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Abstract

We present an attack on the encryption key negotiation pro-
tocol of Bluetooth BR/EDR. The attack allows a third party,
without knowledge of any secret material (such as link and
encryption keys), to make two (or more) victims agree on an
encryption key with only 1 byte (8 bits) of entropy. Such low
entropy enables the attacker to easily brute force the nego-
tiated encryption keys, decrypt the eavesdropped ciphertext,
and inject valid encrypted messages (in real-time). The attack
is stealthy because the encryption key negotiation is transpar-
ent to the Bluetooth users. The attack is standard-compliant
because all Bluetooth BR/EDR versions require to support en-
cryption keys with entropy between 1 and 16 bytes and do not
secure the key negotiation protocol. As a result, the attacker
completely breaks Bluetooth BR/EDR security without being
detected. We call our attack Key Negotiation Of Bluetooth
(KNOB) attack.

The attack targets the firmware of the Bluetooth chip be-
cause the firmware (Bluetooth controller) implements all
the security features of Bluetooth BR/EDR. As a standard-
compliant attack, it is expected to be effective on any firmware
that follows the specification and on any device using a vul-
nerable firmware. We describe how to perform the KNOB
attack, and we implement it. We evaluate our implementation
on more than 14 Bluetooth chips from popular manufactur-
ers such as Intel, Broadcom, Apple, and Qualcomm. Our
results demonstrate that all tested devices are vulnerable to
the KNOB attack. We discuss countermeasures to fix the
Bluetooth specification and its implementation.

1 Introduction

Bluetooth BR/EDR (referred for the rest of this paper as
Bluetooth), is a short-range wireless technology widely used
by many products such as mobile devices, laptops, IoT and
industrial devices. Bluetooth provides security mechanisms
to achieve authentication, confidentiality and data integrity at
the link layer [6, p. 1646].

The security and privacy of Bluetooth has been attacked
and fixed several times, going all the way back to Blue-
tooth v1.0. [15, 32]. Several successful attacks on the (secure
simple) pairing phase [28, 13, 4] have resulted in substantial
revisions of the standard. Attacks on Android, iOS, Windows
and Linux implementations of Bluetooth were also discussed
in [2]. However, little attention has been given to the security
of the encryption key negotiation protocol, e.g., the Bluetooth
security overview in the latest Bluetooth core specification
(v5.0) does not mention it [6, p. 240].

The encryption key negotiation protocol is used by two
Bluetooth devices to agree on the entropy of the link layer
encryption key. Entropy negotiation was introduced in the
specification of Bluetooth to cope with international encryp-
tion regulations and to facilitate security upgrades [6, p. 1650].
To the best of our knowledge, all versions of the Bluetooth
standard (including the latest v5.0 [6]) require to use entropy
values between 1 and 16 bytes. The specification of Blue-
tooth states this requirement as follows: “For the encryption
algorithm, the key size may vary between 1 and 16 octets (8 -
128 bits)” [6, p. 1650]. Our interpretation of this requirement
is that any device to be standard-compliant has to support
encryption keys with entropy varying from one to sixteen
bytes. The attack that we present in this work confirms our
interpretation.

The encryption key negotiation protocol is conducted be-
tween two parties as follows: the initiator proposes an entropy
value N that is an integer between 1 and 16, the other party
either accepts it or proposes a lower value or aborts the pro-
tocol. If the other party proposes a lower value, e.g., N−1,
then the initiator either accepts it or proposes a lower value or
it aborts the protocol. At the end of a successful negotiation
the two parties have agreed on the entropy value of the Blue-
tooth encryption key. The entropy negotiation is performed
over the Link Manager Protocol (LMP), it is not encrypted
and not authenticated, and it is transparent to the Bluetooth
users because LMP packets are managed by the firmware of
the Bluetooth chips and they are not propagated to higher
layers [6, p. 508].



In this paper we describe, implement and evaluate an attack
capable of making two (or more) victims using a Bluetooth
encryption key with 1 byte of entropy without noticing it. The
attacker then can easily brute force the encryption key, eaves-
drop and decrypt the ciphertext and inject valid ciphertext
without affecting the status of the target Bluetooth piconet.
In other words, the attacker completely breaks Bluetooth
BR/EDR security without being detected. We call this attack
the Key Negotiation Of Bluetooth (KNOB) attack.

The KNOB attack can be conducted remotely or by mali-
ciously modifying few bytes in one of the victim’s Bluetooth
firmware. Being a standard-compliant attack it is expected
to be effective on any firmware implementing the Bluetooth
specification, regardless of the Bluetooth version. The at-
tacker is not required to posses any (pre-shared) secret ma-
terial and he does not have to observe the pairing process of
the victims. The attack is effective even when the victims
use the strongest security mode of Bluetooth (Secure Connec-
tions). The attack is stealthy because the application using
Bluetooth and even the operating systems of the victims can-
not access or control the encryption key negotiation protocol
(see Section 3.2 for the details).

After explaining the attack in detail, we implement it lever-
aging our development of several Bluetooth security proce-
dures to generate valid link and encryption keys, and the
InternalBlue toolkit [21]. Our implementation allows a man-
in-the-middle attacker to intercept, manipulate, and drop LMP
packets in real-time and to brute force low-entropy encryp-
tion keys, without knowing any (pre-shared) secret. We have
disclosed our findings about the KNOB attack with CERT
and the Bluetooth SIG, and following that, we plan to re-
lease our tools as open-source at https://github.com/
francozappa/knob. This will enable other Bluetooth re-
searchers to take advantage of our work.

We summarize our main contributions as follows:

• We develop an attack on the encryption key negotiation
protocol of Bluetooth BR/EDR that allows to let two
unaware victims negotiate a link-layer encryption key
with 1 byte of entropy. The attacker then is able to brute
force the low entropy key, decrypt all traffic and inject
arbitrary ciphertext. The attacker does not have to know
any secret material and he can target multiple nodes and
piconets at the same time.

• We demonstrate the practical feasibility of the attack by
implementing it. Our implementation involves a man-
in-the-middle attacker capable of manipulating the en-
cryption key negotiation protocol, brute forcing the key
and decrypting the traffic exchanged by two (or more)
unaware victims.

• All standard-compliant devices should be vulnerable
to our attack, including the ones using the strongest
Bluetooth security mode. In order to demonstrate that

this problem has not somehow been fixed in practice, we
test more than 14 different Bluetooth chips and find all
of them to be vulnerable.

• We discuss what changes should be made, both to the
Bluetooth standard and its implementation, in order to
counter this attack.

Our work is organized as follows: in Section 2 we intro-
duce the Bluetooth BR/EDR stack. In Section 3 we present
the Key Negotiation Of Bluetooth (KNOB) attack. An imple-
mentation of the attack is discussed in Section 4. We evaluate
the impact of our attack in Section 5 and we discuss the at-
tack and our proposed countermeasures in Section 6. We
present the related work in Section 7. We conclude the paper
in Section 8.

2 Background

2.1 Bluetooth Basic Rate/Extended Data Rate
Bluetooth Basic Rate/Extended Data Rate (BR/EDR), also
known as Bluetooth Classic, is a widely used wireless technol-
ogy for low-power short-range communications maintained
by the Bluetooth Special Interest Group(SIG) [6]. Its physical
layer uses the same 2.4 GHz frequency spectrum of WiFi and
(adaptive) frequency hopping to mitigate RF interference. A
Bluetooth network is called a piconet and it uses a master-
slave medium access protocol. There is always one master
device per piconet at a time. The devices are synchronized by
maintaining a reference clock signal, defined as CLK. Each
device has a Bluetooth address (BTADD) consisting of a se-
quence of six bytes. From left to right, the first two bytes are
defined as non-significant address part (NAP), the third byte
as upper address part (UAP) and the last three bytes as lower
address part (LAP).

