
Advanced Topics in Machine Learning:
Bayesian Machine Learning

Tom Rainforth

Department of Computer Science

Hilary 2020



Contents

1 Introduction 1

1.1 A Note on Advanced Sections . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 A Brief Introduction to Probability 4

2.1 Random Variables, Outcomes, and Events . . . . . . . . . . . . . . . . . . . . 4

2.2 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Conditioning and Independence . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 The Laws of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Probability Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Expectations and Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Measures [Advanced Topic] . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Machine Learning Paradigms 13

3.1 Learning From Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Discriminative vs Generative Machine Learning . . . . . . . . . . . . . . . . . 16

3.3 The Bayesian Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Bayesianism vs Frequentism [Advanced Topic] . . . . . . . . . . . . . . . . . 23

3.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Bayesian Modeling 32

4.1 A Fundamental Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 The Bernstein-Von Mises Theorem . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Example Bayesian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Nonparametric Bayesian Models . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Probabilistic Programming 53

5.1 Inverting Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Differing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Bayesian Models as Program Code [Advanced Topic] . . . . . . . . . . . . . . 62

5.4 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



Contents iii

6 Foundations of Bayesian Inference and Monte Carlo Methods 74
6.1 The Challenge of Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Deterministic Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4 Foundational Monte Carlo Inference Methods . . . . . . . . . . . . . . . . . . 83
6.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Advanced Inference Methods 94
7.1 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 106

©Tom Rainforth 2020



1
Introduction

How come a dog is able to catch a frisbee in mid-air? How come a batsman can instinctively

predict the flight of a cricket ball, moving at over 100km/h, sufficiently accurately and quickly

to hit it when there is not even time to consciously make a prediction? Clearly, neither can

be based on a deep explicit knowledge of the laws of physics or some hard-coded model for

the movement of objects; we are not even born with the knowledge that unsupported objects

will fall down [Baillargeon, 2002]. The only reasonable explanation for these abilities is that

the batsmen and the dog have learned from experience. We do not have all the knowledge

we require to survive from birth, but we are born with the ability to learn and adapt, making

observations about the world around us and using these to refine our cognitive models for

everything from the laws of physics to social interaction. Classically the scientific method

has relied on human interpretation of the world to formulate explicit models to explain our

internal intuitions, which we then test through experimentation. However, even as a whole

scientific society, our models are often terribly inferior to the subconscious models of animals

and children, such as for most tasks revolving around social interaction. This leads one to ask,

is there something fundamentally wrong with this hand-crafted modeling approach? Is there

another approach that better mimics the way humans themselves learn?

Machine learning is an appealing alternative, and often complementary, approach that focuses

on constructing algorithms and systems that can adapt, or learn, from data in order to make

predictions that have not been explicitly programmed. This is exciting not only because of the

potential it brings to automate and improve a wide array of computational tasks, but because it

allows us to design systems capable of going beyond the boundaries of human understanding,

reasoning about and making predictions for tasks we cannot solve directly ourselves. As a

field, machine learning is very wide ranging, straddling computer science, statistics, engineering,

and beyond. It is perhaps most closely related to the field of computational statistics, differing

predominantly in its emphasis on prediction rather than understanding. Despite the current hype

around the field, most of the core ideas have existed for some time, often under the guise of

pattern recognition, artificial intelligence, or computational statistics. Nonetheless, the explosion



1. Introduction 2

in the availability of data and in computational processing power in recent years has led to a surge

of interest in machine learning by academia and industry alike, particularly in its application to

real world problems. This interest alone is enough to forgive the hype, as the spotlight is not only

driving the machine learning community itself forward, but helping identify huge numbers of

applications where existing techniques can be transferred to fantastic effect. From autonomous

vehicles [Lefèvre et al., 2014], to speech recognition [Jurafsky and Martin, 2014], and designing

new drugs [Burbidge et al., 2001], machine learning is rapidly becoming a crucial component

in many technological and scientific advancements.

In many machine learning applications, it is essential to use a principled probabilistic

approach [Ghahramani, 2015], incorporating uncertainty and utilizing all the information at hand,

particularly when data is scarce. The Bayesian paradigm provides an excellent basis upon which

to do this: an area specialist constructs a probabilistic model for data generation, conditions this on

the actual observations received, and, using Bayes’ rule, receives an updated model incorporating

this information. This allows information from both existing expertise and data to be combined

in a statistically rigorous fashion. As such, it allows us to use machine learning to complement

the conventional scientific approach, rather than directly replacing it: we can construct models in

a similar way to that which is already done, but then improve and refine these using data.

Unfortunately, there are two key challenges that often make it difficult for this idealized

view of the Bayesian machine learning approach to be realized in practice. Firstly, a process

known as Bayesian inference is required to solve the specified problems. This is typically a

challenging task, closely related to integration, which is often computationally intensive to

solve. Secondly, it can be challenging to specify models that are true to the assumptions the

user wishes to make and the prior information available. In particular, if the data is complex or

high-dimensional, hand-crafting such models may not be feasible, such that we should instead

also look to learn the model itself in a data-driven manner.

In this course, we will cover the fundamentals of the Bayesian machine learning approach

and start to make inroads into how these challenges can be overcome. We will go through

how to construct models and how to run inference in them, before moving on to showing

how we can instead learn the models themselves. Our finishing point will be the recently

emerged field of deep generative models [Kingma and Welling, 2014; Rezende et al., 2014;

Goodfellow et al., 2014], wherein deep learning approaches are used to learn highly complex

generative models directly from data.

©Tom Rainforth 2020



1. Introduction 3

1.1 A Note on Advanced Sections
Some sections of these notes are quite advanced and may be difficult to completely grasp given

the constraints of what can be realistically covered in the course. They are clearly marked using

[Advanced Topic] and some may not be covered in the lectures themselves. Understanding

them may require you do additional reading or look up certain terms not fully discussed in the

course. As such, you should not feel like you need to perfectly understand them to be able

to complete the coursework, but they may prove helpful in providing a complete picture and

deeper appreciation of the course’s content.

©Tom Rainforth 2020



2
A Brief Introduction to Probability

Before going into the main content of the course, we first provide a quick primer on probability

theory, outlining some essential background, terminology and conventions. This should hopefully

be predominantly a recap (with the likely exception of the concept of measures), but there are

many subtleties with probability that can prove important for Bayesian machine learning.

2.1 Random Variables, Outcomes, and Events
A random variable is a variable whose realization is currently unknown, such that it can take on

multiple different values or outcomes. A set of one or more outcomes is known as an event. For

example, if we roll a fair six-sided dice then the result of the roll is a random variable , while

rolling a 4 is both a possible outcome and a possible event. Rolling a number greater or equal to

5, on the other hand, is a possible event but not a possible outcome: it is a set of two individual

outcomes, namely rolling a 5 and rolling a 6. Outcomes are mutually exclusive, that is, it is not

possible for two separate outcomes to occur for a particular trial, e.g. we cannot roll both a 2

and 4 with a single throw. Events, on the other hand, are not. For example, it is possible for both

the events that we roll and even number and we roll a number greater than 3 to occur.

2.2 Probabilities
A probability is the chance of an event occurring. For example, if we denote the output of

our dice roll as X , then we can say that P (X = 4) = 1/6 or that P (X ≤ 3) = 0.5. Here

X = 4 and X ≤ 3 are events for the random variable X with probabilities of 1/6 and 0.5

respectively. A probability of 0 indicates that an event has no chance of happening, for example

the probability that we roll an 8, while a probability of 1 indicates it is certain to happen, for

example, the probability that we roll a positive number. All probabilities must thus lie between

0 and 1 (inclusive). The distribution of a random variable provides the probabilities of each

possible outcome for that random variable occurring.

Though, we will regularly use the shorthand P (x) to denote the probability of the event

P (X = x), we reiterate the important distinction between the random variable X and the

outcome x: the former has an unknown value (e.g. the result of the dice roll) and the latter



2. A Brief Introduction to Probability 5

is a fixed possible realization of the random variable (e.g. rolling a 4). All the same, in later

chapters we will often carefree about delineating between random variables and outcomes for

simplicity, except for when the distinction is explicitly necessary.

Somewhat surprisingly, there are two competing (and sometimes incompatible) formal

interpretations of probability. The frequentist interpretation of probability is that it is the

average proportion of the time an event will occur if a trial is repeated infinitely many times.

The Bayesian interpretation of probability is that it is the subjective belief that an event will

occur in the presence of incomplete information. Both viewpoints have strengths and weaknesses

and we will avoid being drawn into one of the biggest debates in science, noting only that the

philosophical differences between the two are typically completely detached from the practical

differences between the resulting machine learning or statistics methods (we will return to this in

the next chapter), despite these philosophical differences all too often being used to argue the

superiority of the resultant algorithms [Gelman et al., 2011; Steinhardt, 2012].

2.3 Conditioning and Independence
A conditional probability is the probability of an event given that another event has occurred.

For example, the conditional probability that we roll a 4 with a dice given that we have rolled

a 3 or higher is P (X = 4|X ≥ 3) = 0.25. More typically, we will condition upon events that

are separate but correlated to the event we care about. For example, the probability of dying of

lung cancer is higher if you smoke. The process of updating a probability using the information

from another event is known as conditioning on that event. For example, one can condition the

probability that a football team will win the league on the results from their first few games.

Events are independent if the occurrence of one event does not affect the probability of

the occurrence of the other event. Similarly, random variables are independent if the outcome

of one random variable does not affect the distribution of the other. Independence of random

variables indicates the probability of each variable is the same as the conditional probability

given the other variable, i.e. if X and Y are independent, P (X = x) = P (X = x|Y = y)

for all possible y and x. Note that independence does not necessarily carry over when adding

or removing a conditioning: if X and Y are independent, this does not necessarily mean that

P (X = x|A) = P (X = x|A, Y = y) for some event A. For example, the probability that

the next driver to pass a speed camera is speeding and that the speed camera is malfunctioning

can be reasonably presumed to be independent. However, conditioned on the event that the

speed camera is triggered, the two are clearly not independent: if the camera is working and

©Tom Rainforth 2020



2. A Brief Introduction to Probability 6

triggered, this would indicate that the driver is speeding. If P (X = x|A) = P (X = x|A, Y = y)

holds, then X and Y are known as conditionally independent given A. In the same way that

independence does not imply conditional independence, conditional independence does not

imply non-conditional independence.

2.4 The Laws of Probability
Though not technically axiomatic, the mathematical laws of probability can be summarized

by the product rule and the sum rule. Remarkably, almost all of Bayesian statistics stems

from these two simple rules.

The product rule states that the probability of two events occurring is the probability of

one of the events occurring times the conditional probability of the other event happening

given the first event happened, namely

P (A,B) := P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) (2.1)

where we have introduced P (A,B) as a shorthand for the probability that both the events A and

B occur. An immediate consequence of the product rule is Bayes’ rule,

P (A|B) = P (B|A)P (A)
P (B) , (2.2)

which we will to return at length throughout the course. Another is that, for independent

random variables, the joint distribution is the product of the individual probabilities: P (A,B) =

P (A)P (B).

The sum rule has a number of different representations, the most general of which is that

the probability that either A or B occurs, P (A ∪ B), is given by

P (A ∪B) = P (A) + P (B)− P (A,B). (2.3)

The intuition of the sum rule is perhaps easiest to see by considering that

P (B)− P (A,B) = P (B)(1− P (A|B)) = P (B,¬A)

is the probability of B and not A. Now A ∪ B can only occur if A occurs or if B occurs and

not A. As it is not possible for both these events to occur, the probability of either event must

be the sum of the probability of each separate event, leading to (2.3).

There are a number of immediate consequences of the sum rule. For example, if A and B

are mutually exclusive then P (A ∪B) = P (A) + P (B). As outcomes are mutually exclusive,

it follows from the sum rule and the axioms of probability that the sum of the probabilities for

©Tom Rainforth 2020



2. A Brief Introduction to Probability 7

each possible outcome is equal to 1. We can also use this to define the concept of marginalizing

out a random variable Y as

P (X = x) =
∑
i

P (X = x, Y = yi) (2.4)

where the sum is over all the possible outcomes of Y . Here P (X = x) is known as the marginal

probability of X and P (X = x, Y = y) as the joint probability of X and Y .

Conditional probabilities follow the same key results as unconditional probabilities, but it

should be noted that they do not define probability distributions over the conditioning term. For

example, P (A|B) is a probability distribution overA with all the corresponding requirements, but

is not a distribution over B. Therefore, for example, it is possible to have
∑
i P (A|B = bi) > 1.

We instead refer to P (A|B) as the likelihood of B, given the occurrence of event A.

