image for each object in Stage 1. The AttSets module is further trained given 16 images per object
in Stage 2, while other competing approaches are fine-tuned given 16 images per object in Stage 2.

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views
Baser2n2-GRU 0.579 0.614 0.628 0.636 0.640 0.647 0.651 0.652 0.653 0.653
Baser2n2-max pooling 0.511 0.604 0.633 0.649 0.656 0.671 0.678 0.684 0.686 0.686
Baser2n2-mean pooling 0.594 0.637 0.652 0.662 0.667 0.677 0.682 0.687 0.688 0.689
Baser2n2-sum pooling 0.570 0.629 0.647 0.657 0.664 0.678 0.684 0.690 0.692 0.692
Baser2n2-BP pooling 0.545 0.593 0.611 0.621 0.627 0.637 0.642 0.647 0.648 0.649
Baser2n2-MHBN pooling 0.570 0.596 0.606 0.612 0.614 0.621 0.624 0.627 0.628 0.629
Baser2n2-SMSO pooling 0.580 0.627 0.643 0.652 0.656 0.668 0.673 0.679 0.680 0.681
Baser2n2-AttSets(Ours) 0.642 0.660 0.668 0.673 0.676 0.683 0.687 0.691 0.692 0.693

5.1 Evaluation on ShapeNetr2n2 Dataset

To fully evaluate the aggregation performance and ro-

bustness, we train the Baser2n2-AttSets and its com-

peting approaches on ShapeNetr2n2 dataset. For fair

comparison, all networks (the pooling/GRU/AttSets

based approaches) are trained according to the proposed
two-stage training algorithm.

Training Stage 1. All networks are trained given

only 1 image for each object, i.e., N = 1 in all training

iterations, until convergence. Basically, this is to guar-

antee all networks are well optimized for the extreme

case where there is only one input image.

Training Stage 2. To enable these networks to be

more robust for multiple input images, all networks are

further trained given more images per object. Particu-

larly, we conduct the following five parallel groups of

training experiments.

– Group 1. All networks are further trained given only

2 images for each object, i.e., N = 2 in all iterations.

As to our Baser2n2-AttSets, the well-trained encoder-

decoder in previous stage 1 is frozen, and we only

optimize the AttSets module according to our FASet

algorithm 1. As to the competing approaches, e.g.,

GRU and all poolings, we turn to fine-tune the whole

networks because they do not have separate param-

eters suitable for special training. To be specific, we

use smaller learning rate (1e-5) to carefully train these

networks to achieve better performance where N = 2

until convergence.

– Group 2/3/4. Similarly, in these three groups of second-

stage training experiments, N is set to be 8, 16, 24

separately.

– Group 5. All networks are further trained until conver-

gence, but N is uniformly and randomly sampled from

[1, 24] for each object during training. In the above
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Table 4 Group 4: mean IoU for multi-view reconstruction of all 13 categories in ShapeNetr2n2 testing split. All networks are
firstly trained given only 1 image for each object in Stage 1. The AttSets module is further trained given 24 images per object
in Stage 2, while other competing approaches are fine-tuned given 24 images per object in Stage 2.

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views
Baser2n2-GRU 0.578 0.613 0.627 0.635 0.639 0.647 0.651 0.653 0.653 0.654
Baser2n2-max pooling 0.504 0.600 0.631 0.648 0.655 0.671 0.679 0.685 0.688 0.689
Baser2n2-mean pooling 0.593 0.634 0.649 0.659 0.663 0.673 0.677 0.683 0.684 0.685
Baser2n2-sum pooling 0.580 0.634 0.650 0.658 0.660 0.678 0.682 0.689 0.690 0.691
Baser2n2-BP pooling 0.524 0.585 0.609 0.623 0.630 0.644 0.650 0.656 0.659 0.660
Baser2n2-MHBN pooling 0.566 0.595 0.606 0.613 0.616 0.624 0.627 0.631 0.632 0.632
Baser2n2-SMSO pooling 0.556 0.613 0.635 0.647 0.653 0.668 0.674 0.681 0.682 0.684
Baser2n2-AttSets(Ours) 0.642 0.660 0.668 0.674 0.676 0.684 0.688 0.693 0.694 0.695

Table 5 Group 5: mean IoU for multi-view reconstruction of all 13 categories in ShapeNetr2n2 testing split. All networks are
firstly trained given only 1 image for each object in Stage 1. The AttSets module is further trained given random number of
images per object in Stage 2, i.e., N is uniformly sampled from [1, 24], while other competing approaches are fine-tuned given
random number of views per object in Stage 2.