To establish a secure Bluetooth connection two devices
first have to pair. This procedure results in the establishment
of a long-term shared secret defined as link key, indicated
with KL. There are four types of link key: initialization, unit,
combination and master. A initialization key is always gener-
ated for each new pairing procedure. A unit key is generated
from a device and utilized to pair with every other device,
and its usage is not recommended because it is insecure. A
combination key is generated using Elliptic Curve Diffie Hell-
man (ECDH) on the P-256 elliptic curve. This procedure
is defined as Secure Simple Pairing (SSP) and it provides
optional authentication of the link key. Combination keys are
the most secure and widely used. A master key is generated
only for broadcast encryption and it has limited usage. The
master key is temporary, while the others are semi-permanent.
A semi-permanent key can persist until a new link key is re-
quested (link key is bonded) or it can change within the same
session (link key is not bonded). In this paper we deal with
combination link keys generated using authenticated SSP.



The specification of Bluetooth defines custom security pro-
cedures to achieve confidentiality, integrity and authentication.
In the specification their names are prefixed with the letter E.
In particular, a combination link key KL is mutually authenti-
cated by the E1 procedure. This procedure uses a public nonce
(AU RAND) and the slave’s Bluetooth address (BTADDS) to
generate two values: the Signed Response (SRES) and the
Authenticated Ciphering Offset (ACO). SRES is used over
the air to verify that two devices actually own the same KL.

The symmetric encryption key KC is generated using the
E3 procedure. When the link key is a combination key E3
uses ACO (computed by E1) as its Ciphering Offset Num-
ber (COF) parameter, together with KL and a public nonce
(EN RAND). E1 and E3 use a custom hash function defined
in the specification of Bluetooth with H. The hash function is
based on SAFER+, a block cipher that was submitted as an
AES candidate in 1998 [22].

Once the encryption key KC is generated there are two pos-
sible ways to encrypt the link-layer traffic. If both devices
support Secure Connections, then encryption is performed
using a modified version of AES CCM. AES CCM is an
authenticate-then encrypt cipher that combines Counter mode
with CBC-MAC and it is defined in the IETF RFC 3610 [14].
As a side note, the specification of Bluetooth defines a mes-
sage authentication codes (MAC) with the term message in-
tegrity check (MIC). If Secure Connections is not supported
then the devices use the E0 stream cipher for encryption. The
cipher is derived from the Massey-Rueppel algorithm and it
is described in the specification of Bluetooth [6, p. 1662]. E0
requires synchronization between the master and the slaves
of the piconet, this is achieved using the Bluetooth’s clock
value (CLK).

Modern implementations of Bluetooth provides the Host
Controller Interface (HCI). This interface allows to separate
the Bluetooth stack into two components: the host and the
controller. Each component has specific responsibilities, i.e.,
the controller manages low-level radio and baseband opera-
tions and the host manages high-level application layer pro-
files. Typically, the host is implemented in the operating
system and the controller in the firmware of the Bluetooth
chip. For example BlueZ and Bluedroid implement the HCI
host on Linux and Android, and the firmware of a Qualcomm
or Broadcom Bluetooth chip implements the HCI controller.
The host and the controller communicate using the Host Con-
troller Interface (HCI) protocol. This protocol is based on
commands and events, i.e., the host sends (acknowledged)
commands to the controller, and the controller uses events to
notify the host.

The Link Manager Protocol (LMP) is used over the air by
two controllers to perform link set-up and control for Blue-
tooth BR/EDR. LMP is neither encrypted nor authenticated.
The LMP packets do not propagate to higher protocol layers,
hence, the hosts (OSes) are not aware about the LMP packets
exchanged between the Bluetooth controllers.

Figure 1: High level stages of a KNOB attack.

3 Exploiting Low Entropy in the Encryption
Key Negotiation Of Bluetooth BR/EDR

In this section we describe the Key Negotiation Of Bluetooth
(KNOB) attack. The attack allows Charlie (the attacker) to
reduce the entropy of the encryption key of any Bluetooth
BR/EDR (referred as Bluetooth) connection to 1 byte, without
being detected by the victims (Alice and Bob). The attacker
can brute force the encryption key without having to know
any (pre-shared) secret material and without having to ob-
serve the Secure Simple Pairing protocol. As a result, the
attacker can eavesdrop and decrypt all the traffic and inject
arbitrary packets in the target Bluetooth network (piconet).
The attack works regardless the usage of Secure Connections
(the strongest security mode of Bluetooth). The KNOB attack
high level stages are shown in Figure 1 and they are described
in detail in the rest of this section.

3.1 System and Attacker Model
We assume a system composed of two or more legitimate
devices that communicate using Bluetooth (as described in
Section 2). One device is the master and the others are slaves.
Without loss of generality, we focus on a piconet with one
master and one slave (Alice and Bob). We indicate their
Bluetooth addresses with BTADDM and BTADDS, and the
Bluetooth clock with CLK. The clock is used for synchro-
nization and it does not provide any security guarantee. The
victims are capable of using Secure Simple Pairing and Secure
Connections. This combination enables the highest security
level of Bluetooth and should protect against eavesdropping
and active man in the middle attacks. For example, if both
devices have a display their users have to confirm that they
see the same numeric sequence to mutually authenticate.

The attacker (Charlie) wants to decrypt all messages ex-
changed between Alice and Bob and inject valid encrypted
messages, without being detected. The attacker has no access



Figure 2: Generation and usage of the Bluetooth link layer
encryption key (K′C). Firstly, KC is generated from KL and
other public parameters. KC has 16 bytes of entropy, and
it is not directly used as the encryption key. K′C, the actual
encryption key, is computed by reducing the entropy of KC
to N bytes. N is an integer between 1 and 16 and it is the
result of the encryption key negotiation protocol. The N byte
entropy K′C is then used for link layer encryption by either the
E0 or the AES-CCM cipher.

to any (pre-shared) secret material. i.e., the link key KL and
the encryption key KC. Charlie can observe the public nonces
(EN RAND and AU RAND), the Bluetooth clock and the
packets exchanged between Alice and Bob.

We define two attacker models: a remote attacker and a
firmware attacker. A remote attacker controls a device that
is in Bluetooth range with Alice and Bob. He is able to
passively capture encrypted messages, actively manipulate
unencrypted communication, and to drop packets using tech-
niques such as network man-in-the-middle and manipulation
of physical-layer signals [31, 26]. The firmware attacker is
able to compromise the firmware of the Bluetooth chip of a
single victim using techniques such as backdoors [7], supply-
chain implants [12], and rogue chip manufacturers [27]. The
firmware attacker requires no access to the Bluetooth host
(OS) and applications used by the victims.

3.2 Negotiate a Low Entropy Encryption Key

Every time a Bluetooth connection requires link-layer encryp-
tion, Alice and Bob compute an encryption key KC based on
KL, BTADDS, AU RAND, and EN RAND (see top part of
Figure 2). KL is the link key established during secure simple
pairing and the others parameters are public. Assuming ideal
random number generation, the entropy of KC is always 16
bytes.