2.5 Probability Densities
Thus far we have presumed that our random variables are discrete, i.e. that there is some fixed

number of possible outcomes.1 Things get somewhat more complicated if our variables are con-

tinuous. Consider for example the probability that a runner takes exactly π (i.e. 3.14159265 . . . )

hours to run a marathon P (X = π). Clearly, the probability of this particular event is zero,

P (X = π) = 0, as is the probability of the runner taking any other exact time to complete the

race: we have an infinite number of possible outcomes, each with zero probability (presuming

the runner finishes the race). Thankfully, the notion of an event that we previously introduced

comes to our rescue. For example, the event that the runner takes between 3 and 4 hours has

non-zero probability: P (3 ≤ X ≤ 4) 6= 0. Here our event includes an infinite number of possible

outcomes and even though each individual outcome had zero probability, the combination of

uncountably infinitely many such outcomes need not also have zero probability.

To more usefully characterize probability in such cases, we can define a probability density

function which reflects the relative probability of areas of the space of outcomes. We can

informally define this by considering the probability of being in some small area of the space

of size δx. Presuming that the probability density pX(x) is roughly constant within our small

area, we can say in one dimension that pX(x)δx ≈ P (x ≤ X < x + δx), thus giving the

1Technically speaking, discrete random variables can also take on a countably infinite number of values, e.g.
the Poisson distribution is defined over 0, 1, 2, . . . ,∞. However, this countable infinity is much smaller than the
uncountably infinite number of possible outcomes for continuous random variables.

©Tom Rainforth 2020



2. A Brief Introduction to Probability 8

informal definition pX(x) = lim
δ→0

P (x≤X<x+δx)
δx

. More precisely, and for multiple dimensions,

we can define the probability density as satisfying

P (X ∈ A) =
∫
x∈A

pX(x)dx (2.5)

where X ∈ A means the event that X is in A. For one-dimensional variables, we can similarly

define the cumulative distribution function P (X ≤ x), which is the probability that X is

less than equal to the outcome x

P (X ≤ x) =
∫ x

−∞
pX(u)du, (2.6)

where u is a dummy variable. The fundamental laws of probability discussed in the last section

apply equally well to probability densities, replacing summations with integrals as and when re-

quired.

In the rest of these notes, we will drop the notation pX(x), using simply p(x) instead. The

main rationale for this is that we will regularly use probability density functions that we do

not actually sample from. For example, in importance sampling, we will sample from one

distribution but evaluate its density under another. In these scenarios, it may not be possible

to link a random variable to each density. We will instead make it explicit what distribution a

random variable is drawn from using the notation X ∼ p(x). However, we will regularly be

carefree about distinguishing between random variables and outcomes by using loose notations

such as x ∼ p(x) when the delineation is not necessary in the context.

2.6 Expectations and Variances
The expected value E[X], or mean, of a random variable X is the average value that the variable

will take if an infinite number of independent draws are made. Its definition is easiest to convey

using probability density notation as follows

E[X] =
∫
xp(x)dx. (2.7)

In the discrete case this leads to E[X] = ∑
i xiP (X = xi). Because expectations are defined by

a random variable (rather than a density), they average over all the contained randomness, e.g.

E[f(X, Y )] =
∫∫
f(x, y)p(x, y)dxdy. However, if we wish to average only with respect to part

of the randomness in a system, we can instead use a conditional expectation, for example

E[f(X, Y )|Y = y] =
∫
f(x, y)p(x|y)dx, (2.8)

©Tom Rainforth 2020



2. A Brief Introduction to Probability 9

for which we will sometimes use the shorthand E[f(X, Y )|Y ]. It will also sometimes be

convenient to define the random variable and conditioning for an expectation at the same time,

for which we use the slightly loose notation

Ep(x|y) [f(x, y, z)] =
∫
f(x, y, z)p(x|y)dx, (2.9)

where we have implicitly defined the random variable X ∼ p(x|Y = y), we are calculating

E [f(X, Y, z)|Y = y], and the resulting expectation is a function of z (which is treated as a

deterministic variable). One can informally think about this as being the expectation of f(X, y, z)

with respect to X ∼ p(x|y): i.e. our expectation is only over the randomness associated

with drawing from p(x|y).

Denoting the mean of a random variable X as µ = E[X], the variance of X is defined using

any one of the following equivalent forms (replacing integrals with sums for discrete variables)

Var(X) = E
[
(X − µ)2

]
=
∫

(x− µ)2p(x)dx = E[X2]− µ2 =
∫
x2p(x)dx− µ2. (2.10)

In other words, it is the average squared distance of a variable from its mean. Its square root,

the standard deviation, informally forms an estimate of the average amount of variation of the

variable from its mean and has units which are the same as the data. We will use the same

notational conventions as for expectations when defining variances (e.g. Varp(x|y)[f(x, y, z)]).

The variance is a particular case of the more general concept of a covariance between

two random variables X and Y . Defining µX = E[X] and µY = E[Y ], then the covari-

ance is defined by any one of the following equivalent forms (again replacing integrals with

sums for discrete variables)

Cov(X, Y ) = E [(X − µX)(Y − µY )] =
∫∫

(x− µX)(y − µY )p(x, y)dxdy

= E [XY ]− E [X]E [Y ] =
∫∫

xyp(x, y)dxdy −
(∫

xp(x)dx
)(∫

yp(y)dy
)
. (2.11)

The covariance between two variables measures the joint variability of two random variables.

It is perhaps easiest to interpret through the definition of correlation (or more specifically,

Pearson’s correlation coefficient) which is the correlation scaled by the standard deviation

of each of the variables

Corr(X, Y ) = Cov(X, Y )√
Var(X)Var(Y )

. (2.12)

The correlation between two variables is always in the range [−1, 1]. Positive correlations indicate

that when one variable is relatively larger, the other variable also tends to be larger. The higher

the correlation, the more strongly this relationship holds: if the correlation is 1 then one variable

©Tom Rainforth 2020



2. A Brief Introduction to Probability 10

is linearly dependent on the other. The same holds for negative correlations except that when

one variable increases, the other tends to decrease. Independent variables have a correlation

(and thus a covariance) of zero, though the reciprocal is not necessarily true: variables with zero

correlation need not be independent. Note that correlation is not causation.

2.7 Measures [Advanced Topic]
Returning to our marathon runner example from Section 2.5, consider now if there is also a

probability that the runner does not finish the race, which we denote as the outcome X = DNF.

As we have thus-far introduced them, neither the concept of a probability or a probability density

seem to be suitable for this case: every outcome other than X = DNF has zero probability,

but X = DNF seems to have infinite probability density.

To solve this conundrum we have to introduce the concept of a measure. A measure can be

thought of as something that assigns a size to a set of objects. Probability measures assign

probabilities to events, remembering that events represent sets of outcomes, and thus are

used to define a more formal notion of probability than we have previously discussed. The

measure assigned to an event including all possible outcomes is thus 1, while the measure

assigned to the empty set is 0.

We can generalize the concept of a probability density to arbitrary random variables by

formalizing its definition as being with respect to an appropriate reference measure. Somewhat

confusingly, this reference measure is typically not a probability measure. Consider the case of

the continuous densities examined in Section 2.5. Here we have implicitly used the Lebesgue

measure as the reference measure, which corresponds to the standard Euclidean notion of size,

coinciding with the concepts of length, area, and volume in 1, 2, and 3 dimensions respectively.

In (2.5) then dx indicated integration with respect to a Lebesgue measure, with
∫
x∈A dx being

equal to the hypervolume of A (e.g. area of A in two dimensions). Our reference measure is,

therefore, clearly not a probability measure as
∫
x∈R dx =∞. Our probability measure here can

be informally thought of as p(x)dx, so that
∫
x∈A p(x)dx = P (x ∈ A).2

In the discrete case, we can define a probability density p(x) = P (X = x) by using the

notion of a counting measure for reference, which simply counts the number of outcomes

which lead to a particular event.

2More formally, the density is derived from the probability measure and reference measure rather than the other
way around: it is the Radon-Nikodym derivative of the probability measure with respect to the reference measure.

©Tom Rainforth 2020



2. A Brief Introduction to Probability 11

Note that we were not free to choose any arbitrary measure for any given random variable.

We cannot use a counting measure as reference for continuous random variables or the Lebesgue

measure for discrete random variables because, for example, the Lebesgue measure would assign

zero measure to all possible events for the latter. In principle, the reference measure we use is

not necessarily unique either (see below), but in practice it is rare we need to venture beyond

the standard Lebesgue and counting measures. For notional convenience, we will refer to dx

(or equivalent) as our reference measure elsewhere in the notes.

Returning to the example where the runner might not finish, we can now solve our problem

by using a mixed measure. Perhaps the easiest way to think about this is to think about the

runner’s time X as being generated through the following process:

1: Sample a discrete random variable Y ∈ {0, 1} that dictates if the runner finishes
2: if Y = 0 then
3: X ← DNF
4: else
5: Sample X conditioned on the runner finishing the race
6: end if

We can now define the probability of the event X ∈ A by marginalizing over Y :

P (X ∈ A) =
∑

y∈{0,1}
P (X ∈ A, Y = y)

= P (X ∈ A|Y = 0)P (Y = 0) + P (X ∈ A|Y = 1)P (Y = 1).

Here neither P (X ∈ A|Y = 0) nor P (X ∈ A|Y = 1) is problematic. Specifically, we have

P (X ∈ A|Y = 0) = I(DNF ∈ A), while P (X ∈ A|Y = 1) can be straightforwardly defined as

the integral of a density defined with respect to a Lebesgue reference measure, namely

P (X ∈ A|Y = 1) =
∫
x∈A

p(x|Y = 1)dx

where dx is the Lebesgue measure.

By definition of a probability density, we also have that

P (X ∈ A) =
∫
x∈A

p(x)dµ(x)

for density p(x) with respect to measure dµ(x), where we switched notation from dx to dµ(x)

to express the fact that the measure now depends explicitly on the value of x, i.e. our measure

is non-stationary in x. This is often referred to as a mixture measure. For x 6= DNF then

it is natural for dµ(x) to correspond to the Lebesgue measure as above. For x = DNF it is

natural for dµ(x) to correspond to counting measure.

©Tom Rainforth 2020



2. A Brief Introduction to Probability 12

Note though that care must be taken if optimizing a density when this is defined with

respect to a mixed measure. In the above example, one could easily have that arg maxx p(x) 6=
DNF which could quickly lead to confusion given that X = DNF is infinitely times more

probable than any other X .

2.8 Change of Variables
We finish the chapter by considering the relationship between random variables which are

deterministic functions of one another. This important case is known as a change of variables.

Imagine that a random variable Y = g(X) is a deterministic and invertible function of another

random variable X . Given a probability density function for X , we can define a probability

density function on Y using

p(y)dy = p(x)dx = p(g−1(y))dg−1(y) (2.13)

where p(y) and p(x) are the respective probability densities for Y and X with measures dx

and dy. Here dy is known as a push-forward measure of dx. Rearranging we see that, for

one-dimensional problems,

p(y) =
∣∣∣∣∣dg−1(y))

dy

∣∣∣∣∣ p(g−1(y)). (2.14)

For the multidimensional case, the derivative is replaced by the determinant of the Jacobian

for the inverse mapping.

Note that by (2.5), changing variables does not change the value of actual probabilities or

expectations (see Section 2.6). This is known as the law of the unconscious statistician and

it effectively means that both the probability of an event and the expectation of a function, do

not depend on how we parameterize the problem. More formally, if Y = g(X) where g is a

deterministic function (which need not be invertible), then

E[Y ] =
∫
yp(y)dy =

∫
g(x)p(x)dx = E[g(X)], (2.15)

such that we do not need to know p(y) to calculate the expectation of Y : we can take the

expectation with respect to X instead and use p(x).

However, (2.13) still has the important consequence that the optimum of a probability

distribution depends on the parameterization, i.e., in general,

x∗ = arg max
x

p(x) 6= g−1
(

arg max
g(x)

p(g(x))
)
. (2.16)

For example, parameterizing a problem as either X or logX will lead to a different x∗.

©Tom Rainforth 2020



3
Machine Learning Paradigms

In this chapter, we will provide a high-level introduction to some of the core approaches to

machine learning. We will discuss the most common ways in which data is used, such as

supervised and unsupervised learning. We will distinguish between discriminative and generative

approaches, outlining some of the key features that indicate when problems are more suited to

one approach or the other. Our attention then settles on probabilistic generative approaches,

which will be the main focus of the course. We will explain how the Bayesian paradigm provides

a powerful framework for generative machine learning that allows us to combine data with

existing expertise. We continue by introducing the main counterpart to the Bayesian approach—

frequentist approaches—and present arguments for why neither alone provides the full story.

In particular, we will outline the fundamental underlying assumptions made by each approach

and explain why the differing suitability of these assumptions to different tasks means that

both are essential tools in the machine learning arsenal, with many problems requiring both

Bayesian and frequentist elements in their analysis. We finish the chapter by discussing some

of the key practical challenges for Bayesian modeling.