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views
Baser2n2-GRU 0.580 0.615 0.629 0.637 0.641 0.648 0.651 0.651 0.651 0.651
Baser2n2-max pooling 0.601 0.638 0.652 0.660 0.663 0.673 0.677 0.682 0.683 0.684
Baser2n2-mean pooling 0.598 0.637 0.652 0.660 0.664 0.675 0.679 0.684 0.685 0.686
Baser2n2-sum pooling 0.587 0.631 0.646 0.656 0.660 0.672 0.678 0.683 0.684 0.685
Baser2n2-BP pooling 0.582 0.610 0.620 0.626 0.628 0.635 0.638 0.641 0.642 0.643
Baser2n2-MHBN pooling 0.575 0.599 0.608 0.613 0.615 0.622 0.624 0.628 0.629 0.629
Baser2n2-SMSO pooling 0.580 0.624 0.641 0.652 0.657 0.669 0.674 0.679 0.681 0.682
Baser2n2-AttSets(Ours) 0.642 0.662 0.670 0.675 0.677 0.685 0.688 0.692 0.693 0.694
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Fig. 6 IoUs of Group 1.
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Fig. 7 IoUs of Group 2.
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Fig. 8 IoUs of Group 3.

 

 

GRU(3D-R2N2) 

Max 

Mean 

Sum 

BP 

MHBN 

SMSO 

AttSets(Ours) 

The Number of Input Images 

M
ea

n
 I

o
U

 o
n
 S

h
ap

eN
et

(r
2
n
2
) 

T
es

ti
n
g
 S

p
li

t 
 

0.7 

0.68 

0.66 

① 0.64 

0.62 

0.6 

0.58 

0.56 

0.54 

1     2     3     4     5     8    12   16   20   24 

 

 

 
 

② 

③ 

④ 

Fig. 9 IoUs of Group 4.

1 2 3 4 5 8 12 16 20 24
The Number of Input Images

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

M
ea

n 
Io

U
 o

n 
Sh

ap
eN

et
(r

2n
2)

 T
es

tin
g 

Sp
lit

GRU(3D-R2N2)
Max
Mean
Sum
BP
MHBN
SMSO
AttSets(Ours)

Fig. 10 IoUs of Group 5.

Group 1/2/3/4, N is fixed for each object, while N is

dynamic for each object in this Group 5.

The above experiment Groups 1/2/3/4 are designed

to investigate how all competing approaches would be

further optimized towards the statistics of a fixed N

during training, thus resulting in different level of ro-

bustness given an arbitrary number of N during testing.
By contrast, the paradigm in Group 5 aims at enumer-

ating all possible N values during training. Therefore

the overall performance might be more robust regarding

an arbitrary number of input images during testing,

compared with the above Group 1/2/3/4 experiments.

Testing Stage. All networks trained in above five

groups of experiments are separately tested given N =

{1, 2, 3, 4, 5, 8, 12, 16, 20, 24}. The permutations of input

images are the same for all different approaches for fair

comparison. Note that, we do not test the networks

which are only trained in Stage 1, because the AttSets

module is not optimized and the corresponding Baser2n2-

AttSets is unable to generalize to multiple input images

during testing. Therefore, it is meaningless to compare

the performance when the network is solely trained on

a single image.

Results. Tables 1 ∼ 5 show the mean IoU scores of

all 13 categories for experiments of Group 1 ∼ 5, while

Figures 6 ∼ 10 show the trends of mean IoU changes

in different Groups. Figure 11 shows the estimated 3D

shapes in experiment Group 5, with an increasing num-

ber of images from 1 to 5 for different approaches.

We notice that the reported IoU scores of ShapeNet

data repository in original LSM (Kar et al., 2017) are

higher than our scores. However, the experimental set-

tings in LSM (Kar et al., 2017) are quite different from

ours in the following two aspects. 1) The original LSM

requires both RGB images and the corresponding view-

ing angles as input, while all our experiments do not. 2)

The original LSM dataset has different styles of rendered
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Fig. 11 Qualitative results of multi-view reconstruction from different approaches in experiment Group 5.