KC is not directly used as the encryption key for the cur-
rent session. The actual encryption key, indicated with K′C, is
computed by reducing the entropy of KC to N bytes. N is the
outcome of the Bluetooth encryption key negotiation protocol
(Entropy Negotiation in Figure 2). The protocol is part of the
Bluetooth specification since version v1.0, and it was intro-
duced to cope with international encryption regulations and
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B

LMP: AU RAND

LMP: SRES

LMP encryption mode req: 1
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Encryption key K
′

C
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Figure 3: Alice and Bob negotiate 1 byte of entropy for the
encryption key (K′C). The protocol is run by Alice and Bob
controllers (implemented in their Bluetooth chip) over the air
using LMP.

to facilitate security upgrades [6, p. 1650]. The specification
of the Bluetooth encryption key negotiation protocol contains
three significant problems:

1. It allows to negotiate entropy values as low as 1 byte,
regardless the Bluetooth security level.

2. It is neither encrypted nor authenticated.

3. It is implemented in the Bluetooth controller (firmware)
and it is transparent to the Bluetooth host (OS) and to
the user of a Bluetooth application.

Hence, an attacker (Charlie) can convince any two victims
(Alice and Bob) to negotiate N equal to 1, the lowest possible,
yet standard-compliant, entropy value. As a result the victims
compute and use a Bluetooth encryption key (K′C) with one
byte of entropy. The victims (and their OSes) are not aware
about the entropy reduction of K′C because the negotiation
happens between the victims’ Bluetooth controller (firmware)
and the packets do not propagate to the victims’ Bluetooth
host (OS).

To understand how an attacker can set N equal to 1 (or
to any other standard-compliant value), we have to look at
the details of the encryption key negotiation protocol. The
protocol is run between the Bluetooth chip of Alice and Bob.
In the following, we provide an example where Alice (the
master) proposes 16 bytes of entropy, and Bob (the slave) is
only able to support 1 byte of entropy (see Figure 3). The
standard enables to set the minimum and maximum entropy
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Figure 4: The KNOB attack sets the entropy of the encryption key (K′C) to 1 byte. Alice requests Bob to activate encryption and
starts the encryption key negotiation protocol. The attacker (Charlie) changes the entropy suggested by Alice from 16 to 1 byte.
Bob accepts Alice’s proposal and Charlie changes Bob’s acceptance to a proposal of 1 byte. Alice, who originally proposed 16
bytes of entropy and she is asked to use 1 byte accepts the (standard-compliant) proposal. Charlie drops Alice’s acceptance
message because Bob already accepted Alice’s proposal (modified by Charlie). Charlie does not know any pre-shared secret and
does not observe SSP.

values by setting two parameters defined as Lmin and Lmax.
These values can be set and read only by the Bluetooth chip
(firmware). Indeed, our scenario describes a situation where
Alice’s Bluetooth firmware declares Lmax = 16 and Lmin = 1,
and Bob’s Bluetooth firmware declares Lmax = Lmin = 1.

The encryption key negotiation protocol is carried over
the Link Manager Protocol (LMP). The first two messages
in Figure 3 allow Alice to authenticate that Bob possesses
the correct KL. Then, with the next two messages, Alice
requests to initiate Bluetooth link layer encryption and Bob
accepts. Now, the negotiation of N takes place (Negot’n in
Figure 3). Alice proposes 16 bytes of entropy. Bob can
either propose a smaller value or accept the proposed one or
abort the negotiation. In our example, Bob proposes 1 byte
of entropy because it is the only value that he supports and
Alice accepts it. Then, Alice requests to activate link-layer
encryption and Bob accepts. Finally, Alice and Bob compute
the same encryption key (K′C) that has 1 byte of entropy. Note
that, the Bluetooth hosts of Alice and Bob do not have access
to KC and K′C, they are only informed about the outcome of
the negotiation. The key negotiation procedure can also be
initiated by the Bob (the slave), resulting in the same outcome.

Figure 4 describes how the attacker (Charlie) manages to
let Alice and Bob agree on a K′C with 1 byte of entropy when
both Alice and Bob declare Lmax = 16 and Lmin = 1. In this
Figure we also show the local interactions between hosts and
controllers to emphasize that at the end of the negotiation the
hosts are not informed about N and K′C.

The attack is performed as follows: Alice’s Bluetooth host

requests to activate (set) encryption. Alice’s Bluetooth con-
troller accepts the local requests and starts the encryption key
negotiation procedure with Bob’s Bluetooth controller over
the air. The attacker intercepts Alice’s proposed key entropy
and substitutes 16 with 1. This simple substitution works
because LMP is neither encrypted nor integrity protected.
Bob’s controller accepts 1 byte. The attacker intercepts Bob’s
acceptance message and change it to an entropy proposal of
1 byte. Alice thinks that Bob does not support 16 bytes of
entropy and accepts 1 byte. The attacker intercepts Alice’
acceptance message and drops it. Finally, the controllers of
Alice and Bob compute the same K′C with one byte of entropy
and notify their respective hosts that link-layer encryption
is on.

It is reasonable to think that the victim could prevent or
detect this attack using a proper value for Lmin. However, the
standard does not state how to explicitly take advantage of
it, e.g., deprecate Lmin values that are too low. The standard
states the following: “The possibility of a failure in setting
up a secure link is an unavoidable consequence of letting the
application decide whether to accept or reject a suggested
key size.” [6, p. 1663]. This statement is ambiguous because
it is not clear what the definition of “application” is in that
sentence. As we show in Section 5, this ambiguity results in
no-one being responsible for terminating connections with
low entropy keys in practice. In particular, the entity who
decides whether to accept or reject the entropy proposal is
the firmware of the Bluetooth chip by setting Lmin and Lmax
and participating in the entropy negotiation protocol. The



“application” (intended as the Bluetooth application running
on the OS using the firmware as a service) cannot check and
set Lmin and Lmax, and it is not directly involved in the en-
tropy acceptance/rejection choice (that is performed by the
firmware). The application can interact with the firmware
using the HCI protocol. In particular, it can use the HCI Read
Encryption Key Size request, to check the amount of nego-
tiated entropy after the Bluetooth connection is established
and theoretically abort the connection. This check is neither
required nor recommended by the standard as part of the key
negotiation protocol.

The low entropy negotiation presented in Figure 4 can be
performed by both attacker models presented in Section 3.1.
The remote attacker has the capabilities of dropping and inject-
ing valid plaintext (the encryption key negotiation protocol is
neither encrypted nor authenticated). The firmware attacker
can modify few bytes in the Bluetooth firmware of a victim
to always negotiate 1 byte of entropy. Furthermore, the nego-
tiation is effective regardless of who initiates the protocol and
the roles (master or slave) of the victims in the piconet.

3.3 Brute forcing the Encryption Key

Bluetooth has two link layer encryption schemes one is based
on the E0 cipher (legacy) and the other on the AES-CCM ci-
pher (Secure Connections). Our KNOB attack works in both
cases. If the negotiated entropy for the encryption key (K′C) is
1 byte, then the attacker can trivially brute force it trying (in
parallel) the 256 K′C’s candidates against one or more cipher
texts. The attacker does not have to know what type of ap-
plication layer traffic is exchanged, because a valid plaintext
contains well known Bluetooth fields, such as L2CAP and
RFCOMM headers, that the attacker can use as oracles.

We now describe how to compute all 1 byte entropy keys
when E0 and AES-CCM are in use. Each encryption mode
involves a specific entropy reduction procedure that takes N
and KC as inputs and produces K′C as output (Entropy Reduc-
tion in Figure 2). The specification of Bluetooth calls this
procedure Encryption Key Size Reduction [6].