3.1 Learning From Data
Machine learning is all about learning from data. In particular, we typically want to use the data

to learn something that will allow us to make predictions at unseen datapoints. This emphasis

on prediction is what separates machine learning from the field of computational statistics,

where the aim is typically more to learn about parameters of interest. Inevitably though, the

line between these two is often blurry, and will be particular so for this Bayesian machine

learning course. Like with most fields, the term machine learning does not have a precise

infallible definition, it is more a continuum of ideas spanning a wide area of statistics, computer

science, engineering, applications, and beyond.

With some notable exceptions that we will discuss later, the starting point for most machine

learning algorithms is a dataset. Most machine learning methods can be delineated based on

the type of dataset they work with, and so we will first introduce some of the most common

types of categorization. Note that these are not exhaustive.



3. Machine Learning Paradigms 14

3.1.1 Supervised Learning

Supervised learning is arguably the most natural and common machine learning setting. In

supervised learning, our aim is to learn a predictive model f that takes an input x ∈ X and

aims to predict its corresponding output y ∈ Y . Learning f is done by using a training dataset

D that is comprised of a set of input–output pairs: D = {xn, yn}Nn=1. This is sometimes

referred to as labeled data. The hope is that these example pairs can be used to “teach” f

how to accurately make predictions.

The two most common types of supervised learning are regression and classification. In

regression, the outputs we are trying to predict are numerical, such that Y ⊆ R (or, in the case of

multi-variate regression, Y ⊆ Rd for some d ∈ N+). Common examples of regression problems

include curve fitting and many empirical scientific prediction models; example regression methods

include linear regression, Gaussian processes, and deep learning. In classification, the outputs

are categorical variables, such that Y is some discrete (and typically non-ordinal) set of possible

output values. Common example classification problems include image classification and medical

diagnosis; example classification methods include random forests, support vector machines, and

deep learning. Note that many supervised machine learning methods are capable of handling

both regression and classification.

3.1.2 Unsupervised Learning

Unlike supervised learning, unsupervised learning methods do not have a single unified predic-

tive goal. They are generally categorized by the data having no clear output variable that we

are attempting to predict, such that we just have a collection of example datapoints rather than

explicit input–output pairs, i.e. D = {xn}Nn=1. This is sometimes referred to as unlabeled data.

In general, unsupervised learning methods look to exact some salient features for the dataset,

such as underlying structure, patterns, or characteristics. They are also sometimes used to

simplify datasets so that they can be more easily interacted with by humans or other algorithms.

Common types of unsupervised learning include clustering, feature extraction, density estimation,

representation learning, data visualization, data mining, data compression, and some model

learning. A host of different methods are used to accomplish these tasks, with approaches that

leverage deep learning becoming increasingly prominent.

©Tom Rainforth 2020



3. Machine Learning Paradigms 15

3.1.3 Semi–Supervised Learning

As the name suggests, semi–supervised learning is somewhere in–between supervised and

unsupervised learning. It is generally characterized by the presence of a dataset where not all

the inputs variables have corresponding output; i.e. only some of a datapoints are labeled. In

particular, many semi-supervised approaches focus on cases where there is a large amount of

unlabeled data available, but only a small amount of labeled data (in cases were only a small

number of labels are missing, one often just uses a suitable supervised algorithm instead).

The aim of semi–supervised learning can depend on the context. In many, and arguably most,

cases, the aim is to use the unlabeled data to assist in learning a predictive model, e.g. through

uncovering structure or patterns that aid in training the model or help to better generalize to

unseen inputs. However, there are also some cases where the labels are instead used to try

and help with more unsupervised–learning–orientated tasks, such as learning features with

strong predictive power, or performing representation learning in a manner that emphasizes

structure associated with the output labels.

3.1.4 Notable Exceptions

There are also a number of interesting machine learning settings where one does not start

with a dataset, but must either gather the data during the learning process, or even simu-

late our own pseudo data.

Perhaps the most prominent example of this is reinforcement learning. In reinforcement

learning, one must “learn on the fly”: there is an agent which must attempt an action or series of

actions before receiving a reward for those choices. The agent then learns from these rewards

to improve its actions over time, with the ultimate aim being to maximize the long-term reward

(which can be either cumulative or instantaneous). Reinforcement learning still uses data through

its updating based on previous rewards, but it must also learn how to collect that data as well,

leading to quite distinct algorithms. It is often used in settings where an agent must interact with

the physical world (e.g. self-driving cars) or a simulator (e.g. training AIs for games).

Other examples of machine learning frameworks that do not fit well into any of the aforemen-

tioned categories include experimental design, active learning, meta-learning, and collaborative fil-

tering.

©Tom Rainforth 2020



3. Machine Learning Paradigms 16

3.2 Discriminative vs Generative Machine Learning
3.2.1 Discriminative Machine Learning

In some machine learning applications, huge quantities of data are available that dwarf the

information that can be provided from human expertise. In such situations, the main challenge

is in processing and extracting all the desired information from the data to form a useful

characterization, typically an artifact providing accurate predictions at previous unseen inputs.

Such problems are typically suited to discriminative machine learning approaches [Breiman

et al., 2001; Vapnik, 1998], such as neural networks [Rumelhart et al., 1986; Bishop, 1995],

support vector machines [Cortes and Vapnik, 1995; Schölkopf and Smola, 2002], and decision

tree ensembles [Breiman, 2001; Rainforth and Wood, 2015].

Discriminative machine learning approaches are predominantly used for supervised learning

tasks. They focus on directly learning a predictive model: given training data D = {xn, yn}Nn=1,

they learn a parametrized mapping fθ from the inputs x ∈ X to the outputs y ∈ Y that can

be used directly to make predictions for new inputs x /∈ {xn}Nn=1. Training uses the data D
to estimate optimal values of the parameters θ∗. Prediction at a new input x involves applying

the mapping with an estimate of the optimal parameters θ̂ giving an estimate for the output

ŷ = fθ̂(x). Some methods may also return additional prediction information instead of just

the output itself. For example, in a classification task, we might predict the probability of

each class, rather than just the class.

Perhaps the simplest example of discriminative learning is linear regression: one finds

the hyperplane that best represents the data and then uses this hyperplane to interpolate or

extrapolate to previously unseen points. As a more advanced example, in a neural network

one uses training to learn the weights of the network, after which prediction can be done

by running the network forwards.

There are many intuitive reasons to take a discriminative machine learning approach. Perhaps

the most compelling is the idea that if our objective is prediction, then it is simplest to solve

that problem directly, rather than try and solve some more general problem such as learning an

underlying generative process [Vapnik, 1998; Breiman et al., 2001]. Furthermore, if sufficient

data is provided, discriminant approaches can be spectacularly successful in terms of predictive

performance. Discriminant methods are typically highly flexible and can capture intricate

structure in the data that would be hard, or even impossible, to establish manually. Many

©Tom Rainforth 2020



3. Machine Learning Paradigms 17

approaches can also be run with little or no input on behalf of the user, delivering state-of-the-art

performance when used “out-of-the-box” with default parameters.

However, this black-box nature is also often their downfall. Discriminative methods typically

make such weak assumptions about the underlying process that is difficult to impart prior

knowledge or domain-specific expertise. This can be disastrous if insufficient data is available, as

the data alone is unlikely to possess the required information to make adequate predictions. Even

when substantial data is available, there may be significant prior information available that needs

to be exploited for effective performance. For example, in time series modeling the sequential

nature of the data is critically important information [Liu and Chen, 1998].

The difficultly in incorporating assumptions about the underlying process varies between

different discriminative approaches. Much of the success of neural networks (i.e. deep learning)

stems from the fact that they still provide a relatively large amount of flexibility to adapt the

framework to a particular task, e.g. through the choice of architecture. At the other extreme,

random forest approaches provide very little flexibility to adjust the approach to a particular task,

but are still often the best performing approaches when we require a fully black-box algorithm

that requires no human tuning to the specific task [Rainforth and Wood, 2015].

Not only does the black-box nature of many discriminative methods restrict the level of human

input that can be imparted on the system, it often restricts the amount of insight and information

that can be extracted from the system once trained. The parameters in most discriminative

algorithms do not have physical meaning that can be queried by a user, making their operation

difficult to interpret and hampering the process of improving the system through manual revision

of the algorithm. Furthermore, this typically makes them inappropriate for more statistics

orientated tasks, where it is the parameters themselves which are of interest, rather than the ability

for the system itself to make predictions. For example, the parameters may have real-world

physical interpretations which we wish to learn about.

Most discriminative methods also do not naturally provide realistic uncertainty estimates.

Though many methods can produce uncertainty estimates either as a by-product or from a

post-processing step, these are typically heuristic based, rather than stemming naturally from

a statistically principled estimate of the target uncertainty distribution. A lack of reliable

uncertainty estimates can lead to overconfidence and can make certain discriminative methods

inappropriate in many scenarios, e.g. for any application where there are safety concerns. It

can also reduce the composability of a methods within larger systems, as information is lost

when only providing a point estimate.

©Tom Rainforth 2020



3. Machine Learning Paradigms 18

3.2.2 Generative Machine Learning

These shortfalls with discriminative machine learning approaches mean that many tasks instead

call for a generative machine learning approach [Ng and Jordan, 2002; Bishop, 2006]. Rather

than directly learning a predictor, generative methods look to explain the observed data using a

probabilistic model. Whereas discriminative approaches aim only to make predictions, generative

approaches model how the data is actually generated: they model the joint probability p(X, Y ) of

the inputs X and outputs Y . By comparison, we can think of discriminative approaches as only

modeling the outputs given the inputs Y |X . For this reason, most techniques for unsupervised

learning are based on a generative approach, as here we have no explicit outputs.

Because they construct a joint probability model, generative approaches generally make

stronger modeling assumptions about the problem than discriminative approaches. Though

this can be problematic when the model assumptions are wrong and is often unnecessary in

the limit of large data, it is essential for combining prior information with data and therefore

for constructing systems that exploit application-specific expertise. In the eternal words of

George Box [Box, 1979; Box et al., 1979],

All models are wrong, but some are useful.

In a way, this is a self-fulfilling statement: a model for any real phenomena is, by definition,

an approximation and so is never exactly correct, no matter how powerful. However, it is still

an essential point that is all too often forgotten, particularly by academics trying to convince

the world that only their approach is correct. Only in artificial situations can we construct exact

models and so we must remember, particularly in generative machine learning, that the first, and

often largest, error is in our original mathematical abstraction of the problem. On the other hand,

real situations have access to finite and often highly restricted data, so it is equally preposterous

to suggest that a method is superior simply due to better asymptotic behavior in the limit of large

data, or that if our approach does not work then the solution always just to get more data.1 As

such, the ease of which domain-specific expertise can be included in generative approaches is

often essential to achieving effective performance on real-world tasks.

To highlight the difference between discriminative and generative machine learning, we

consider the example of the differences between logistic regression (a discriminative classifier)

and naïve Bayes (a generative classifier). We will consider the binary classification case for

1It should, of course, be noted that the availability of data is typically the biggest bottleneck in machine learning:
performance between machine learning approaches is often, if not usually, dominated by variations in the inherently
difficulty of the problem, which is itself not usually known up front, rather than differences between approaches.

©Tom Rainforth 2020



3. Machine Learning Paradigms 19

simplicity. Logistic regression is a linear classification method where the class label y ∈
{−1,+1} is predicted from the input features x ∈ RD using

pa,b(y|x) = 1
1 + exp(−y(a+ bTx)) , (3.1)

and where a ∈ RD and b ∈ RD are the parameters of the model. The model is trained by finding

the values for a and b that minimize a loss function on the training data. For example, a common

approach is to find the most likely parameters a∗ and b∗ by minimizing cross-entropy loss function

{a∗, b∗} = arg min
a∈RD,b∈RD

−
N∑
n=1

log (pa,b(yn|xn)) . (3.2)

Once found, a∗ and b∗ can be used with (3.1) to make predictions at any possible x. Logistic

regression is a discriminative approach as we have directly calculated a characterization for the

predictive distribution, rather than constructing a joint distribution on the inputs and outputs.

The naïve Bayes classifier, on the other hand, constructs a generative mode for the data.