Table 6 Per-category mean IoU for single view reconstruction on ShapeNetr2n2 testing split.

plane bench cabinet car chair monitor lamp speakerfirearm couch table phonewatercraft mean
Baser2n2-GRU 0.530 0.449 0.730 0.807 0.487 0.497 0.391 0.671 0.553 0.631 0.515 0.683 0.535 0.580
Baser2n2-max pooling 0.573 0.521 0.755 0.835 0.533 0.544 0.423 0.695 0.587 0.678 0.562 0.710 0.582 0.620
Baser2n2-mean pooling 0.582 0.540 0.773 0.837 0.547 0.550 0.440 0.713 0.595 0.695 0.576 0.718 0.593 0.632
Baser2n2-sum pooling 0.588 0.536 0.771 0.838 0.554 0.547 0.442 0.710 0.598 0.690 0.575 0.728 0.598 0.633
Baser2n2-BP pooling 0.536 0.469 0.747 0.816 0.484 0.499 0.398 0.678 0.556 0.646 0.528 0.681 0.550 0.588
Baser2n2-MHBN pooling 0.528 0.451 0.742 0.812 0.471 0.487 0.386 0.677 0.548 0.637 0.515 0.674 0.546 0.578
Baser2n2-SMSO pooling 0.572 0.521 0.763 0.833 0.541 0.548 0.433 0.704 0.581 0.682 0.566 0.721 0.581 0.623
OGN 0.587 0.481 0.729 0.816 0.483 0.502 0.398 0.637 0.593 0.646 0.536 0.702 0.632 0.596
AORM 0.605 0.498 0.715 0.757 0.532 0.524 0.415 0.623 0.618 0.679 0.547 0.738 0.552 0.600
PointSet 0.601 0.550 0.771 0.831 0.544 0.552 0.462 0.737 0.604 0.7080.6060.749 0.611 0.640
Baser2n2-AttSets(Ours) 0.594 0.552 0.783 0.8440.559 0.565 0.445 0.721 0.601 0.703 0.590 0.743 0.601 0.642

color images and different train/test splits compared

with our experimental settings. Therefore the reported

IoU scores in LSM are not directly comparable with

ours and we do not include the results in this paper

to avoid confusion. Note that, the aggregation module

of LSM (Kar et al., 2017), i.e., GRU, is the same as

used in 3D-R2N2 (Choy et al., 2016), and is indeed fully

evaluated throughout our experiments.

To highlight the performance of single view 3D recon-

struction, Table 6 shows the optimal per-category IoU

scores for different competing approaches from experi-

ments Group 1 ∼ 5. In addition, we also compare with

the state-of-the-art dedicated single view reconstruction

approaches including OGN (Tatarchenko et al., 2017),

AORM (Yang et al., 2018) and PointSet (Fan et al.,

2017) in Table 6. Overall, our AttSets based approach

outperforms all others by a large margin for either single

view or multi view reconstruction, and generates much

more compelling 3D shapes.

Analysis. We investigate the results as follows:

– The GRU based approach can generate reasonable 3D

shapes in all experiments Group 1 ∼ 5 given either few

or multiple images during testing, but the performance

saturates quickly after being given more images, e.g.,

8 views, because the recurrent unit is hardly able

to capture features from longer image sequences, as

illustrated in Figure 9 1 .

– In Group 1 ∼ 4, all pooling based approaches are

able to estimate satisfactory 3D shapes when given

a similar number of images as given in training, but

they are unlikely to predict reasonable shapes given

an arbitrary number of images. For example, in ex-

periment Group 4, all pooling based approaches have

inferior IoU scores given only few images as shown in



12 Bo Yang et al.

+

+

+

+

Input
Images

GRU
(3D-R2N2)

max 
pooling

mean 
pooling

sum 
pooling

BP 
pooling

MHBN 
pooling

SMSO 
pooling

AttSets
(Ours)

Ground Truth

Fig. 12 Qualitative results of multi-view reconstruction from different approaches in ShapeNetlsm testing split.

Table 7 Mean IoU for multi-view reconstruction of all 13 categories from ShapeNetlsm dataset. All networks are well trained
in previous experiment Group 5 of Section 5.1.