K′C = g(N)
2 ⊗

(
KC mod g(N)

1

)
(Es)

In case of E0, K′C is computed using Equation (Es), where
N is an integer between 1 and 16 resulted from the encryption
key negotiation protocol (see Section 3.2). g(N)

1 is a polyno-
mial of degree 8N used to reduce the entropy of KC to N
bytes. The result of the reduction is encoded with a block
code g(N)

2 , a polynomial of degree less or equal to 128−8N.
The values of these polynomials depend on N and they are
tabulated in [6, p. 1668]. If N = 1, then we can compute
the 256 candidate K′C by multiplying all the possible 1 byte
reductions KC mod g(1)1 (the set 0x00. . .0xff) with g(1)2 (that
equals to 0x00e275a0abd218d4cf928b9bbf6cb08f).

In case of AES-CCM the entropy reduction procedure
is simpler than the one of E0. In particular, the 16− N
least significant bytes of KC are set to zero. For example,
when N = 1 the 256 K′C candidates for AES-CCM are the set
0x00. . .0xff.

In the implementation of our KNOB attack brute force
logic, we pre-compute the 512 keys with 1 byte of entropy
and we store them in a look-up table to speed-up comparisons.
Table 4 in Appendix A shows the first twenty K′C with 1 byte
of entropy for E0 and AES-CCM. More details about the brute
force implementation are discussed in Section 4.

3.4 KNOB Attack Implications

The Key Negotiation Of Bluetooth (KNOB) attack exploits
a vulnerability at the architectural level of Bluetooth. The
vulnerable encryption key negotiation protocol endangers po-
tentially all standard compliant Bluetooth devices, regardless
their Bluetooth version number and implementation details.
We believe that the encryption key negotiation protocol has to
be fixed as soon as possible.

In particular the KNOB attack has serious implications
related to its effectiveness, stealthiness, and cost. The attack
is effective because it exploits a weakness in the specification
of Bluetooth. The Bluetooth security mode does not matter,
i.e., the attack works even with Secure Connections. The
implementation details do not matter, e.g., whether Bluetooth
is implemented in hardware or in software. The time con-
straints imposed by the Bluetooth protocols do not matter
because the attacker can eavesdrop the traffic and brute force
the low-entropy key offline. The type of connection does
not matter, e.g., the attack works with long-lived and short-
lived connections. In a long-lived connection, e.g., victims
are a laptop and a Bluetooth keyboard, the attacker has to
negotiate and brute force a single low-entropy K′C. In a short-
lived connection, e.g., victims are two devices transferring
files over Bluetooth, the attacker has to negotiate and brute
force multiple low-entropy K′C over time re-using the same
attack technique without incurring in significant runtime and
computational overheads.

The attack is stealthy because only the Bluetooth con-
trollers (implemented in the victims’ Bluetooth chip) are
aware of N and K′C. By design, the controllers are not notify-
ing the Bluetooth hosts (implemented in the OSes) about N,
but only about the outcome of the entropy negotiation. The
users and the Bluetooth application developers are unaware of
this problem because they use Bluetooth link-layer encryption
as a trusted service.

The attack is cheap because it does not require a strong
attacker model and expensive resources to be conducted. We
expect that a remote attacker with commercial-off-the-shelf
devices such as a software defined radio, GNU Radio and a
laptop can conduct the attack.



3.5 KNOB Attack Root Causes
The root causes of the KNOB attack are shared between the
specification and the implementation of Bluetooth BR/EDR
confidentially mechanisms. On one side the specification
is defining a vulnerable encryption key negotiation protocol
that allows devices to negotiate low entropy values. On the
implementation side (see Section 5), the Bluetooth applica-
tions that we tested are failing to check the negotiated entropy
in practice. This is understandable because they are imple-
menting a specification that is not mandating or explicitly
recommending an entropy check.

We do not see any reason to include the encryption key ne-
gotiation protocol in the specification of Bluetooth. From our
experiments (presented in Section 5) we observe that if two
devices are not attacked they always use it in the same way (a
device proposes 16 bytes of entropy and the other accepts).
Furthermore, the entropy reduction does not improve runtime
performances because the size of the encryption key is fixed
to 16 bytes even when its entropy is reduced.

4 Implementation

We now discuss how we implemented the KNOB attack using
a reference attack scenario. In particular, we explain how
we manipulate the key negotiation protocol, brute force the
encryption key (K′C) using eavesdropped traffic, and validate
K′C by computing it from KL as a legitimate device (as in
Figure 2). In our attack scenario, the attacker is able to decrypt
the content of a link-layer encrypted file sent from a Nexus 5
to a Motorola G3 using the Bluetooth OBject EXchange
(OBEX) profile. A Bluetooth profile is the equivalent of an
application layer protocol in the TCP/IP stack.

Our implementation required significant efforts mainly due
to the lack of low-cost Bluetooth protocol analyzers and soft-
ware libraries implementing the custom Bluetooth security
primitives (such as the modified SAFER+ block cipher). Us-
ing our implementation we conducted successful KNOB at-
tacks on more than 14 different Bluetooth chips, the attacks
are evaluated in Section 5.

4.1 Attack Scenario
To describe our implementation we use an attack scenario
with two victims a Nexus 5 and a Motorola G3, Table 1
lists their relevant specifications. The Nexus 5 is used also
as a man-in-the-middle attacker by adding extra code to its
Bluetooth firmware. This setup allows us to simulate a remote
man-in-the-middle attacker (more details in Section 4.2). To
perform eavesdropping, we use an Ubertooth One [24] with
firmware version 2017-03-R2 (API:1.02). To the best of our
knowledge, Ubertooth One does not capture all Bluetooth
BR/EDR packets, but it is the only open-source, low-cost,
and practical eavesdropping solution for Bluetooth that we

Figure 5: Transmission and reception of an E0 encrypted
payload. The concatenation of the payload and its CRC (PT x)
is encrypted, whitened, encoded and then transmitted. On the
receiver side the steps are applied in the opposite order. RF is
the radio frequency wireless channel.

know about. To brute force K′C and decrypt the ciphertext we
use a ThinkPad X1 laptop running a Linux based OS.

The victims use the following security procedures: Secure
Simple Pairing to generate KL (the link key) and authenticate
the users, the entropy reduction function from Equation (Es),
and E0 legacy encryption. The victims use legacy encryption
because the Nexus 5 does not support Secure Connections.
Nevertheless, the KNOB attack works also with Secure Con-
nections.

Every E0-encrypted packet that contains data is transmitted
and received as in Figure 5. A cyclic redundancy checksum
(CRC) is computed and appended to the payload (PayT x).
The resulting bytes (PT x) are encrypted with E0 using K′C.
The ciphertext is whitened, encoded, and transmitted over
the air. On the receiver side the following steps are applied
in sequence: decoding, de-whitening, decryption, and CRC
check. The encryption and decryption procedures are the
same because E0 is a stream cipher, i.e., the same keystream is
XORed with the plaintext and the ciphertext. Whitening and
encoding procedures do not add any security guarantee and
the Ubertooth One is capable of performing both procedures.