Namely it presumes that each data point is generated by sampling a class label yn ∼ pψ(y) and

then sampling the features given the class label xn ∼ pφ(x|yn). Here the so-called naïve Bayes

assumption is that different data points are generated independently given the class label, namely

pψ,φ(y1:N |x1:N) ∝ pψ(y1:N)
N∏
n=1

pφ(xn|yn). (3.3)

We are free to choose the form for both pψ(x|y) and pφ(y) and we will use the data to learn their

parameters ψ and φ. For example, we could take a maximum likelihood approach by calculating2

{ψ∗, φ∗} = arg max
ψ,φ

pψ,φ(y1:N |x1:N) = arg max
ψ,φ

pψ(y1:N)
N∏
n=1

pφ(xn|yn) (3.4)

and then using these parameters to make predictions ỹ at a given input x̃ at test time as follows

pψ∗,φ∗(ỹ|x̃) ∝ pψ∗(ỹ)pφ∗(x̃|ỹ). (3.5)

The freedom to choose the form for pψ(x|y) and pφ(y) is both a blessing and a curse of

this generative approach: it allows us to impart our own knowledge about the problem on the

model, but we may be forced to make assumptions without proper justification in the interest of

tractability, for convenience, in error, or simply because it is challenging to specify a sufficiently

general purpose model that can cover all possible cases. Further, even after the forms of pφ(x|y)

and pψ(y) have been defined, there are still decisions to be made: do we take a Bayesian or

frequentist approach for making predictions? What is the best way to calculate the information

required to make predictions? We will go into these questions in more depth in Section 3.4.

2Note that the name naïve Bayes as potentially misleading here as we are not taking a fully Bayesian approach.

©Tom Rainforth 2020



3. Machine Learning Paradigms 20

As we have shown, generative approaches are inherently probabilistic. This is highly

convenient when it comes to calculating uncertainty estimates or gaining insight from our

trained model. They are generally more intuitive than discriminative methods, as, in essence,

they constitute an explanation for how the data is generated. As such, the parameters tend to

have physical interpretation in the generative process and therefore provide not only prediction

but also insight. Generative approaches will not always be preferable, particularly when there

is an abundance of data available, but they provide a very powerful framework that is essential

in many scenarios. Perhaps their greatest strength is in allowing the use of so-called Bayesian

approaches, which we now introduce.

3.3 The Bayesian Paradigm
At its core, the Bayesian paradigm is simple, intuitive, and compelling: for any task involving

learning from data, we start with some prior knowledge and then update that knowledge to

incorporate information from the data. This process is known as Bayesian inference. To give

an example, consider the process of interviewing candidates for a job. Before we interview

each candidate, we have some intuitions about how successful they will be in the advertised

role, e.g. from their application form. During the interview we receive more information about

their potential competency and we combine this with our existing intuitions to get an updated

belief of how successful they will be.

To be more precise, imagine we are trying to reason about some variables or parameters

θ. We can encode our initial belief as probabilities for different possible instances of θ, this

is known as a prior p(θ). Given observed data D, we can characterize how likely different

values of θ are to have given rise to that data using a likelihood function p(D|θ). These can

then be combined to give a posterior, p(θ|D), that represents our updated belief about θ once

the information from the data has been incorporated by using Bayes’ rule:

p(θ|D) = p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ = p(D|θ)p(θ)

p(D) . (3.6)

Here the denominator, p(D), is a normalization constant known as the marginal likelihood or

model evidence and is necessary to ensure p(θ|D) is a valid probability distribution (or probability

density for continuous problems). One can, therefore, think of Bayes’ rule in the even simpler

form of the posterior being proportional to the prior times the likelihood:

p(θ|D) ∝ p(D|θ)p(θ). (3.7)

©Tom Rainforth 2020



3. Machine Learning Paradigms 21

For such a fundamental theorem, Bayes’ rule has a remarkably simple derivation, following

directly from the product rule of probability as we showed in Chapter 2.

Another way of thinking about the Bayesian paradigm is in terms of constructing a generative

model corresponding to the joint distribution on parameters and possible data p(θ,D), then

conditioning that model by fixing D to the data we actually observe. This provides an updated

distribution on the parameters p(θ|D) that incorporates the information from the data.

A key feature of Bayes’ rule is that it can be used in a self-similar fashion where the posterior

from one task becomes the prior when the model is updated with more data, i.e.

p(θ|D1,D2) = p(D2|θ,D1)p(θ|D1)
p(D2|D1) = p(D2|θ,D1)p(D1|θ)p(θ)

p(D2|D1)p(D1) . (3.8)

As a consequence, there is something quintessentially human about the Bayesian paradigm: we

learn from our experiences by updating our beliefs after making observations. Our model of the

world is constantly evolving with time and is the cumulation of experiences over a lifetime. If we

make an observation that goes against our prior experience, we do not suddenly make drastic

changes to our underlying belief,3 but if we see multiple corroborating observations our view

will change. Furthermore, once we have developed a strong prior belief about something, we can

take substantial convincing to change our mind, even if that prior belief is highly illogical.

3.3.1 Worked Example: Predicting the Outcome of a Weighted Coin

To give a concrete example of a Bayesian analysis, consider estimating the probability of getting

a heads from a weighted coin. Let’s call this weighting θ ∈ [0, 1] such that the probability

of getting a heads (H) when flipping the coin is p(y = H|θ) = θ where y is the outcome of

the flip. This will be our likelihood function, corresponding to a Bernoulli distribution, noting

that the probability of getting a tails (T ) is p(y = T |θ) = 1 − θ. Before seeing the coin being

flipped we have some prior belief about its weighting. We can, therefore, define a prior p(θ),

for which we will take the beta distribution

p(θ) = BETA (θ;α, β) = Γ(α + β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1 (3.9)

where Γ(·) is the gamma function and we will set α = β = 2. A plot for this prior is shown

in Figure 3.1a where we see that under our prior then it is more probable that θ is close to

0.5 than the extremes 0 and 1.

3This is not always quite true: as probabilities are multiplicative then a particularly unexpected observation can
still drastically change our distribution.

©Tom Rainforth 2020



3. Machine Learning Paradigms 22

(a) Prior (b) Posterior 1 flip (c) Posterior 6 flips (d) Posterior 1000 flips

Figure 3.1: Prior and posteriors for coin flip example after different numbers of observations.

We now flip the coin and get a tails (T ). We can calculate the posterior using Bayes’ rule

p(θ|y1 = T ) = p(θ)p(y1 = T |θ)∫
p(θ)p(y1 = T |θ)dθ = θ(1− θ)2∫

θ(1− θ)2dθ
= BETA (θ; 2, 3) . (3.10)

Here we have used the fact that a Beta prior is conjugate to a Bernoulli likelihood to give an

analytic solution. Conjugacy means that the prior-likelihood combination gives a posterior that is

of the same form as the prior distribution. More generally, for a prior of BETA(θ;α, β) then the

posterior will be BETA(θ;α+ 1, β) if we observe a heads and BETA(θ;α, β + 1) if we observe a

tails. Figure 3.1b shows that our posterior incorporates the information from the prior and the

observed data. For example, our observation means that it becomes more probable that θ < 0.5.

The posterior also reflects the fact that we are still uncertain about the value of θ, it is not simply

the empirical average of our observations which would give θ = 0.

If we now flip the coin again, our previous posterior (3.10) becomes our prior and we can

incorporate the new observations in the same way. Through our previous conjugacy result, then if

we observe nH heads and nT tails and our prior is BETA(θ;α, β) then our posterior is BETA(θ;α+

nH , β + nT ). Thus if our sequence of new observations is HTHHH then our new posterior is

p(θ|y1, . . . , y6) = p(y2, . . . , y6|θ)p(θ|y1)∫
p(y2, . . . , y6|θ)p(θ|y1)dθ = BETA (θ; 6, 4) , (3.11)

which is shown in Figure 3.1c. We see now that our belief for the probability of heads has shifted

higher and that the uncertainty has reduced because of the increased number of observations.

After seeing a total of 1000 observations as shown in Figure 3.1d, we find that the posterior

has predominantly collapsed down to a small range of θ. We will return to how to use this

posterior to make predictions at the end of the next section.

3.3.2 Using the Posterior
In some cases, the posterior is all we care about. For example, in many statistical applications θ

is some physical parameter of interest and our core aim is to learn about it. Often though, the

posterior will be a stepping stone to some ultimate task of interest.

One common task is making decisions; the Bayesian paradigm is rooted in decision theory.

It is effectively the language of epistemic uncertainty—that is uncertainty originating from

©Tom Rainforth 2020



3. Machine Learning Paradigms 23

lack of information. As such, we can use it as a basis for making decisions in the presence of

incomplete information. As we will show in Section 3.4, in a Bayesian decision framework

we first calculate the posterior and then use this to make a decision by choosing the decision

which has the lowest expected loss under this posterior.

Another common task, particularly in the context of Bayesian machine learning, is to use

the posterior to make predictions for unseen data. For this, we use the so-called posterior

predictive distribution. Denoting the new data as D∗, this is calculated by first introducing

a predictive model for new data given θ, p(D∗|θ,D), then taking the expectation of this over

possible parameter values as dictated by posterior as follows

p(D∗|D) =
∫
p(D∗, θ|D)dθ =

∫
p(D∗|θ,D)p(θ|D)dθ = Ep(θ|D)[p(D∗|θ,D)]. (3.12)

Though the exact form of p(D∗|θ,D) can vary depending on the context, it is equivalent to a

likelihood term for the new data: if we were to observe D∗ rather than predicting it, this is exactly

the likelihood term we would use to update our posterior as per (3.8).

We further note that it is typical to assume that p(D∗|θ,D) = p(D∗|θ), such that data is

assumed to be independent given θ. As we discuss in the next chapter, there are strong theoretical

and practical motivations for this assumption, but it is important to appreciate that it is an

assumption none the less: it effectively equates to assuming that all the information we want

to use for predicting from our model is encapsulated in θ.

Returning to our coin flipping example, we can now make predictions using the posterior

predictive distribution as follows

p(yN+1 = H|y1:N) =
∫
p(yN+1 = H, θ|y1:N)dθ =

∫
p(yN+1 = H|θ)p(θ|y1:N)dθ

=
∫
θ BETA(θ;α + nH , β + nT )dθ = α + nH

α + nH + β + nT
(3.13)

where we have used the known result for the mean of the Beta distribution. The role of the

parameters α and β in our prior now become apparent – they take on the role of pseudo-

observations. Our prediction is in line with the empirical average from seeing α + nH heads and

β + nT tails. The larger α+ β is then the strong our prior compared to the observations, while

we can skew towards heads or tails being more likely by changing the relative values of α and β.

3.4 Bayesianism vs Frequentism [Advanced Topic]
We have just introduced the Bayesian approach to generative modeling, but this is far from the

only possible approach. In this section, we will briefly introduce and compare the alternative,

©Tom Rainforth 2020



3. Machine Learning Paradigms 24

frequentist, approach. The actual statistical differences between the approaches are somewhat

distinct from the more well-known philosophical differences we touched on in Section 2.2,

even though the latter are often dubiously used for justification for the practical application of

a particular approach. We note that whereas Bayesian methods are always, at least in theory,

generative [Gelman et al., 2014, Section 14.1], frequentist methods can be either generative or

discriminative.4 As we have already discussed differences between generative and discriminative

modeling in Section 3.2, we will mostly omit this difference from our subsequent discussion.

At their root, the statistical differences between Bayesian and frequentist methods5 stem

from distinct fundamental assumptions: frequentist modeling presumes fixed model parameters,

Bayesian modeling assumes fixed data [Jordan, 2009]. In many ways, both of these assumptions

are somewhat dubious. Why assume fixed parameters when we do not have enough information

from the data to be certain of the correct value? Why ignore that fact that other data could have

been generated by the same underlying true parameters? However, making such assumptions

can sometimes be unavoidable for carrying out particular analyses.

To elucidate the different assumptions further and start looking into why they are made, we

will now step into a decision-theoretic framework. Let’s presume that the universe gives us

some data D and some true parameter θ, the former of which we can access, but the latter of

which is unknown. We can alternatively think in terms of D being some information that we

actually receive and θ being some underlying truth or oracle from which we could make optimal

predictions, noting that there is no need for θ to be some explicit finite parameterization. Any

machine learning approach will take the data as input and return some artifact or decision, for

example, predictions for previously unseen inputs. Let’s call this process the decision rule d,

which we presume, for the sake of argument, to be deterministic for a given dataset, producing

decisions d(D).6 Presuming that our analysis is not frivolous, there will be some loss function

L(d(D), θ) associated with the action we take and the true parameter θ, even if this loss function

is subjective or unknown. At a high level, our aim is always to minimize this loss, but what we

mean by minimizing the loss changes between the Bayesian and frequentist settings.

4Note that this does not mean that we cannot be Bayesian about a discriminative model, e.g. a Bayesian neural
network. Doing this though requires us to write a prior over the model parameters and thus requires us to convert the
model it something which is (partially) generative.

5At least in their decision-theoretic frameworks. It is somewhat inevitable that delineation here and later will be
a simplification on what is, in truth, not a clear-cut divide [Gelman et al., 2011].

6If we allow our predictions to be probability distributions this assumption is effectively equivalent to assuming
we can solve any analysis required by our approach exactly.