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views
Baser2n2-GRU 0.390 0.428 0.444 0.454 0.459 0.467 0.470 0.471 0.472
Baser2n2-max pooling 0.276 0.388 0.433 0.459 0.473 0.497 0.510 0.515 0.518
Baser2n2-mean pooling 0.365 0.426 0.452 0.468 0.477 0.493 0.503 0.508 0.511
Baser2n2-sum pooling 0.363 0.421 0.445 0.459 0.466 0.481 0.492 0.499 0.503
Baser2n2-BP pooling 0.359 0.407 0.426 0.436 0.442 0.453 0.459 0.462 0.463
Baser2n2-MHBN pooling 0.365 0.403 0.418 0.427 0.431 0.441 0.446 0.449 0.450
Baser2n2-SMSO pooling 0.364 0.419 0.445 0.460 0.469 0.488 0.500 0.506 0.510
Baser2n2-AttSets(Ours) 0.404 0.452 0.475 0.490 0.498 0.514 0.522 0.528 0.531

Table 4 and Figure 9 2 , because the pooled features

from fewer images during testing are unlikely to be
as general and representative as pooled features from

more images during training. Therefore, those models

trained on 24 images fail to generalize well to only

one image during testing.

– In Group 5, as shown in Table 5 and Figure 10, all pool-

ing based approaches are much more robust compared

with Group 1∼4, because the networks are generally

optimized according to an arbitrary number of images

during training. However, these networks tend to have

the performance in the middle. Compared with Group

4, all approaches in Group 5 tend to have better perfor-

mance when N = 1, while being worse when N = 24.

Compared with Group 1, all approaches in Group

5 are likely to be better when N = 24, while being

worse when N = 1. Basically, these networks tend to

be optimized to learn the mean features overall.

– In all experiments Group 1 ∼ 5, all approaches tend

to have better performance when given enough input
images, i.e., N = 24, because more images are able to

provide enough information for reconstruction.

– In all experiments Group 1 ∼ 5, our AttSets based

approach clearly outperforms all others in either sin-

gle or multiple view 3D reconstruction and it is more

robust to a variable number of input images. Our

FASet algorithm completely decouples the base net-

work to learn visual features for accurate single view

reconstruction as illustrated in Figure 9 3 , while the

trainable parameters of AttSets module are separately

responsible for learning attention scores for better

multi-view reconstruction as shown in Figure 9 4 .

Therefore, the whole network does not suffer from

limitations of GRU or pooling approaches, and can

achieve better performance for either fewer or more

image reconstruction.
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Table 8 Group 1: mean IoU for multi-view reconstruction of all 40 categories in ModelNet40 testing split. All networks are
firstly trained given only 1 image for each object in Stage 1. The AttSets module is further trained given 12 images per object
in Stage 2, while other competing approaches are fine-tuned given 12 images per object in Stage 2.

1 view 2 views 3 views 4 views 5 views 8 views 12 views
Baser2n2-GRU 0.344 0.390 0.414 0.430 0.440 0.454 0.464
Baser2n2-max pooling 0.393 0.468 0.490 0.504 0.511 0.523 0.525
Baser2n2-mean pooling 0.415 0.464 0.481 0.495 0.502 0.515 0.520
Baser2n2-sum pooling 0.332 0.441 0.473 0.492 0.500 0.514 0.520
Baser2n2-BP pooling 0.431 0.466 0.479 0.492 0.497 0.509 0.515
Baser2n2-MHBN pooling 0.423 0.462 0.478 0.491 0.497 0.509 0.515
Baser2n2-SMSO pooling 0.441 0.476 0.490 0.500 0.506 0.517 0.520
Baser2n2-AttSets(Ours) 0.487 0.505 0.511 0.517 0.521 0.527 0.529

Table 9 Group 2: mean IoU for multi-view reconstruction of all 40 categories in ModelNet40 testing split. All networks are
firstly trained given only 1 image for each object in Stage 1. The AttSets module is further trained given random number of
images per object in Stage 2, i.e., N is uniformly sampled from [1, 12], while other competing approaches are fine-tuned given
random number of views per object in Stage 2.