4.2 Manipulation of the Entropy Negotiation

We implement the manipulation of the encryption key nego-
tiation protocol (presented in Section 3.2) by extending the
functionalities of InternalBlue [21] and using it to patch the
Bluetooth chip firmware of the Nexus 5. Our InternalBlue
modifications allow to manipulate all incoming LMP mes-
sages before they are processed by the entropy negotiation
logic, and all outgoing LMP messages after they’ve been
processed by the entropy negotiation logic. The entropy ne-
gotiation logic is the code in the Nexus 5 Bluetooth firmware
that manages the encryption key negotiation protocol, and
we do not modify it. As a result, we can use a Nexus 5 (or
any other device supported by InternalBlue) as a victim and
a remote KNOB attacker without having to deal with the
practical issues related with wireless attacks over-the-air.

InternalBlue is an open-source toolkit capable of interfac-
ing with the firmware of the BCM4339 Bluetooth chip in



Bluetooth

Phone OS Version MAC SC Chip

Nexus 5 Android 6.0.1 4.1 48:59:29:01:AD:6F No Broadcom BCM4339
Motorola G3 Android 6.0.1 4.1 24:DA:9B:66:9F:83 Yes Qualcomm Snapdragon 410

Table 1: Relevant technical specifications of Nexus 5 and Motorola G3 devices used to describe our attack implementation. The
SC column indicates if a device supports Secure Connections.

Nexus 5 phones. To use it, one has to root the target Nexus 5
and compile and install the Android Bluetooth stack with
debugging features enabled. InternalBlue allows to patch the
firmware in real-time (e.g., start LMP monitoring) and read
the ROM and the RAM of firmware at runtime. Internal-
Blue provides a way to hook and execute arbitrary code in
the Bluetooth firmware. At the time of writing, InternalBlue
is not capable of hooking directly the key negotiation logic.
However, we managed to extend it to enable two victims (one
is always the Nexus 5) to negotiate one (or more) byte of
entropy.

Our manipulation of the entropy negotiation works regard-
less the role of the Nexus 5 in the piconet and it does not
require to capture any information about the Secure Simple
Pairing process. Assuming that the victims are already paired,
we test if two victims are vulnerable to the KNOB attack as
follows:

1. We connect over USB the Nexus 5 with the X1 laptop,
we run our version of InternalBlue, and we activate LMP
and HCI monitoring.

2. We connect and start the Ubertooth One capture over the
air focusing only on the Nexus 5 piconet (using UAP
and LAP flags).

3. We request a connection from the Nexus 5 to the victim
(or vice versa) to trigger the encryption key negotiation
protocol over LMP.

4. Our InternalBlue patch changes the LMP packets as
Charlie does in Figure 4.

5. If the victims successfully complete the protocol, then
they are vulnerable to the KNOB attack and we can
decrypt the ciphertext captured with the Ubertooth One.

We now describe how we extended InternalBlue to perform
the fourth step of the list. In this context, the most important
file of InternalBlue is internalblue/fw 5.py. This file
contains all the information about the BCM4339 firmware,
and it provides two hooks into the firmware, defined by Mantz
(the main author of InternalBlue) as LMP send packet and
LMP dispatcher. The former hook allows to execute code
every time an LMP packet is about to be sent and the latter

whenever an LMP packet is received. The hooks are intended
for LMP monitoring, and we upgraded them to be used also
for LMP manipulation.

Listing 1 shows three ARM assembly code blocks that we
added to fw 5.py to let the Nexus 5 and the Motorola G3
negotiate 1 byte of entropy. In this case the Nexus 5 is the
master and it initiates the encryption key negotiation protocol.
The first block translates to: if the Nexus 5 is sending an
LMP K′C entropy proposal then change it to 1 byte. This
block is executed when the Nexus 5 starts an encryption key
negotiation protocol. The code allows to propose any entropy
value by moving a different constant into r2 in line 5.

The second block from Listing 1 translates to: if the
Nexus 5 is receiving an LMP accept (entropy proposal), then
change it to an LMP K′C entropy proposal of 1 byte. This
code is used to let the Nexus 5 firmware believe that the other
victim proposed 1 byte, while she already accepted 1 byte (as-
suming that she is vulnerable). The third blocks translates to:
if the Nexus 5 is sending an LMP accept (entropy proposal),
then change it to an LMP preferred rate. This allows to obtain
the same result of dropping an LMP accept packet because
the LMP preferred rate packet does not affect the state of the
encryption key negotiation protocols. We developed and used
similar patches to cover the other attack cases: Nexus 5 is the
master and does not initiate the connection, Nexus 5 is the
slave and initiates the connection and Nexus 5 is the slave
and does not initiate the connection.

4.3 Brute Forcing the Encryption Key

Once the attacker is able to reduce the entropy of the en-
cryption key (K′C) to 1 byte, he has to brute force the key
value (key space is 256). In this section we explain how we
brute forced and validated a E0 encryption key with 1 byte
of entropy. The key was used in one of our KNOB attacks
to decrypt the content of a file transferred over a link layer
encrypted Bluetooth connection.

The details about the E0 encryption scheme are presented
in Figure 6, we describe them backwards starting from the E0
cipher. E0 takes three inputs: BTADDM , CLK26-1 and K′C.
CLK26-1 are the 26 bits of CLK in the interval CLK[25:1]
(assuming that CLK stores its least significant bit at CLK[0]).
The BTADDM is the Bluetooth address of the master and it



Listing 1 We add three ARM assembly code blocks to
internalblue/fw 5.py to negotiate K′C with 1 byte of en-
tropy. In this case the Nexus 5 is the master and it initiates
the encryption key negotiation protocol.
1 # Send LMP Kc' entropy 1 rather than 16

2 ldrb r2, [r1]

3 cmp r2, #0x20

4 bne skip_sent_ksr

5 mov r2, #0x01

6 strb r2, [r1, #1]

7 skip_sent_ksr:

8

9 # Recv LMP Kc' entropy 1 rather than LMP accept

10 ldrb r2, [r1]

11 cmp r2, #0x06

12 bne skip_recv_aksr

13 ldrb r2, [r1, #1]

14 cmp r2, #0x10

15 bne skip_recv_aksr

16 mov r2, #0x20

17 strb r2, [r1]

18 mov r2, #0x01

19 strb r2, [r1, #1]

20 skip_recv_aksr:

21

22 # Send LMP_preferred rate rather than LMP accept

23 # Simulate an attacker dropping LMP accept

24 ldrb r2, [r1]

25 cmp r2, #0x06

26 bne skip_send_aksr

27 ldrb r2, [r1, #1]

28 cmp r2, #0x10

29 bne skip_send_aksr

30 mov r2, #0x48

31 strb r2, [r1]

32 mov r2, #0x70

33 strb r2, [r1, #1]

34 skip_send_aksr:

is a public parameter. We did not have to implement the E0
cipher because we found an open-source implementation [8]
which we verified against the specification of Bluetooth. To
provide valid K′C candidates to E0 we had to implement the Es
entropy reduction procedure. This procedure takes an input
with 16 bytes of entropy (KC) and computes an output with N
bytes of entropy (K′C). Es involves modular arithmetic over
polynomials in Galois fields and we use the BitVector [16]
Python module to perform such computations.

Our Python brute force script takes a ciphertext (captured
over the air using Ubertooth One) and tries to decrypt it
by using the E0 cipher with all possible values of K′C. We
validate our script by decrypting the content of a file sent from
the Nexus 5 to the Motorola G3 using the OBEX Bluetooth
profile after the negotiation of 1 byte of entropy. The content
of the file (in ASCII) is aaaabbbbccccdddd. We discuss
several brute forcing practical issues in Section 6.3.