©Tom Rainforth 2020



3. Machine Learning Paradigms 25

In the frequentist setting, D is a random variable and θ is unknown but not a random

variable. Therefore, one takes an expectation over possible data that could have been generated,

giving the frequentist risk [Vapnik, 1998]

R(θ, d) = Ep(D) [L(d(D), θ)] (3.14)

which is thus a function of θ and our decision rule. The frequentist focus is on repeatability (i.e.

the generalization of the approach to different datasets that could have been generated); choosing

the parameters θ is based on optimizing for the best average performance over all possible datasets.

In the Bayesian setting, θ is a random variable but D is fixed and known: the focus of the

Bayesian approach is on generalizing over possible values of the parameters and using all the

information at hand. Therefore one takes an expectation over θ to make predictions conditioned

on the value of D, giving the posterior expected loss [Robert, 2007]

%(D, d) = Ep(θ|D)[L(d(D), θ)], (3.15)

where p(θ|D) is our posterior distribution on θ. Although %(D, d) is a function of the data, the

Bayesian approach takes the data as given (after all we have a particular dataset) and so for a

model and decision rule, the posterior expected loss is a fixed value and, unlike in the frequentist

case, further assumptions are not required to calculate the optimal decision rule d∗.

To see this, we can consider calculating the Bayes risk [Robert, 2007], also known as the

integrated risk, which averages over both data and parameters

r(d) = Ep(D) [%(D, d)] = Eπ(θ|D) [R(θ, d)] . (3.16)

Here we have noted that we could have equivalently taken the expectation of the frequentist

risk over the posterior, such that, despite the name, the Bayes risk is neither wholly Bayesian

nor frequentist. It is now straightforward to show that the decision function which minimizes

r(d) is obtained by, for each possible dataset D ∈ D, choosing the decision that minimizes the

posterior expected loss, i.e. d∗(D) = arg mind(D) %(D, d).

By comparison, because the frequentist risk is still a function of the parameters, it requires

further work to define the optimal decision rule, e.g. by taking a minimax approach [Vapnik,

1998]. On the other hand, the frequentist risk does not require us to specify a prior p(θ), or even a

generative model at all (though many common frequentist approaches will still be based around a

likelihood function p(D|θ)). We note that the Bayesian approach can be relatively optimistic: it is

constrained to choose decisions that optimize the expected loss, whereas the frequentist approach

allows, for example, d to be chosen in a manner that optimizes for the worst case θ.

©Tom Rainforth 2020



3. Machine Learning Paradigms 26

We now introduce some shortfalls that originate from taking each approach. We emphasize

that we are only scratching the surface of one of the most hotly debated issues in statistics and

do not even come close to doing the topic justice. The aim is less to provide a comprehensive

explanation of the relative merits of the two approaches, but more to make you aware that there

are a vast array of complicated, and sometimes controversial, issues associated with whether to

use a Bayesian or frequentist approach, most of which have no simple objective conclusion.

3.4.1 Shortcomings of the Frequentist Approach [Advanced Topic]

One of the key criticisms of the frequentist approach is that predictions depend on the experimental

procedure and can violate the likelihood principle. The likelihood principle states that the

only information relevant to the parameters θ conveyed by the data D is encoded through the

likelihood function p(D|θ) [Robert, 2007, Section 1.3.2]. In other words, the same data and the

same likelihood model should always lead to the same inferences about θ. Though this sounds

intuitively obvious, it is actually violated by taking an expectation over D in frequentist methods,

as this introduces a dependency from the experimental procedure.

As a classic example, imagine that our data from flipping a coin is 3 heads and 9 tails.

In a frequentist setting, we can reach different conclusions about whether the coin is biased

depending on whether our data originated from flipping the coin 12 times and counting the

number of heads, or if we flipped the coin until we got 3 heads. For example, at the 5% level

of a significance test, we can reject the null hypothesis that the coin is unbiased in the latter

case, but not the former. This is obviously somewhat problematic, but it can be used to argue

both for and against frequentist methods.

Using it to argue against frequentist methods, and in particular significance tests, is quite

straightforward: the subjective differences in our experiment should not affect our conclusions

about whether the coin is fair or not. We can also take things further and make the results change

for absurd reasons. For example, imagine our experimenter had intended to flip until she got 3

heads, but was then attacked and killed by a bear while the twelfth flip was in the air, such that

further flips would not have been possible regardless of the outcome. In the frequentist setting,

this again changes our conclusions about whether the coin is biased. Clearly, it is ridiculous that

the occurrence or lack of a bear attack during the experiment should change our conclusions on

the biasedness of a coin, but that is need-to-know information for frequentist approaches.

As we previously suggested though, one can also use this example to argue for frequentist

methods: one can argue that it actually suggests the likelihood principle is itself incorrect.

©Tom Rainforth 2020



3. Machine Learning Paradigms 27

Although significance tests are a terribly abused tool whose misuse has had severe detrimental

impact on many applied communities [Goodman, 1999; Ioannidis, 2005], they are not incorrect,

and extremely useful, if interpreted correctly. If one very carefully considers the definition of a

p-value as being the probability that a given, or more extreme, event is observed if the experiment

is repeated, we see that our bear attack does actually affect the outcome. Namely, the chance

of getting the same or more extreme data from repeating the experiment of “flip the coin until

you get 3 heads” is different to the chance of getting the same or a more extreme result from

repeating the experiment “flip the coin until you get 3 heads or make 12 flips (at which point

you will be killed by a bear)”. As such, one can argue that the apparently absurd changes in

conclusions originate from misinterpreting the results and that, in fact, these changes actually

demonstrate that the likelihood principle is flawed because, without a notion of an experimental

procedure, we have no concept of repeatability.

This question is also far from superfluous. Imagine instead the more practical scenario where

a suspect researcher stops their experiment early as it looks like the results are likely to support

their hypothesis and they do not want to take the risk that if they keep it running as long as they

intended, then the results might no longer be so good. Here the researcher has clearly biased

their results in a way that ostensibly violates the likelihood principle.

Whichever view you take, two things are relatively indisputable. Firstly a number of

frequentist concepts, such as p-values, are not compatible with the likelihood principle. Secondly,

frequentist methods are not always coherent, that is they can return answers that are not consistent

with each other, e.g. probabilities that do not sum to one.

Another major criticism of the frequentist approach is that it takes a point estimate for θ,

rather than averaging over different possible parameters. This can be somewhat inefficient in the

finite data case, as it limits the information gathered from the learning process to that encoded by

the calculated point estimate for θ, which is then wasteful when making predictions. Part of the

reason that this is done is to actively avoid placing a prior distribution on the parameters, either

because this prior distribution might be “wrong”7 or because, at a more philosophical level, they

are not random variables under the frequentist definition of probability. Some people thus object

to placing a distribution over them at a fundamental level (we will see this objection mirrored

by Bayesians for the data in the next section). For the Bayesian perspective (and a viewpoint

7Whether a prior can be wrong, or what that even means, is a somewhat philosophical question except in the
case where it fails to put any probability mass (or density for continuous problems) on the ground truth value of the
parameters.

©Tom Rainforth 2020



3. Machine Learning Paradigms 28

we actively argue for elsewhere), this is itself also a weakness of the frequentist approach as

incorporating prior information is often essential for effective modeling.

3.4.2 Shortcomings of the Bayesian Approach [Advanced Topic]

Unfortunately, the Bayesian approach is also not without its shortcomings. We have already

discussed one key criticism in the last section in that the Bayesian approach relies on the likelihood

principle which itself may not be sound, or at the very least ill-suited for some statistical modeling

problems. More generally, it can be seen as foolhardy to not consider other possible datasets that

might have been generated. Taking a very strict stance, then even checking the performance of

a Bayesian method on test data is fundamentally frequentist, as we are assessing how well our

model generalizes to other data. Pure Bayesianism, which is admittedly not usually carried out in

practice, shuns empiricism as it, by definition, is rooted in the concept of repeated trials which is

not possible if the data is kept fixed. The rationale typically given for this is that we should use all

the information available in the data and by calculating a frequentist risk we are throwing some

of this away. For example, cross-validation approaches only ever use a subset of the data when

training the model. However, a common key aim of statistics is generalization and repeatability.

Pure Bayesian approaches include no consideration for calibration, that is, even if our likelihood

model is correct, there is still no reason that any probabilities or confidence intervals must be also.

This at odds with frequentist approaches, for which we can often derive absolute guarantees.

A related issue is that Bayesian approaches will often reach spectacularly different conclusions

for ostensibly inconsequential changes between datasets.8 At least when making the standard

assumption of i.i.d. data in Bayesian analysis, then likelihood terms are multiplicative and

so typically when one adds more data, the relative probabilities of two parameters quickly

diverge. This divergence is necessary for Bayesian methods to converge to the correct ground

truth parameters for data distributed exactly as per the model, but it also means any slight

misspecifications in the likelihood model become heavily emphasized very quickly. As a

consequence, Bayesian methods can chronically underestimate uncertainty in the parameters,

particularly for large datasets, because they do not account for the unknown unknowns. This

means that ostensibly inconsequential features of the likelihood model can lead to massively

different conclusions about the relative probabilities of different parameters. In terms of the

posterior expected loss, this is often not much of a problem as the assumptions might be similarly

inconsequential for predictions. However, if our aim is actually to learn about the parameters

8Though this is arguably more of an issue with generative approaches than Bayesian methods in particular.

©Tom Rainforth 2020



3. Machine Learning Paradigms 29

themselves then this is quite worrying. At the very least it shows why we should view posteriors

with a serious degree of skepticism (particularly in their uncertainty estimates), rather than

taking them as ground truth.

Though techniques such as cross-validation can reduce sensitivity to model misspecification,

generative frequentist methods still often do not fare much better than Bayesian methods for

misspecified models (after all they produce no uncertainty estimates on θ). Discriminative

methods, on the other hand, do not have an explicit model to specify in the same way and so are

far less prone to the same issues. Therefore, though much of the criticisms of Bayesian modeling

stem from the use of a prior, issues with model (i.e. likelihood) misspecification are often

much more severe and predominantly shared with generative frequentist approaches [Gelman

and Robert, 2013]. It is, therefore, often the question of discriminative vs generative machine

learning that is most critical [Breiman et al., 2001].

Naturally one of the biggest concerns with Bayesian approaches is their use of a prior, with this

being one of the biggest differences to generative frequentist approaches. The prior is typically

a double-edged sword. On the one hand, it is necessary for combining existing knowledge and

information from data in a principled manner, on the other hand, priors are inherently subjective

and so all produced posteriors are similarly subjective. Given the same problem, different

practitioners will use different priors and reach potentially different conclusions. In the Bayesian

framework, there is no such thing as a correct posterior for a given likelihood (presuming finite

data). Consequently, “all bets are off” for repeated experimentation with Bayesian methods as

there is no quantification for how wrong our posterior predictive might be compared with the

true generating distribution. This can mean they are somewhat inappropriate for tasks where the

focus is on repeated use, e.g. providing reliable confidence intervals for medical trials, though

many Bayesian methods retain good frequentist properties. Such cases both predicate a need

for considering that there are many possible datasets that might occur and, ideally, an objective

approach that means the conclusions are independent of the whims of the analyst.

In particular, there is no (objective) Bayesian alternative to frequentist falsification methods

such as the aforementioned significance tests.9 Both Bayesian and frequentist methods require

assumptions and neither can ever truly prove that a particular model or prediction is correct, but

9This is not to say one cannot perform falsification as part of Bayesian modeling, in fact avoiding doing so would
be ridiculous, but that providing objective statistical guarantees to this falsification requires the use of frequentist
methods. For example, even the essential research process of informally rejecting and improving models undermines
Bayesian coherence [Gelman et al., 2011]. On the other hand, the process of peer review effectively invalidates
frequentist calibration by ensuring some studies never make it to the public domain.

©Tom Rainforth 2020



3. Machine Learning Paradigms 30

frequentist methods do allow one to indisputably disprove hypotheses to within some confidence

interval. The real power of this is realized when we consider disproving null hypotheses,

e.g. the hypothesis that an output is independent of a potential driving factor. This is why

significance tests are so widely used through the sciences as, although they cannot be used to

prove a model is correct (as much as people might try), they can certainly be used to show

particular assumptions or models are wrong.

The use of a prior in Bayesian modeling can also be problematic because it is often easy to

end up “using the data twice” [Gelman et al., 2008]. The Bayesian paradigm requires that the

prior is independent from the data and this means that there should not be any human-induced

dependency. In other words, strict adherence to the paradigm would require that the user sets

their prior before observing the data they condition on, otherwise, the data will both influence

their choice of prior and be incorporated through the likelihood. This is not a problem with

Bayesian methods per se, but it can be a common shortfall in their application.