1 view 2 views 3 views 4 views 5 views 8 views 12 views
Baser2n2-GRU 0.388 0.421 0.434 0.440 0.444 0.449 0.452
Baser2n2-max pooling 0.461 0.489 0.498 0.506 0.509 0.515 0.517
Baser2n2-mean pooling 0.455 0.487 0.498 0.507 0.512 0.520 0.523
Baser2n2-sum pooling 0.453 0.484 0.494 0.503 0.506 0.514 0.517
Baser2n2-BP pooling 0.454 0.479 0.487 0.496 0.499 0.507 0.510
Baser2n2-MHBN pooling 0.453 0.480 0.488 0.497 0.500 0.507 0.509
Baser2n2-SMSO pooling 0.462 0.488 0.497 0.505 0.509 0.516 0.519
Baser2n2-AttSets(Ours) 0.487 0.505 0.511 0.518 0.520 0.525 0.527

5.2 Evaluation on ShapeNetlsm Dataset

To further investigate how well the learnt visual fea-

tures and attention scores generalize across different

style of images, we use the well trained networks of

previous Group 5 of Section 5.1 to test on the large

ShapeNetlsm dataset. Note that, we only borrow the syn-
thesized images from ShapeNetlsm dataset correspond-

ing to the objects in ShapeNetr2n2 testing split. This

guarantees that all the trained models have never seen

either the style of LSM rendered images or the 3D ob-

ject labels before. The image viewing angles from the

original ShapeNetlsm dataset are not used in our ex-

periments, since the Baser2n2 network does not require

image viewing angles as input. Table 7 shows the mean

IoU scores of all approaches, while Figure 12 shows the

qualitative results.

Our AttSets based approach outperforms all others
given either few or multiple input images. This demon-

strates that our Baser2n2-AttSets approach does not

overfit the training data, but has better generality and

robustness over new styles of rendered color images

compared with other approaches.

5.3 Evaluation on ModelNet40 Dataset

We train the Baser2n2-AttSets and its competing ap-

proaches on ModelNet40 dataset from scratch. For fair

comparison, all networks (the pooling/GRU/AttSets

based approaches) are trained according to the pro-

posed FASet algorithm, which is similar to the two-stage

training strategy of Section 5.1.

Training Stage 1. All networks are trained given

only 1 image for each object, i.e., N = 1 in all training it-

erations, until convergence. This guarantees all networks

are well optimized for single view 3D reconstruction.

Training Stage 2. We further conduct the following

two parallel groups of training experiments to optimize

the networks for multi-view reconstruction.

– Group 1. All networks are further trained given all 12

images for each object, i.e., N = 12 in all iterations,

until convergence. As to our Baser2n2-AttSets, the well-

trained encoder-decoder in previous Stage 1 is frozen,

and only the AttSets module is trained. All other

competing approaches are fine-tuned using smaller

learning rate (1e-5) in this stage.

– Group 2. All networks are further trained until con-

vergence, but N is uniformly and randomly sampled

from [1, 12] for each object during training. Only the

AttSets module is trained, while all other competing

approaches are fine-tuned in this Stage 2.

Testing Stage. All networks trained in above two

groups are separately tested given N = [1, 2, 3, 4, 5, 8, 12].

The permutations of input images are the same for all

different approaches for fair comparison.

Results. Tables 8 and 9 show the mean IoU scores

of Groups 1 and 2 respectively, and Figure 13 shows

qualitative results of Group 2. The Baser2n2-AttSets

surpasses all competing approaches by a large margin
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Fig. 13 Qualitative results of multi-view reconstruction from different approaches in ModelNet40 testing split.

Table 10 Group 1: mean IoU for silhouettes prediction on
the Blobby dataset. All networks are firstly trained given only
1 image for each object in Stage 1. The AttSets module is
further trained given 2 images per object, i.e., N =2, while
other competing approaches are fine-tuned given 2 views per
object in Stage 2.

1 view 2 views 3 views 4 views
Basesilnet-GRU 0.857 0.860 0.860 0.860
Basesilnet-max pooling 0.922 0.923 0.924 0.924
Basesilnet-mean pooling 0.920 0.922 0.923 0.924
Basesilnet-sum pooling 0.913 0.918 0.917 0.916
Basesilnet-BP pooling 0.908 0.912 0.914 0.914
Basesilnet-MHBN pooling 0.901 0.904 0.906 0.906
Basesilnet-SMSO pooling 0.860 0.865 0.865 0.865
Basesilnet-AttSets(Ours) 0.924 0.931 0.933 0.935

for both single and multiple view 3D reconstruction, and

all the results are consistent with previous experimental

results on both ShapeNetr2n2 and ShapeNetlsm datasets.