Once we found the matching plaintext we wanted to verify
that the brute forced key was effectively the one in use by the
victims. To do that we had to implement E1 and E3, the former

Figure 6: Implementation of the KNOB attack on the E0
cipher. The attacker makes the victims agree on a K′C with
one byte of entropy (N = 1) and then brute force K′C, without
knowing KL and KC.

is used to compute the Ciphering Offset Number (COF), the
latter to compute KC (see Figure 6). Both procedures use a
custom hash function defined in the specification of Bluetooth
with H. We write E1 and E3 equations and label them with
their respective names as follows:

SRES‖ACO = H(KL,AU RAND,BTADDS,6) (E1)
KC = H(KL,EN RAND,COF,12) (E3)

Figure 7 shows how E3 uses the H hash function, H inter-
nally uses SAFER+, a block cipher that was submitted as an
AES candidate in 1998 [22]. SAFER+ is used with 128 bit
block size (8 rounds), in ECB mode, and only for encryption.
SAFER+’ (SAFER+ prime) is a modified version of SAFER+
such that the input of the first round is added to the input
of the third round. This modification was introduced in the
specification of Bluetooth to avoid SAFER+’ being used for
encryption [6, p. 1677].

We implemented in Python both SAFER+ and SAFER+’
including the round computations and the key scheduling
algorithm. We tested the two against the specification of Blue-
tooth (where they are indicated with Ar and Ar’ [6, p. 1676]).
We also implemented the E and O blocks from Figure 7. The
E block is an extension block that transforms the 12 byte COF
into a 16 byte sequence using modular arithmetic. The same
block is applied to the 6 byte BTADDS in E1. The O block
is offsetting KL using algebraic (modular) operations and the
largest primes below 257 for which 10 is a primitive root. We
implement the E and O blocks in Python and we tested them
against the specification of Bluetooth. Then, we were able to
implement H and to use it to implement and test E3 and E1.

We validate the brute forced K′C by using the necessary pa-
rameters from Figure 6 to compute K′C from KL. We captured
the parameters using the Bluetooth logging capabilities of-
fered by Android. Table 2 shows an example of actual public
and private values used during one of our KNOB attacks. We



Figure 7: Bluetooth defines H a custom hash function based
on SAFER+. H is used to compute KC from KL, EN RAND,
and COF (see Equation E3).

Name Value

Public
BTADDM 0xccfa0070dcb6

BTADDS 0x829f669bda24

AU RAND 0x722e6ecd32ed43b7f3cdbdc2100ff6e0

EN RAND 0xd72fb4217dcdc3145056ba488bea9076

SRES 0xb0a3f41f

N 0x1

Secret
KL 0xd5f20744c05d08601d28fa1dd79cdc27

COF=ACO 0x1ce4f9426dc2bc110472d68e

KC 0xa3fccef22ad2232c7acb01e9b9ed6727

K′C 0x7fffffffffffffffffffffffffffffff

Table 2: Public and secret values (in hexadecimal representa-
tion) collected during a KNOB attack involving authenticated
SSP and E0 encryption. The encryption key (K′C) has 1 byte
of entropy.

plan to release our code implementing Es, E1 and E3 as open-
source to help researchers interested in Bluetooth’s security,
after we complete the responsible disclosure of our findings1.

4.4 Implementation for Secure Connections

The specification of Bluetooth allows to perform the KNOB
attack even when the victims are using Secure Connections.
We already implemented the entropy reduction function of the
brute force script over AES–CCM. However, at the time of
writing, InternalBlue is not capable of patching the firmware
of a Bluetooth chip that supports Secure Connections, indeed
we are not able to implement the low entropy negotiation part
of the attack using InternalBlue.

1See https://github.com/francozappa/knob

5 Evaluation

Our implementation of the KNOB attack (presented in Sec-
tion 4) allows to test if any device accepts an encryption key
with 1 byte of entropy (N = Lmin = 1). We focus our discus-
sion on the attack best case (1 byte of entropy) while arguably
any entropy value lower than 14 bytes could be considered
not secure for symmetric encryption [3].

After successfully conducting the KNOB attack on a
Nexus 5 and a Motorola G3 we conducted other KNOB at-
tacks on more than 14 unique Bluetooth chips (by attacking
21 different devices). Each attack is easy to reproduce and
testing if a device is vulnerable is a matter of seconds.

Based on our experiments, we concluded that there are
no differences between the specification and the implemen-
tation of both the Bluetooth controller (implemented in the
firmware) and the Bluetooth host (implemented in the OS
and usable as an interface by a Bluetooth application). In the
former case the specification is not enforcing any minimum
Lmin and it is not protecting the entropy negotiation protocol.
The firmware’s implementers (to provide standard-compliant
products) are allowing the negotiation of 1 byte of entropy
with an insecure protocol. The only exception is the Apple
W1 chip where an attacker can only reduce the entropy to 7
bytes. In the latter case, the Bluetooth specification is provid-
ing an HCI Read Encryption size API but it is not mandating
or recommending its usage, e.g., a mandatory check at the
end of the LMP entropy negotiation. The host’s implementers
are providing this API and the applications that we tested are
not using it.

5.1 Evaluation Setup
To perform our evaluation we collected as many devices as
possible containing different Bluetooth chips. At the time
of writing, we were able to test chips from Broadcom, Qual-
comm, Apple, Intel, and Chicony manufacturers. For each
chip we conducted the KNOB attack following the same
five steps presented in Section 4.2. As explained earlier, the
Nexus 5 is used as a (remote) attacker and a victim. For each
test we recorded the manipulated encryption key negotiation
protocol over LMP in a pcapng file and we manually verified
the protocol’s outcome with Wireshark.

Our evaluation setup is not hard to reproduce and easy
to extend because it does not require expensive hardware
and uses open-source software. We would like to see other
researchers evaluating more Bluetooth chips and devices that
currently we do not posses, e.g., Apple Watches.

5.2 Evaluation Results
Table 3 shows our evaluation results. Overall, we tested more
than 14 Bluetooth chips and 21 devices. The first column
contains the Bluetooth chip names. We fill the entries of this



Bluetooth chip Device(s) Vuln?

Bluetooth Version 5.0
Snapdragon 845 Galaxy S9 X
Snapdragon 835 Pixel 2, OnePlus 5 X
Apple/USI 339S00428 MacBookPro 2018 X
Apple A1865 iPhone X X

Bluetooth Version 4.2
Intel 8265 ThinkPad X1 6th X
Intel 7265 ThinkPad X1 3rd X
Unknown Sennheiser PXC 550 X
Apple/USI 339S00045 iPad Pro 2 X
BCM43438 RPi 3B, RPi 3B+ X
BCM43602 iMac MMQA2LL/A X

Bluetooth Version 4.1
BCM4339 (CYW4339) Nexus 5, iPhone 6 X
Snapdragon 410 Motorola G3 X

Bluetooth Version ≤ 4.0
Snapdragon 800 LG G2 X
Intel Centrino 6205 ThinkPad X230 X
Chicony Unknown ThinkPad KT-1255 X
Broadcom Unknown ThinkPad 41U5008 X
Broadcom Unknown Anker A7721 X
Apple W1 AirPods *

Table 3: List of Bluetooth chips and devices tested against
the KNOB attack. Xindicates that a chip accepts one byte of
entropy. * indicates that a chip accepts at least seven bytes
of entropy. We note that, all chips and devices implementing
any specification of Bluetooth are expected to be vulnerable
to the KNOB attack because the entropy reduction feature is
standard-compliant.

column with Unknown when we are not able to find informa-
tion about the chip manufacturer and/or model number. The
second column lists the devices that we tested grouped by
chip, e.g., the Snapdragon 835 is used both by the Pixel 2
and the OnePlus 5. The third column contains a X if the
Bluetooth chip accepts 1 byte of entropy and a * if it accepts
at least 7 bytes. The table’s rows are grouped by Bluetooth
version in four blocks: version 5.0, version 4.2, version 4,1
and version lower or equal than 4.0.