Another practical issue with Bayesian methods is their computational complexity at both train

time and test time. Firstly, using Bayesian methods requires one to carry out inference, which, as

we explain in the following chapters, is typically a challenging and computationally expensive

process, often prohibitively so. Some frequentist approaches can also be similarly expensive

at train time, but others can be substantially cheaper, particularly discriminative approaches.

Further, Bayesian methods tend to also be somewhat expensive for making predictions with the

posterior predictive itself being an integral. Frequentist methods tend to instead predict using

point estimates for θ, such that prediction is typically much cheaper.

3.4.3 Practical Usage

Although Bayesianism and frequentism are both exact frameworks, their application to real

problems is not. Both frameworks have their strengths and weaknesses and so perhaps the

key question is not which framework is correct, but when should we use each. In particular,

the Bayesian approach is often essential when working with small datasets but where we have

substantial prior expertise. On the other hand, a frequentist approach is essential to providing

guarantees and ensuring repeatability. Bayesian and frequentist methods are also by no means

mutually exclusive and effective modeling often requires elements of both to be used concurrently.

For example, one could be Bayesian about the results from a cross-validation test or look to

calculate frequentist guarantees for a Bayesian model. In essence, Bayesian and frequentist

analysis have different aims – Bayesianism is about updating subjective beliefs and frequentism

©Tom Rainforth 2020



3. Machine Learning Paradigms 31

is about creating long run, or repeated application, guarantees. We often care about both. It

is also worth noting that a number of Bayesian methods exhibit good frequentist properties,

see e.g. McAllester [2013] and the references therein.

We finish by noting a critical assumption made by both Bayesian and generative frequentist

methods—that there is some true underlying value for the parameters. Because all models

are approximations of the real world, this is often a misguided and harmful assumption. This

assumption is made is clear in the frequentist setting, but is somewhat subtle for Bayesian

approaches. Bayesian methods allow for multiple hypotheses or parameter values, but this

originates from our own uncertainty about which parameter or hypothesis is correct, thereby still

implicitly assuming that one of them is correct. Namely, as we will show with the Bernstein-Von

Mises theorem in Section 4.2, in the limit of large data, Bayesian methods with finite numbers

of parameters will collapse to a point estimate. Consequently, a Bayesian approach does not

fundamentally enrich the model space by averaging over parameters—it is still necessary that

exactly one set of parameters lead to the data, but we are not exactly sure which one [Minka, 2000].

3.5 Further Reading
• Chapter 1 of K. P. Murphy. Machine learning: a probabilistic perspective. MIT press,

2012. Note that while most of the book is not freely available, this chapter is: https:

//www.cs.ubc.ca/~murphyk/MLbook/pml-intro-22may12.pdf.

• L. Breiman et al. Statistical modeling: The two cultures (with comments and a rejoinder

by the author). Statistical science, 16(3):199–231, 2001

• Chapter 1 of C. Robert. The Bayesian choice: from decision-theoretic foundations to

computational implementation. Springer Science & Business Media, 2007. A full version

of this book can be found here: https://www.researchgate.net/publication/

41222434_The_Bayesian_Choice_From_Decision_Theoretic_Foundations_to_

Computational_Implementation. Note that this book is rather heavy reading unless

you have a statistics background and mostly well beyond the scope of this course.

• Michael I Jordan. Are you a Bayesian or a frequentist? Video lecture, 2009. http:

//videolectures.net/mlss09uk_jordan_bfway/

©Tom Rainforth 2020

https://www.cs.ubc.ca/~murphyk/MLbook/pml-intro-22may12.pdf
https://www.cs.ubc.ca/~murphyk/MLbook/pml-intro-22may12.pdf
https://www.researchgate.net/publication/41222434_The_Bayesian_Choice_From_Decision_Theoretic_Foundations_to_Computational_Implementation
https://www.researchgate.net/publication/41222434_The_Bayesian_Choice_From_Decision_Theoretic_Foundations_to_Computational_Implementation
https://www.researchgate.net/publication/41222434_The_Bayesian_Choice_From_Decision_Theoretic_Foundations_to_Computational_Implementation
http://videolectures. net/mlss09uk_jordan_bfway/
http://videolectures. net/mlss09uk_jordan_bfway/


4
Bayesian Modeling

The challenges involved in performing Bayesian machine learning are remarkably straightforward

to identify. As all information is encoded through the prior and the likelihood, the “only”

challenges are in specifying these and then carrying out the required Bayesian inference to

estimate the posterior. In other words, we need to be able to specify good models and we

need to be able to solve them. Though simple to quantify, actually overcoming both these

challenges can be difficult in practice.

In this chapter, we consider the former problem of constructing models, discussing some of

the most important assumptions and theorems of Bayesian modeling, how graphical models can

be used a mechanism for constructing Bayesian models, and a short introduction to nonparametric

models with a focus on Gaussian processes. Note that, unlike the last chapter, this chapter will not

follow the lecture slides; the overlap between them is quite low. It is recommended that you digest

and ensure you understand the content of Lectures 2 and 3 (with the exception of probabilistic

programing) before going through this chapter. The aim of the notes is supplement the lectures;

they do not amount to a self-contained introduction to the course’s content by themselves.

4.1 A Fundamental Assumption
Though not strictly necessary, an assumption made by virtually all Bayesian models is that

datapoints are conditionally independent given the parameter values. In other words, if our data

is given by D = {xn}Nn=1, then the likelihood factorizes as follows

p(D|θ) =
N∏
n=1

p(xn|θ). (4.1)

There are two main motivations for the assumption, one practical, the other theoretical.

The practical motivation is that if datapoints are not conditionally independent given θ,

this indicates our model is ignoring information present in the data. In principle, we want

to choose models where our parameters encapsulate as much information that is useful for

prediction as possible. If our likelihood model directly uses information from other data, e.g.

p(x2|θ, x1), this indicates that there was useful predictive information in x1 that we are not

encapsulating through θ. This in turn indicates we could improve our model by incorporating



4. Bayesian Modeling 33

this information, e.g. by introducing an additional parameter into θ. As such, we can argue that

if we are always using the best possible model given our our knowledge of the problem, this

model should always satisfy (4.1). Furthermore, writing models in a manner that satisfies (4.1)

is often highly convenient when designing models and conducting inference, particularly if

the datapoints are identically distributed.

Note here that there is an important distinction between assuming that our likelihood model is

correct, and assuming that it encapsulates all the information salient for prediction. For example,

presume that θ represent a real–world, but unknown, parameter. It is perfectly possible (ignoring

the fact that models are never perfect) that p(xn|θ) represents the correct conditional distribution

of xn in the frequentist sense that this it is the distribution created by repeating the experiment

with the same value of θ, but that θ also contains very little information about xn, such that fixing

θ has little influence on the produced xn. Thus it is possible for our model to be well-specified, but

also useless. Similarly, it is possible for a model to not be exactly correct, but still be very useful,

a somewhat important fact given that all models are inevitably wrong anyway (see Section 3.2.2).

The theoretical motivation of assuming (4.1) is based on an important result known as de

Finetti’s Theorem [De Finetti, 1937]. Though the precise result is beyond the scope of this course,

the high-level idea of de Finetti’s Theorem is that if we have an infinite sequence of exchangeable

random variables (i.e. their probability density is the same if we permute their order), then there

exists some parameter which all these variables are conditionally independent with respect to.

Informally, the upshot of this result in our context is that if the order of data does not matter and

our data can be assumed to be a finite sample from an infinitely long sequence (both of which

are often the case), then there is exists some set of latent variables (i.e. θ) for which (4.1) holds.

Note that this not mean this (4.1) holds for any particular model, it simply shows that a model

exists where it does hold. Intuitively, this model is also the most powerful possible model as it

ensure θ encapsulates all information relevant to predicting a datapoint that can be provided by

other datapoints. This, in turn, provides a motivation for making the assumption.

Though this assumption is so ingrained in Bayesian modeling that its presence is often over-

looked (one could even make an argument that this assumption is part of the Bayesian approach

itself), it is far from inconsequential. For example, one information–theoretic consequence is

that, because all information for prediction must pass through θ, there is a finite amount of

information that can be stored in the model if θ is finite dimensional, thereby placing a limit

on it predictive power in the limit of large data (see also the Bernstein von-Mises Theorem

©Tom Rainforth 2020



4. Bayesian Modeling 34

below). To try and cater for this, some non-parametric models are based around using an infinite

dimensional θ (we will return to this in Section 4.5).

Unfortunately, it is well beyond the scope of this course to fully explore the consequences

of this assumption. Our aim has instead been to simply make you aware that it is an explicit

assumption being made by virtually all Bayesian methods, as well as explaining some of the

justifications for why. At the end of the day though, it is important to remember that all models

are inevitably approximations of the truth for any real–world scenario. As such, it is impossible

to avoid making assumptions entirely.

4.2 The Bernstein-Von Mises Theorem
One of the important implications of the assumption discussed in the last section is the Bernstein–

von Mises theorem, which explains the behavior of Bayesian methods in the limit of large

data. Assume, for the sake of argument, that (4.1) holds and our likelihood model p(D|θ) is

correct in the sense that the datapoints xn (where D = x1:N ) are all independent and identically

distributed (i.i.d.) according to p(xn|θ∗) where θ∗ are a (finite) set of “ground truth” parameters

and the prior p(θ) satisfies p(θ∗) > 0. Informally speaking, the Bernstein–von Mises theorem

now states that in the limit of large N , the posterior distribution p(θ|x1:N) converges to a

normal distribution with mean θ∗ and variance of order O(1/N) (i.e. it decreases at a rate

1/N ) [Doob, 1949; Freedman, 1963].

This is a hugely important result in Bayesian statistics as it demonstrates that, in the

(predominantly hypothetical) scenario that our model assumptions are correct, we converge

to the true parameters. Because of this, it is sometimes referred to as the consistency of

Bayesian methods. It also means that the posterior becomes independent of the prior when

we are provided with sufficient data: the likelihood always dominates in parametric models

if we provide enough data

It further transpires that when no such θ∗ exists (i.e. our model is misspecified), the

convergence is instead to the parameters θ̂ which minimize the Kullback-Leibler (KL) divergence1

to the true data generating distribution p∗(y1:N), namely

θ̂ = arg min
θ

KL (p∗(y1:N)‖p(y1:N |θ)) = arg min
θ

∫
p∗(y1:N) log

(
p∗(y1:N)
p(y1:N |θ)

)
dy1:N . (4.2)

See for example [Kleijn et al., 2012] and the references therein for further details.

1The KL divergence can informally be thought of as a measure of discrepancy between two distributions. Though
it is not symmetric in its inputs, it is always non-negative and zero if and only if the two distributions are the same.
We will refer to it in more detail later

©Tom Rainforth 2020



4. Bayesian Modeling 35

The Bernstein–von Mises theorem can be both a blessing and a curse. On the one hand, it

ensures we reach the correct conclusion with enough data and a model that is powerful enough

to encapsulate the true data distribution. On the other hand, it also means that our uncertainty

estimates will collapse to zero given enough data even if our model is misspecified and the

answer we are collapsing is not correct: even if θ is a real parameter, it is perfectly possible

that θ∗ 6= θ if our likelihood model is not exactly correct. This is closely linked to the fact that

Bayesian models fail to capture the unknown unknowns, such that their uncertainty estimates

are usually overconfident: they fail to account for the fact that the model itself might not be

correct. This can be a serious problem when think about the fact that our model is almost

invariably an approximation of the truth.

4.3 Graphical Models
Generative models will typically have many variables and a complex dependency structure. In

other words, many variables will be conditionally independent of one another given values for

other variables. Graphical models are a ubiquitously used method for representing and reasoning

about generative models, with a particular focus on the dependency structure. As such, they

are an important technique for working with Bayesian models.

At a high-level, graphical models capture how the joint probability distribution can be

broken down into a product of different factors, each defined over a subset of the variables.

They are formed of a number of connected nodes, where each node represents a random or

observed variable in the model. Links between nodes represent dependencies: any two connected

nodes have an explicit dependency, though unconnected nodes may still be dependent. Various

independence assumptions can be deduced from the graphical model, though the exact nature

of these deductions will depend on the type of graphical model; nodes without direct links

between them will often still be dependent.

Graphical models can be separated into two distinct classes: directed graphical models and

undirected graphical models. Undirected graphical models, also known as Markov random

fields, imply no ordering and are used only to express conditional independences between

variables. They are used in scenarios where it is difficult to specify the target distribution in

a generative way, e.g. Boltzmann machines [Ackley et al., 1985]. To give a more concrete

example, if modeling whether it will rain at various locations, then there is a clear dependence

between nearby locations, but not a natural ordering to the joint probability distribution of where

it will rain. Independence in undirected graphical models can be deduced through the global

©Tom Rainforth 2020



4. Bayesian Modeling 36

Markov property which states that any two non-intersecting subsets of the variables A and B are

conditionally independent given a third, separating, subset C if there is no path between A and

B that does not pass through C. This means, for example, that each variable is conditionally

independent of all the other variables given its neighbors.