5.4 Evaluation on Blobby Dataset

In this section, we evaluate the Basesilnet-AttSets and

the competing approaches on the Blobby dataset. For

fair comparison, the GRU module is implemented with

a single fully connected layer of 160 hidden units, which

has similar network capacity with our AttSets based

network. All networks (the pooling/GRU/AttSets based

approaches) are trained with the proposed two-stage

FASet algorithm as follows:

Table 11 Group 2: mean IoU for silhouettes prediction on
the Blobby dataset. All networks are firstly trained given only
1 image for each object in Stage 1. The AttSets module is
further trained given 4 images per object, i.e., N=4, while
other competing approaches are fine-tuned given 4 views per
object in Stage 2.

1 view 2 views 3 views 4 views
Basesilnet-GRU 0.863 0.865 0.865 0.865
Basesilnet-max pooling 0.923 0.927 0.929 0.929
Basesilnet-mean pooling 0.923 0.925 0.927 0.927
Basesilnet-sum pooling 0.902 0.917 0.921 0.924
Basesilnet-BP pooling 0.911 0.916 0.919 0.920
Basesilnet-MHBN pooling 0.904 0.908 0.911 0.911
Basesilnet-SMSO pooling 0.863 0.865 0.865 0.865
Basesilnet-AttSets(Ours) 0.924 0.932 0.936 0.937

Training Stage 1. All networks are trained given

only 1 image together with the viewing angle for each

object, i.e., N=1 in all training iterations, until conver-

gence. This guarantees the performance of single view

shape learning.

Training Stage 2. Another two parallel groups of
training experiments are conducted to further optimize

the networks for multi-view shape learning.

– Group 1. All networks are further trained given only

2 images for each object, i.e., N=2 in all iterations.

As to Basesilnet-AttSets, only the AttSets module is

optimized with the well-trained base encoder-decoder

being frozen. For fair comparison, all competing ap-
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Fig. 14 Qualitative results of silhouettes prediction from different approaches on the Blobby dataset.

proaches are fine-tuned given 2 images per object for

better performance where N =2 until convergence.

– Group 2. Similar to the above Group 1, all networks
are further trained given all 4 images for each object,

i.e., N=4, until convergence.

Testing Stage. All networks trained in above two

groups are separately tested given N = [1,2,3,4]. The

permutations of input images are the same for all differ-

ent networks for fair comparison.

Results. Table 10 and 11 show the mean IoUs of

above two groups of experiments and Figure 14 shows

the qualitative results of Group 2. Note that, the IoUs

are calculated on predicted 2D silhouettes instead of 3D

voxels, so they are not numerically comparable with pre-

vious experiments on ShapeNetr2n2, ShapeNetlsm, and

ModelNet40 datasets. We do not include the IoU scores

of the original SilNet (Wiles and Zisserman, 2017), be-

cause the original IoU scores are obtained from an end-to-

end training strategy. In this paper, we uniformly apply

the proposed two-stage FASet training paradigm on all

approaches for fair comparison. Our Basesilnet-AttSets

consistently outperforms all competing approaches for

shape learning from either single or multiple views.

5.5 Qualitative Results on Real-world Images

To the best of our knowledge, there is no public real-

world dataset for multi-view 3D object reconstruction.

Therefore, we manually collect real world images from

Amazon online shops to qualitatively demonstrate the

generality of all networks which are trained on the syn-

thetic ShapeNetr2n2 dataset in experiment Group 4 of

Section 5.1, as shown in Figure 15.

In the meantime, we use these real-world images to

qualitatively show the permutation invariance of differ-

ent approaches. In particular, for each object, we use
6 different permutations in total for testing. As shown

in Figure 16, the GRU based approach generates incon-

sistent 3D shapes given different image permutations.

For example, the arm of a chair and the leg of a ta-

ble can be reconstructed in permutation 1, but fail to

be recovered in another permutation. By comparison,

all other approaches are permutation invariant, as the

results shown in Figure 15.

5.6 Computational Efficiency

To evaluate the computation and memory cost of AttSets,

we implement Baser2n2-AttSets and the competing ap-

proaches in Python 2.7 and Tensorflow 1.2 with CUDA

9.0 and cuDNN 7.1 as the back-end driver and library.

All approaches share the same Baser2n2 network and

run in the same Titan X and software environments.