From the third column of Table 3 we see that all the chips
accept 1 byte of entropy (X) except the Apple W1 chip (*)
that requires at least 7 bytes of entropy. Apple W1 and its
successors are used in devices such as AirPods, and Apple
Watches. Seven bytes of entropy are better than one, but
not enough to prevent brute force attacks. For example, the
Data Encryption Standard (DES) uses the same amount of
entropy and DES keys were brute forced multiple times with
increasing efficacy [19].

Table 3 also demonstrates that the vulnerability spans

across different Bluetooth versions including the latest ones
such as 5.0 and 4.2. This fact confirms that the KNOB attack
is a significant threat for all Bluetooth users and we believe
that the specification of Bluetooth has to be fixed as soon as
possible.

6 Discussion

6.1 Attacking Other Bluetooth Profiles
Cable replacement wireless technologies such as Bluetooth
are widely used for all sorts of applications including desktop,
mobile, IoT, industrial and medical devices. Bluetooth defines
its set of application layer services as profiles. In Section 4
we describe an attack on the OBject EXchange (OBEX) Blue-
tooth profile, where the attacker breaks Bluetooth security by
decrypting the content of an encrypted file without having
access to any (pre-shared) secret. Here we describe three
KNOB attacks targeting other popular Bluetooth profiles. As
in the OBEX case, the attacks have serious implications in
terms of security and privacy of the victims. To the best of
our knowledge, all the profiles that we discuss in this section
rely only on the link-layer for their security guarantees and
they are widely used across different vendors. Our list of
attacks is not exhaustive and an attacker might exploit the
vulnerable encryption key negotiation protocol of Bluetooth
in other creative ways.

HID profile The attacker could perform a remote keylog-
ging attack on any device that uses the Human Interface
Device (HID) profile. This profile is used by input-output de-
vices such as keyboards, mice and joysticks. As a result, the
attacker can sniff sensitive information including passwords,
credit card numbers, and emails regardless if these informa-
tion are then encrypted on the (wired or wireless) Ethernet
link.

Bluetooth tethering The attacker could mount a remote
man-in-the-middle attack when the victim uses Bluetooth
for tethering. Tethering is used by a device, acting as an
hotspot, to share Internet connectivity with other devices
in range. Bluetooth transports Ethernet over the Bluetooth
Network Encapsulation Protocol (BNEP) [5]. This protocol
encapsulates Ethernet frames and transports them over (link-
layer encrypted) L2CAP. As a result, the attacker can sniff all
Internet traffic of the victims using a Bluetooth hotspot.

A2DP profile The attacker could record and inject audio
signals when the victim uses the Advanced Audio Distribution
Profile (A2DP) profile. As a result, the attacker is able to
record phone and Voice over IP (VoIP) calls even if the call
is encrypted (e.g., 4G and Skype). The attacker can also
tamper with voice commands sent to a personal assistant, e.g.,



Siri and Google Assistant. Recent mobile devices, such as
smartphone and tablets, are particularly vulnerable to this
threat because Bluetooth is a convenient solution to the lack
of an analog audio connector (audio jack).

6.2 Attacking Multiple Nodes and Piconets

In our paper we describe the implementation of KNOB at-
tacks targeting two victims. If a Bluetooth piconet contains
more than two devices, then (in the worst case for the attacker)
each master-slave pair uses a dedicated set of keys. In this
scenario the KNOB attack still works because it can be par-
allelized with minimal effort. For example, the attacker may
run the same attack script on different computing units, such
as processes or machines, and let each computing unit target
a master-slave pair. Each parallel instance of the attack nego-
tiates an encryption key with one byte of entropy, captures
the exchanged ciphertext, and brute forces the encryption key.
For example, an attacker is able to decrypt all the traffic from
a victim using multiple Bluetooth I/O devices to interact with
his device e.g., a laptop connected with a keyboard, a mouse
and an headset.

The KNOB attack is effective even if the attacker wants
to target multiple piconets (Bluetooth networks) at the same
time. In this case the attacker has to follow and use a different
Bluetooth clock (CLK) value for each piconet to compute
the correct encryption key. This is not a problem because the
attacker can use parallel KNOB attack instances, where each
instance follows a pair of devices in a target piconet.

6.3 Practical Implementation Issues

We spent considerable time to fine tune our brute force script.
One main reason is that Ubertooth One, used to sniff Blue-
tooth BR/EDR packets over the air, does not reliably capture
all packets and clock values (CLK). This is true even if we
limit our capture to a specific piconet by setting the UAP and
LAP parameters. As a result, we had to include extra logic in
our brute force script to iterate over different CLK values and
E0 keystream offsets. Our basic brute force logic only iterates
over the encryption key space (256 iterations). The extra
logic can be removed if we get access to a commercial-grade
Bluetooth protocol analyzer such as Ellisys [10] or similar.
Unfortunately, these devices are very expensive.

We implemented our attack by simulating a remote attacker
using InternalBlue. Alternatively, we could have conducted
the attacks over the air using signal manipulation [26] and
(reactive) jamming [31]. However, the InternalBlue setup is
simpler, more reliable, cheaper, and easier to reproduce than
the over-the-air setup and it affects the victims in the same
way as a remote attacker.

6.4 Countermeasures

In this section we propose several countermeasures to the
KNOB attack. We divide them into two classes: legacy com-
pliant and non legacy compliant. The former type of coun-
termeasure does not require a change to the specification of
Bluetooth while the latter does. We already proposed these
countermeasures to the Bluetooth SIG and CERT during our
responsible disclosure.

Legacy compliant. Our first proposed legacy compliant
countermeasure is to require a minimum and maximum
amount of negotiable entropy that cannot be easily brute
forced, e.g., require 16 bytes of entropy. This means fixing
Lmin and Lmax in the Bluetooth controller (firmware) and re-
sults in the negotiation of proper encryption keys. Another
possible countermeasure is to automatically have the Blue-
tooth host (OS) check the amount of negotiated entropy each
time link layer encryption is activated and abort the connec-
tion if the entropy does not meet a minimum requirement.
The entropy value can be obtained by the host using the HCI
Read Encryption Key Size Command. This solution requires
to modify the Bluetooth host and it might be suboptimal be-
cause it acts on a connection that is already established (and
possibly in use), not as part of the entropy negotiation proto-
col. A third solution is to distrust the link layer and provide
the security guarantees at the application layer. Some vendors
have done so by adding a custom application layer security
mechanism on top of Bluetooth (which, in case of Google
Nearby Connections, was also found to be vulnerable [1]).

Non legacy compliant. A non legacy compliant counter-
measure is to modify the encryption key negotiation protocol
by securing it using the link key. The link key is a shared (and
possibly authenticated) secret that should be always available
before starting the entropy negotiation protocol. The new pro-
tocol should provide message integrity and might also provide
confidentiality. Preferably, the specification should get rid of
the entropy negotiation protocol and always use encryption
keys with a fixed amount of entropy, e.g., 16 bytes. The im-
plementation of these solutions only requires the modification
of the Bluetooth controller (firmware).