Our main focus, though, will instead be on directed graphical models and in particular

directed acyclic graphical models (DAGs), i.e. directed graphical models containing no cycles

or loops one can follow and arrive back in the starting position. DAGs, also known as Bayesian

networks, are particularly useful in the context of Bayesian modeling because they can be used to

express known conditional relationships. As such, they can be used as a piecewise explanation for

how samples are generated from a distribution. This forms a natural means to describe and design

models as we can carefully order the breakdown to factorize the distribution into only terms

we know: we will generally not have access to all possible factorizations in an analytic form

as otherwise there would be no need to perform inference. For example, to represent the joint

p(θ,D) in a Bayesian model we would naturally first introduce the θ and then the data because

we known p(θ) and p(D|θ), but not p(D) or p(θ|D). As a rule-of-thumb, when we define a model

using a DAG, we need to be able to define the probability of each variable given its parents, i.e.

all the nodes with arrows, representing a link and its direction, pointing to the node the question.

To demonstrate this factorization more explicitly and give a concrete example of a DAG,

imagine a medical diagnostic problem where we wish to predict if a patient has lung cancer. Let a

denote lifestyle and genetic factors of the patient such as whether they smoke or have (potentially

unknown) preexisting conditions. These will generally either be known or can reasonably be esti-

mated by other means, e.g. using tests or by considering prevalence within the population, allow-

ing definition of a prior marginal on a, p(a). Given these factors, we can develop a model for the

c

a b

Figure 4.1: Simple example DAG
corresponding to (4.3)

probability that a patient will develop lung cancer, which we

can denote p(b|a) where b = 1 indicates cancer is present.

Given the lifestyle and genetic factors and the knowledge

of whether lung cancer is present, we can predict what

symptoms, c, might be observed, e.g. a persistent cough,

encoding this using p(c|a, b). We thus have the following

breakdown of the joint distribution

p(a, b, c) = p(a)p(b|a)p(c|a, b). (4.3)

©Tom Rainforth 2020



4. Bayesian Modeling 37

c

a b

(a)

c

a b

(b)

d

a b

(c)
Figure 4.2: Examples of DAGs blocked between a and b. Here both example (a) and example (b) are
blocked by the second rule of d-separation. More specifically, the only path between a and b in each
case passes through an observed node c which respectively has one and both of the arrows pointing away
from it in the two examples. Consequently, for (a) and (b) then a and b are conditionally independent
given c, such that p(b|a, c) = p(b|c) and p(a|b, c) = p(a|c). (c) is instead an example of where a and b
are marginally independent. Here the only possible path between a and b is blocked, even though there
are no observed nodes, due to the first rule of d-separation with n = d. This is because the arrows meet
head-to-head at d and neither d nor any of its descendants are observed, consequently p(b|a) = p(b) and
p(a|b) = p(a). Note though that a and b are not conditionally independent given d as the path becomes
unblocked if this is observed (see Figure 4.3).

which can be expressed using the DAG shown in Figure 4.1. Here we have shaded in c to express

the fact that this is observed. The graphical model expresses our dependency structure as we have

the probability of each node given its parents. As shown in (4.3), the product of all these factors is

equal to our joint distribution. The DAG has thus formed a convenient means of representing our

generative process. Our aim for this problem was to find the probability cancer is present given

the observed symptoms, i.e. p(b|c), which will require Bayesian inference. In our previous simple

examples, the posterior had an analytic form. However, in general this will not be the case and we

will need to develop strategies for carrying out the inference as explained in the following Chapters.

For these, knowing the dependency structure and, in particular, the independence relationships,

of a model will often be very helpful information, for which DAGs can be very useful.

A natural question is now how can we deduce the independence relationships from a DAG?

This can be done by introducing the notion of d-separation [Pearl, 2014]. Consider three arbitrary,

non-intersecting, subsets A, B, and C of a DAG. A and B are conditionally independent given C

if there are no unblocked paths from A to B (or equivalently from B to A) when C is observed,

in which case A is said to be d-separated from B by C. Note that paths do not need to be in the

same directions as the arrows in the DAG. A path is defined as blocked if

1. There is an observed node, n, in the path where both the arrows point towards n (i.e. the

arrows meet head-to-head at n), and n also has no observed descendants, i.e. we cannot

get to any observed nodes of by following arrows from n.

©Tom Rainforth 2020



4. Bayesian Modeling 38

d

a b

(a)

d

a b

(b)

d

a b

c

(c)
Figure 4.3: Examples of DAGs unblocked between a and b. For (a) then the path from a to b is not
blocked by the d-separation rules. Perhaps more intuitively, we have that p(b|a) =

∫
p(b, d|a)dd =∫

p(b|d)p(d|a)dd 6= p(b) unless p(d|a) = p(d). Similarly, there is an unblocked path for (b) from a to b
as the path that does not pass through any observed nodes or nodes with both arrows pointing towards it.
The path in (c) is unblocked because of the phenomenon of explaining away. The first rule of d-separation
does not apply here because c is an observed descendant of d. We thus have that a and b are marginally
independent as per Figure 4.2c, but not conditionally independent given c (and or d). The rationale for
explaining away can be thought of in terms of events needing an explanation—if two precursor events
(here a and b) can give rise to a third event (here c), then the third event occurring but not the first precursor
event implies that the second precursor event occurs. Thus the two precursor events are correlated because
one explains away the other. As described in Section 2.3, one example of this is that if a speed camera
is triggered and the camera is not malfunctioning, this implies the vehicle is speeding, even though the
vehicle speeding and the camera malfunctioning are marginally independent.

2. Consecutive arrows meet at an observed node and either one or both of them points away

from the node.

Note that only the first of these rules is necessary for establishing marginal independence between

nodes because only this rule can satisfied when no nodes are observed. Examples of blocked paths

are shown in Figure 4.2 while examples of unblocked paths are shown in Figure 4.3, explanations

for which are given in the captions. For a more comprehensive introduction to establishing

independence in DAGs, we refer the reader to [Bishop, 2006, Section 8.2].

4.4 Example Bayesian Models
4.4.1 Bayesian Linear Regression

In this example, we will consider the problem of a Bayesian linear regression from inputs x ∈ RD

to outputs y ∈ R. For simplicity of notation (namely so we avoid the need for a separate

intercept term), we will always consider the first value of x to be 1, such that if we actually care

about regressing from z ∈ RD−1, we take x = [1, zT ]T . Assume that we have N observations

D = {xn, yn}Nn=1 and let x = [x1, . . . , xN ]T and y = [y1, . . . , yN ]T respectively be a N × D
matrix and a column vector whose rows correspond to the different data points. Our generative

regression model is of the form yn = xTnw + εn where w ∈ RD and each εn
i.i.d.∼ N (0, σ2), where

©Tom Rainforth 2020



4. Bayesian Modeling 39

w

y1 y2 • • • yN -1 yN

x1 x2 • • • xN -1 xN

Figure 4.4: DAG for Bayesian linear regression.

N signifies a normal (i.e. Gaussian) distribution. This implies a likelihood of

p(y|x,w, σ) =
N∏
n=1

p(yn|xn,w, σ) =
N∏
n=1
N (yn;xTnw, σ2). (4.4)

For simplicity, we will assume that σ is a known fixed parameter, but we will put a prior on

w—namely p(w) = N (w; 0, C) where C is a fixed covariance matrix—in order to perform

inference. The DAG for this model is given in Figure 4.4.

To make predictions, we first calculate the posterior

p(w|D, σ) = N (w; 0, C)
N∏
n=1
N (yn;xTnw, σ2) = N (w;m,S) (4.5)

where m = S−1xTy/σ2 and S =
(
C−1 + xTx

σ2

)−1

.

We have omitted the necessary linear algebra (see for example Bishop [2006] Sections 2.3.3

and 3.3) but note the conjugacy between the normal distribution and itself. Prediction now

uses the posterior predictive, marginalizing over the parameters in the same manner as the

coin flip example. Here though, we are interested in predicting the output ỹ at a particular

input point x̃ for which we have

p(ỹ|x̃,D, σ) =
∫
p(ỹ|x̃,w)p(w|D, σ)dw =

∫
N (ỹ; x̃Tw, σ2) N (w;m,S) dw

= N
(
ỹ ; x̃Tm,

(
x̃TS−1x̃+ 1

σ2

)−1)
(4.6)

which again follows from standard results for Gaussian distributions. We, therefore, have an

analytic predictive distribution at any possible input point. Though this linear regression example

might seem overly simple for practical purposes, we will see in Section 4.6 that substantially

more advanced models, such as Gaussian processes, can be viewed as linear regressions between

a set of features on the inputs φ(x) and the output y.

©Tom Rainforth 2020



4. Bayesian Modeling 40

x1 x2 • • • xT -1 xT

y1 y2 yT -1 yT

Figure 4.5: DAG for a hidden Markov model.

4.4.2 Hidden Markov Models

In the previous Bayesian linear regression example, there were no independence relationships

(other than between the datapoints given the model) and so there was little to gain from working

with the DAG. A more advanced example where there are substantial independence relationships

which can be exploited is shown in Figure 4.5. This model is known as a hidden Markov model2

(HMM) and has T latent variables x1:T and T observations y1:T . The joint distribution is as follows

p(x1:T , y1:T ) = p(x1)p(y1|x1)
T∏
t=2

p(xt|xt−1)p(yt|xt), (4.7)

where each xt is independent of x1:t−2 and y1:t−1 given xt−1 and of xt+2:T and yt+1:T given

xt+1. This is known as the Markov property and means that each latent variable only depends

on the other variables and observations through its immediate neighboring states. In essence,

the model has no memory as information is passed forwards (or backwards) only through the

value of the previous (or next) latent state. A number of stochastic processes and dynamical

systems obey the Markov property and HMMs and their extensions are extensively used for a

number of tasks involving sequential data, such as DNA sequencing [Durbin et al., 1998] and

tracking animals [Dhir et al., 2016, 2017] to name but a few.

A key part of the appeal of HMMs is that the structure of the DAG can be exploited to give

analytic solutions to the resulting Bayesian inference whenever each p(yt|xt) and p(xt|xt−1) are

either a categorical or Gaussian distribution. Even when this does not hold, there are still a

number of features of the dependency structure that can make the inference substantially easier.

As we will show in later chapters, Bayesian inference is generally a challenging problem, often

prohibitively so. Therefore the (fast) analytic inference for HMMs is highly convenient. However,

it can mean that HMMs are perhaps overused. More generally, simplifying approximations or

unjustified assumptions are often made by Bayesian practitioners for tractability, e.g. by using an

off-the-shelf model like an HMM with known analytic solution. Though often necessary, this

2The use of the term HMM is overloaded in the literature. Sometimes authors simply mean the Markov structure
we discuss here, but it can also used in a way that implies that the latent states are discrete variables, with the
equivalent continuous model referred to as a (Markovian) state space model.

©Tom Rainforth 2020



4. Bayesian Modeling 41

�

↵

xn

zn⇡

N K

⇤k

µk

⇤0, ⌫

Figure 4.6: DAG for Bayesian Gaussian mixture model. Here the boxes are a standard graphical model
plate notation and respectively indicated that the contents are repeated N and K times respectively. This
is a concise way of constructing a DAG with a large number of similar nodes and could have equally been
applied for Figure 4.4. Note that variables not inside nodes represent fixed parameters instead of random
variables.

must be done with extreme care and the implications of the approximations should carefully

considered. Unfortunately, quantifying the implications of approximations can be very difficult,

given that they are typically made in the interest of tractability in the first place.

4.4.3 Bayesian Gaussian Mixture Model with Conjugate Priors

In the lectures we considered the example of a Gaussian mixture model with a fixed distribution

over the mixture components, along with a fixed mean and covariance matrix for each mixture.

Here we instead introduce a more complex variant where we also introduce priors over all of

these, further generalizing to an arbitrary number of mixtures K. Namely we have

π ∼ Dirichlet(α) (4.8)

Λk ∼Wishart(Λ0, ν) ∀k ∈ {1, . . . , K} (4.9)

µk
∣∣∣ Λk ∼ N

(
0, (βΛk)−1

)
∀k ∈ {1, . . . , K} (4.10)

and treat each of these as latent variables we wish to do inference over. Note that the Dirichlet

and Wishart distributions are common distributions over categorical probability distribution and

precision matrices respectively. Each mixture then has mean µk and precision Λk, with

zn
∣∣∣ π ∼ Categorical(π) ∀n ∈ {1, . . . , N} (4.11)

xn
∣∣∣ zn = k, µk, Λk ∼ N (µk,Λ−1

k ) ∀n ∈ {1, . . . , N}. (4.12)

Note here that we have θ = {π, µ1:K ,Λ1:K , z1:N}, D = {xn}Nn=1, and α, ν, β, and Λ0 are fixed

parameters. The full likelihood of the model is given by

p(D|θ) = p(π;α)
(

N∏
n=1

p(zn|π)p(xn|µzn ,Λzn)
)(

K∏
k=1

p(Λk; Λ0, ν)p(µk|Λk; β)
)
. (4.13)

The corresponding graphical model is shown in Figure 4.6.