Table 12 shows the average time consumption to re-

construct a single 3D object given different number of

images. Our AttSets based approach is as efficient as the

pooling methods, while Baser2n2-GRU (i.e., 3D-R2N2)

takes more time when processing an increasing number

of images due to the sequential computation mecha-

nism of its GRU module. In terms of the total trainable

weights, the max/mean/sum pooling based approaches

have 16.66 million, while AttSets based net has 17.71

million. By contrast, the original 3D-R2N2 has 34.78

million, the BP/MHBN/SMSO have 141.57, 60.78 and

17.71 million respectively. Overall, our AttSets outper-

forms the recurrent unit and pooling operations without

incurring notable computation and memory cost.
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Fig. 15 Qualitative results of multi-view 3D reconstruction from real-world images.
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Fig. 16 Qualitative results of inconsistent 3D reconstruction
from the GRU based approach.

Table 12 Mean time consumption for a single object (323

voxel grid) estimation from different number of images (mil-
liseconds).

number of input images 1 4 8 12 16 20 24
Baser2n2-GRU 6.9 11.2 17.0 22.8 28.8 34.7 40.7
Baser2n2-max pooling 6.4 10.015.1 20.2 25.330.235.4
Baser2n2-mean pooling 6.3 10.1 15.120.125.3 30.3 35.5
Baser2n2-sum pooling 6.4 10.1 15.120.125.3 30.3 35.5
Baser2n2-BP pooling 6.5 10.5 15.6 20.5 25.7 30.6 35.8
Baser2n2-MHBN pooling 6.5 10.3 15.3 20.3 25.5 30.7 35.7
Baser2n2-SMSO pooling 6.5 10.2 15.3 20.3 25.4 30.5 35.6
Baser2n2-AttSets(Ours) 7.7 11.0 16.3 21.2 26.3 31.4 36.4

Estimated 
3D shape

Ground TruthAttention Scores learnt by AttSets(conv2d)

Input Images

Fig. 17 Learnt attention scores for deep feature sets via
conv2d based AttSets.

5.7 Comparison between Variants of AttSets

We further compare the aggregation performance of fc,

conv2d and conv3d based AttSets variants which are

shown in Figure 3 in Section 3.4. The fc based AttSets

net is the same as in Section 5.1. The conv2d based

AttSets is plugged into the middle of the 2D encoder,

fusing a (N, 4, 4, 256) tensor into (1, 4, 4, 256), where N

is an arbitrary image number. The conv3d based AttSets

is plugged into the middle of the 3D decoder, integrating

a (N, 8, 8, 8, 128) tensor into (1, 8, 8, 8, 128). All other

layers of these variants are the same. Both the conv2d

and conv3d based AttSets networks are trained using

the paradigm of experiment Group 4 in Section 5.1. Ta-

ble 13 shows the mean IoU scores of three variants on

ShapeNetr2n2 testing split. fc and conv3d based variants

achieve similar IoU scores for either single or multi view

3D reconstruction, demonstrating the superior aggrega-

tion capability of AttSets. In the meantime, we observe

that the overall performance of conv2d based AttSets

net is slightly decreased compared with the other two.

One possible reason is that the 2D feature set has been

aggregated at the early layer of the network, resulting in

features being lost early. Figure 17 visualizes the learnt

attention scores for a 2D feature set, i.e., (N, 4, 4, 256)

features, via the conv2d based AttSets net. To visual-

ize 2D feature scores, we average the scores along the

channel axis and then roughly trace back the spatial

locations of those scores corresponding to the original

input. The more visual information the input image has,

the higher attention scores are learnt by AttSets for the

corresponding latent features. For example, the third

image has richer visual information than the first image,

so its attention scores are higher. Note that, for a spe-

cific base network, there are many potential locations to

plug in AttSets and it is also possible to include multiple

AttSets modules into the same net. To fully evaluate

these factors is out of the scope of this paper.

5.8 Feature-wise Attention vs. Element-wise Attention

Our AttSets module is initially designed to learn unique

feature-wise attention scores for the whole input deep

feature set, and we demonstrate that it significantly

improves the aggregation performance over dynamic

feature sets in previous Section 5.1, 5.2, 5.3 and 5.4.

In this section, we further investigate the advantage

of this feature-wise attentive pooling over element-wise

attentional aggregation.

For element-wise attentional aggregation, the AttSets

module turns to learn a single attention score for each el-



Robust Attentional Aggregation of Deep Feature Sets for Multi-view 3D Reconstruction 17

Table 13 Mean IoU of AttSets variants on all 13 categories in ShapeNetr2n2 testing split.