7 Related Work

The security and privacy guarantees of Bluetooth were studied
since Bluetooth v1.0 [15, 32]. Particular attention was given
to Secure Simple Pairing (SSP), a mechanisms that Bluetooth
uses to generate and share a long term secret (defined as the
link key). Several attacks on the SSP protocol were proposed
[28, 13, 4]. The Key Negotiation Of Bluetooth (KNOB)
attack works regardless of security guarantees provided by
SSP (such as mutual user authentication).



The most up to date survey about Bluetooth security was
provided by NIST in 2017 [25]. This survey recommends to
use 128 bit keys (16 bytes of entropy). It also describes the
key negotiation protocol, and considers it as a security issue
when one of the connected devices is malicious (and not a
third party). Prior surveys do not consider the problem of
encryption key negotiation at all [9] or superficially discuss
it [29].

The various implementation of Bluetooth were also ana-
lyzed and several attacks were presented on Android, iOS,
Windows and Linux implementations [2]. Our attack works
regardless of the implementation details of the target platform,
because if any implementation is standard-compliant then it
is vulnerable to the KNOB attack.

The security of the ciphers used by Bluetooth has been
extensively discussed by cryptographers. The SAFER+ ci-
pher used by Bluetooth for authentication purposes was ana-
lyzed [17]. The E0 cipher used by Bluetooth for encryption
was also analyzed [11]. Our attack works even with per-
fectly secure ciphers. For our implementation of the custom
Bluetooth security procedures (presented in Section 4) we
used as main references the specification of Bluetooth [6] and
third-party hardware [18] and software [20] implementations.

Third-party manipulations of key negotiation protocols
were also discussed in the context of WiFi, for example key
reuse in [30]. Compared to those attacks, our attack exploits
not only implementation issues, but a standard-compliant
vulnerability of the specification of Bluetooth.

Protocol downgrade attacks were discussed in the context
of TLS[23], where the two parties are negotiating the cipher
suite to use. We note that in contrast to our scenario, for TLS
the application developers have commonly direct control over
the cipher suites that will be offered by their applications.
Therefore, avoiding a fallback to legacy encryption standards
can be prevented by the developers. To the best of our knowl-
edge, this is not the case for Bluetooth, as the protocols does
not enforce any mandatory checks on the encryption key’s
entropy.

8 Conclusion

In this paper we present the Key Negotiation Of Bluetooth
(KNOB) attack. Our attack is capable of reducing the entropy
of the encryption key of any Bluetooth BR/EDR connection
to 1 byte (8 bits). The attack is standard-compliant because
the specification of Bluetooth includes an insecure encryption
key negotiation protocol that supports entropy values between
1 and 16 bytes. As a main consequence, an attacker can easily
negotiate an encryption key with low entropy and then brute
force it. The attacker is effectively breaking the security
guarantees of Bluetooth without having to posses any (pre-
shared) secret material. The attack is stealthy because the
vulnerable entropy negotiation protocol is run by the victims’
Bluetooth controller and this protocol is transparent to the

Bluetooth host (OS) and the Bluetooth application used by
the victims. We expect that the attack could be run in parallel
to target multiple devices and piconets at the same time.

We demonstrate that the KNOB attack can be performed
in practice by implementing it to attack a Nexus 5 and a Mo-
torola G3. In our attack we decrypt a file transmitted over
an authenticated and link-layer encrypted Bluetooth connec-
tion. Brute-forcing a key with 1 byte of entropy introduces
a negligible overhead enabling an attacker to decrypt all the
ciphertext and to introduce valid ciphertext even in real-time.

We evaluate the KNOB attack on more than 14 Bluetooth
chips from different vendors such as Broadcom, Qualcomm
and Intel. All the chips accept 1 byte of entropy except the Ap-
ple W1 chip that accepts (at least) 7 bytes of entropy. Frankly,
we were expecting to find more non standard-compliant chips
like the Apple W1. Before submitting the paper, we reported
our findings to the Computer Emergency Response Team
(CERT) and the Bluetooth Special Interest Group (SIG). Both
organizations acknowledged the problem and we are collabo-
rating with them to solve it. After our responsible disclosure,
we plan to release the tools that we developed to implement
the attacks as open-source.

The KNOB attack is a serious threat to the security and
privacy of all Bluetooth users. We were surprised to discover
such fundamental issues in a widely used and 20 years old
standard. We attribute the identified issues in part to am-
biguous phrasing in the standard, as it is not clear who is
responsible for enforcing the entropy of the encryption keys,
and as a result no-one seems to be responsible in practice.
We urge the Bluetooth SIG to update the specification of
Bluetooth according to our findings. Until the specification
is not fixed, we do not recommend to trust any link-layer en-
crypted Bluetooth BR/EDR link. In Section 6.4 we propose
legacy and non legacy compliant countermeasures that would
make the KNOB attack impractical. We also recommend
the Bluetooth SIG to create a dedicated procedure enabling
researchers to securely submit new potential vulnerabilities,
similarly to what other companies, such as Google, Microsoft
and Facebook, are offering.
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[26] Christina Pöpper, Nils Ole Tippenhauer, Boris Danev,
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A Appendix

The Key Negotiation Of Bluetooth (KNOB) attack reduces
the entropy of the encryption key (K′C) to 1 byte (key space
has 256 elements). Table 4 shows twenty encryption keys
with one byte of entropy both for E0 and AES-CCM.

E0 K′C in hex, MSB on the left AES-CCM K′C in hex, MSB on the left

0x00000000000000000000000000000000 0x00000000000000000000000000000000

0x00e275a0abd218d4cf928b9bbf6cb08f 0x01000000000000000000000000000000

0x01c4eb4157a431a99f2517377ed9611e 0x02000000000000000000000000000000

0x01269ee1fc76297d50b79cacc1b5d191 0x03000000000000000000000000000000

0x0389d682af4863533e4a2e6efdb2c23c 0x04000000000000000000000000000000

0x036ba322049a7b87f1d8a5f542de72b3 0x05000000000000000000000000000000

0x024d3dc3f8ec52faa16f3959836ba322 0x06000000000000000000000000000000

0x02af4863533e4a2e6efdb2c23c0713ad 0x07000000000000000000000000000000

0x0713ad055e90c6a67c945cddfb658478 0x08000000000000000000000000000000

0x07f1d8a5f542de72b306d746440934f7 0x09000000000000000000000000000000

0x06d746440934f70fe3b14bea85bce566 0x0a000000000000000000000000000000

0x063533e4a2e6efdb2c23c0713ad055e9 0x0b000000000000000000000000000000

0x049a7b87f1d8a5f542de72b306d74644 0x0c000000000000000000000000000000

0x04780e275a0abd218d4cf928b9bbf6cb 0x0d000000000000000000000000000000

0x055e90c6a67c945cddfb6584780e275a 0x0e000000000000000000000000000000

0x05bce5660dae8c881269ee1fc76297d5 0x0f000000000000000000000000000000

0x0e275a0abd218d4cf928b9bbf6cb08f0 0x10000000000000000000000000000000

0x0ec52faa16f3959836ba322049a7b87f 0x11000000000000000000000000000000

0x0fe3b14bea85bce5660dae8c881269ee 0x12000000000000000000000000000000

0x0f01c4eb4157a431a99f2517377ed961 0x13000000000000000000000000000000

Table 4: List of twenty K′C used by E0 (left column) and
AES-CCM (right column) when N = 1 (key space is 256).