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views
Baser2n2-AttSets (conv2d) 0.642 0.648 0.651 0.655 0.657 0.664 0.668 0.674 0.675 0.676
Baser2n2-AttSets (conv3d) 0.642 0.663 0.671 0.676 0.677 0.683 0.685 0.689 0.690 0.690
Baser2n2-AttSets (fc) 0.642 0.660 0.668 0.674 0.676 0.684 0.688 0.693 0.694 0.695

Table 14 Mean IoU of all 13 categories in ShapeNetr2n2 testing split for feature-wise and element-wise attentional aggregation.

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views
Baser2n2-AttSets (element-wise) 0.642 0.653 0.657 0.660 0.661 0.665 0.667 0.670 0.671 0.672
Baser2n2-AttSets (feature-wise) 0.642 0.660 0.668 0.674 0.676 0.684 0.688 0.693 0.694 0.695

Table 15 Mean IoU of different training algorithms on all 13 categories in ShapeNetr2n2 testing split.

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views
Baser2n2-AttSets (JoinT) 0.307 0.437 0.516 0.563 0.595 0.639 0.659 0.673 0.677 0.680
Baser2n2-AttSets (FASet) 0.642 0.660 0.668 0.674 0.676 0.684 0.688 0.693 0.694 0.695
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3D shape

Estimated 
3D shape
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Input
Images

Element-wise Feature-wise Attention

Fig. 18 Learnt attention scores for deep feature sets via
element-wise attention and feature-wise attention AttSets.

ement of the feature set A = {x1,x2, · · · ,xN}, followed

by the softmax normalization and weighted summation

pooling. In particular, as shown in previous Figure 2, the

shared function g(xn,W ) now learns a scalar, instead

of a vector, as the attention activation for each input
element. Eventually, all features within the same ele-

ment are weighted by a learnt common attention score.

Intuitively, the original feature-wise AttSets tends to be

fine-grained aggregation, while the element-wise AttSets

learns to coarsely aggregate features.

Following the same training settings of experiment

Group 4 in Section 5.1, we conduct another group of

experiment on ShapeNetr2n2 dataset for element-wise

attentional aggregation. Table 14 compares the mean

IoU for 3D object reconstruction through feature-wise

and element-wise attentional aggregation. Figure 18

shows an example of the learnt attention scores and

the predicted 3D shapes. As expected, the feature-wise

attention mechanism clearly achieves better aggregation

performance compared with the coarsely element-wise

approach. As shown in Figure 18, the element-wise at-

tention mechanism tends to focus on few images, while

completely ignoring others. By comparison, the feature-

wise AttSets learns to fuse information from all images,

thus achieving better aggregation performance.

5.9 Significance of FASet Algorithm

In this section, we investigate the impact of FASet al-

gorithm by comparing it with the standard end-to-end
joint training (JoinT). Particularly, in JoinT, all param-

eters Θbase and Θatt are jointly optimized with a single

loss. Following the same training settings of experiment

Group 4 in Section 5.1, we conduct another group of

experiment on ShapeNetr2n2 dataset under the JoinT

training strategy. As its IoU scores shown in Table 15,

the JoinT training approach tends to optimize the whole

net regarding the training multi-view batches, thus be-

ing unable to generalize well for fewer images during

testing. Basically, the network itself is unable to dedi-

cate the base layers to learning visual features, while

the AttSets module to learning attention scores, if it is

not trained with the proposed FASet algorithm. The

theoretical reason is discussed previously in Section 4.1.

The FASet algorithm may also be applicable to other

learning based aggregation approaches, as long as the

aggregation module can be decoupled from the base

encoder/decoder.

6 Conclusion

In this paper, we present AttSets module and FASet

training algorithm to aggregate elements of deep feature

sets. AttSets together with FASet has powerful per-

mutation invariance, computation efficiency, robustness

and flexible implementation properties, along with the

theory and extensive experiments to support its perfor-

mance for multi-view 3D reconstruction. Both quantita-

tive and qualitative results explicitly show that AttSets

significantly outperforms other widely used aggregation

approaches. Nevertheless, all of our experiments are

dedicated to multi-view 3D reconstruction. It would

be interesting to explore the generality of AttSets and

FASet over other set-based tasks, especially the tasks

which constantly take multiple elements as input.
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