©Tom Rainforth 2020



4. Bayesian Modeling 42

Note that the priors have been chosen very carefully here to allow conjugacy relationships

to be exploited through known results for conjugate exponential family distributions. Namely,

it turns out that all conditional distributions of the form p(zn = k|z−n, x1:N) can be calculated

analytically. This allows one to construct a highly efficient Gibbs sampling scheme3 to perform

inference in the model. Though we will not go into more details here, those interested to

read more should check out the following graduate course homework assignment designed by

Frank Wood: http://www.robots.ox.ac.uk/~fwood/teaching/AIMS_CDT_ML_2016/

homework/HW_3_sampling/. This provides additional details, links, and coding problem

based around running inference in this model.

4.5 Nonparametric Bayesian Models
So far we have mostly implicitly assumed that we are using a parametric Bayesian model,

i.e. that our model has a finite number of parameters. In many cases this can actually be a highly

restrictive assumption. In particular, such parametric models can only encode a limited amount

of information, such that when the total dimension of the data exceeds that of the parameters,

our model (informally speaking) cannot capture all of the information available. For example, in

our Bayesian linear regression example, our model only stores information about the possible

linear fits of the data; in the limit of large data it will collapse to a single line that contains

little information relative to that which was actually present in the data (presuming that the

true generative process was more complicated than this simple model). More generally, any

parametric Bayesian model will underfit given enough data.

Nonparametric Bayesian methods are an approach that allows us to get around this problem

by either using an infinite dimensional parameterization, or a model where the number of

parameters grows with the size of the data. This allows us to construct models which can

become increasingly complex as the amount of data available to them grows. As such, many

nonparametric models are very flexible and powerful modeling approaches. A key motivation

for many nonparametric methods is to try and let the data dictate the complexity of the model,

for example, the number of clusters in a clustering problem.

A downside to nonparametric models is that because they generally work with infinite

dimensional spaces, we can usually only use very particular classes of models where we can

carry out analytic marginalizations of the parameters to allow tractable calculations. Note

that this is not the same as, and much more restrictive than, the more general intractability of

3We will introduce Gibbs sampling in Lecture 5

©Tom Rainforth 2020

http://www.robots.ox.ac.uk/~fwood/teaching/AIMS_CDT_ML_2016/homework/HW_3_sampling/
http://www.robots.ox.ac.uk/~fwood/teaching/AIMS_CDT_ML_2016/homework/HW_3_sampling/


4. Bayesian Modeling 43

Bayesian inference: if we cannot (at least approximately) marginalize out these dimensions,

we cannot work with the model at all. As such, many nonparametric methods are actually

somewhat less flexible than we might hope, because these tractability assumptions often enforce

other strong assumptions to be made.

Though it is beyond the scope of this course to cover nonparametric methods in detail

(e.g. many approaches require far more advanced probability theory than we have covered),

we will introduce one of the most common nonparametric approaches, Gaussian processes,

in the next section. For those interested in other nonparametric approaches, we refer them

to [Gershman and Blei, 2012] for an accessible introduction that stays clear of their many

theoretical complexities.

4.6 Gaussian Processes

Informally one can think of a Gaussian processes (GPs) [Rasmussen and Williams, 2006]

as being a nonparametric distribution4 over functions. Equivalently, one can think of it as a

generalization of a Gaussian distribution to (uncountably) infinite dimensions. Practically, they

are powerful tools for regression, classification, and feature extraction [Kuss and Rasmussen,

2005; Lawrence, 2004].

GPs are extremely effective predictive models, especially in low dimensions and in data-

scarce settings; they allow for the use of prior distributions and provide a measure for uncertainty

quantification. We focus here on regression as it is generally the simplest usage. Once trained,

prediction from a Gaussian Processes corresponds to computing the mean and variance of the

Gaussian predictive distribution in the target space y ∈ Y . Inference for GPs is made possible

by the self-conjugacy of the Gaussian distribution.

In the rest of this section we will first introduce GPs from a function–space perspective,

before showing how we can derive them more formally. In particular, we will show how they

can be viewed as an extension of the Bayesian linear regression example we introduced earlier,

where we first map our inputs into an infinite dimensional feature space before showing how

this can be analytically marginalized out.

4Technically speaking they are stochastic processes, not distributions.

©Tom Rainforth 2020



4. Bayesian Modeling 44

-5 0 5

-1

-0.5

0

0.5

Figure 4.7: Example GP regression for points shown in red dots. Shown left is the GP posterior where the
solid dark blue line is the mean of the GP and the light blue shading is the mean ±2 standard deviations.
Shown right is five example functions drawn from this posterior. I apologize for the inconsistent notation
of the axis labels (θ should be x): they have been recycled from earlier work using notation.

4.6.1 Function–Space View

A GP is fully specified by a mean function µ : X → R and a symmetric covariance function

k : X × X → R, the latter of which must be a bounded (i.e. k (x, x′) <∞, ∀x, x′ ∈ X ) and

reproducing kernel (we will return to this in depth later in Section 4.6.3). We can informally

describe a function f as being distributed according to a GP:

f (x) ∼ GP (µ (x) , k (x, x′)) (4.14)

which by definition means that the functional evaluations realized at any finite number of sample

points is distributed according to a multivariate Gaussian. For example, if we consider three

points x = 0, x = 1, and x = 3, then we have thatf(0)
f(1)
f(3)

 ∼ N

µ(0)
µ(1)
µ(3)

 ,
k(0, 0) k(0, 1) k(0, 3)
k(1, 0) k(1, 1) k(1, 3)
k(3, 0) k(3, 1) k(3, 3)


 (4.15)

Note that the inputs to µ and k need not be numeric: a GP can be defined over anything for

which a suitable mean function and kernel can be defined.

Figure 4.7 shows an example GP regression with a small number of data points {xj, vj}j=1:m.

Here we wish to regress a function f from x to y. To do this, we place a GP prior on f

fprior(x) ∼ GP (µprior(x), kprior(x, x′)) ,

where it is normal to take µprior(x) = 0 ∀x, noting the generality of this choice as one can

simply regress y − µprior(x) if a different µprior is desired. Lots of options are viable for the

covariance function, we will return to how these are chosen in the next section. For now, we

simply note that the choice of covariance function and its parameters will heavily influence the

©Tom Rainforth 2020



4. Bayesian Modeling 45

nature of functions generated by the GP, dictating things such as smoothness and characteristic

length scales of variation.

An important property of a GP that we now exploit is that it is conjugate with a Gaussian

likelihood. Let x = {xj}j=1:m and v = {vj}j=1:m be the set of observed inputs and outputs

respectively. We use a separable Gaussian likelihood function

p(v|x, f) =
m∏
j=1

p(vj|f(xj)) =
m∏
j=1

1
σn
√

2π
exp

(
−(vj − f(xj))2

2σ2
n

)
(4.16)

where σn is an observation noise, set to 0.001 in our example. Combining this with the GP prior

we previously defined leads to GP process posterior and predictive distribution.

To see this we can consider the joint distribution between the points we have considered so far,

and a new set of points {x∗,v∗}. Introducing the shorthand kprior(x,x∗) =
[
kprior(x1,x∗

1) kprior(x1,x∗
2) ...

kprior(x2,x∗
1) kprior(x2,x∗

2) ...
... ... ...

]
then we have by the fact that any finite realizations of points is Gaussian[

v
f ∗

]
∼ N

(
0,
[
kprior(x,x) + σ2

nI kprior(x,x∗)
kprior(x∗,x) kprior(x∗,x∗)

])
(4.17)

where I is the identity matrix, 0 is a vector of zeros, and f ∗ is the true function values at x∗ (such

that v∗ − f ∗ ∼ N (0, σ2
nI)). We can now use standard results for Gaussians (see e.g. Petersen

et al. [2008]) to get the conditional distribution for f ∗ given all the other variables

f ∗|x,v,x∗ ∼ N (µpost (x∗) , kpost (x∗,x∗)) where

µpost (x∗) = kprior (x∗,x)
[
kprior (x,x) + σ2

nI
]−1

v

kpost (x∗,x∗) = kprior (x∗,x∗)− kprior (x∗,x)
[
kprior (x,x) + σ2

nI
]−1

kprior (x,x∗) .

(4.18)

Now as x∗ are arbitrary points, this corresponds to our predictive distribution for the function

(note that to convert this to the posterior predictive for the outputs y, we need to add back in

the likelihood noise to the covariance matrix, i.e. add a term σ2
nI onto kpost). Further, as this

predictive distribution is still a GP, we can refer to our model as having a GP posterior

fpost(x)|x,v ∼ GP (µpost(x), kpost(x, x′)) .

Going back to Figure 4.7, we see the result of this process. Our GP regression gives us a

posterior mean function that represents the expected value at every possible input points, along

with a variance that represents our subjective uncertainty in the value of the function at that

point. Figure 4.7 also shows that we can draw from the GP by choosing some set of evaluation

points x∗ and then drawing from (4.18). We see that there is a larger variation in the function

values away from the points that have been evaluated, as would be expected. An alternative

visualization of GP training is shown in Figure 4.8.

©Tom Rainforth 2020



4. Bayesian Modeling 46

0 1 2 3

−2

0

2

x

y

Prior samples
Training observations

(a) Before Training

0 1 2 3

−2

0

2

x

y

Posterior samples
Training observations

(b) After Training

Figure 4.8: Samples from a Gaussian Process distribution before and after training (i.e. from the GP
prior and posterior). On the left, we show samples coming from a zero-mean GP prior with a radial basis
function kernel. On the right, samples from a GP posterior that has been trained on the data displayed as
red crosses. The shaded areas area corresponds to µ± 2σ and is thus roughly a 95% confidence internal
for the function values. Figure credit: Gabriele Abbati

An important point of note is that the marginal likelihood for our model is also analytic,

namely

log p(v|x) =− 1
2vT

[
kprior (x,x) + σ2

nI
]−1

v− 1
2 log

∣∣∣kprior (x,x) + σ2
nI
∣∣∣− m

2 log 2π (4.19)

where m is the number of points in x. This is important as it means it will be tractable to

optimize or do inference over the GP hyperparameters.

4.6.2 Kernels and Hyperparameters

As we showed in the last section, GPs form powerful and expressive priors over functions. In this

section, we show that their practical behavior varies substantially depending on the choice of the

covariance function, aka kernel, and the hyperparameters. Informally, we can think of the kernel

as expressing the similarity between the evaluation of the function at two different input points x

and x′. When k(x, x′) is large, these evaluations are strongly correlated such that the evaluations

will have similar values. When it is small, there is little correlation between the points and so their

evaluations will be roughly independent. Note that it is possible for k(x, x′) < 0 provided x 6= x′,

but as kernels must be positive definition functions as explained in the next section, k (x,x) is

always a positive definite matrix. Though it is not necessary for the kernel to be stationary (i.e.

that it only depends on x−x′ rather than the absolute values), we will not consider non-stationary

cases further here (see Rasmussen and Williams [2006] for further information).

Figure 4.9 shows some simple example kernels. The figure shows that the qualitative behavior

of the GP changes substantially with changes to the kernel. The choice of kernel is therefore

©Tom Rainforth 2020



4. Bayesian Modeling 47

−4 −2 0 2 4

−2

0

2

x

y

(a) Squared exponential kernel, see (4.20)

−4 −2 0 2 4

−2

0

2

x

y

(b) Matérn 5/2 kernel, see (4.21)

−4 −2 0 2 4

−2

0

2

x

y

(c) Matérn 3/2 kernel, see (4.21)

−4 −2 0 2 4

−2

0

2

x

y

(d) Exponential kernel σ2
f exp(−‖x− x′‖/ρ)

Figure 4.9: Samples from Gaussian process priors with different covariance functions. Figure credit:
Gabriele Abbati

critical to the performance of GPs. Though there is work that examines methods for learning

the kernel directly [Duvenaud et al., 2013; Lloyd et al., 2014; Wilson et al., 2014; Janz et al.,

2016], this is typically too computationally intensive to carry out in practice. One must therefore

either use prior knowledge about the problem, or use a relatively general purpose kernel to

ensure that the nuances of the data are not overwhelmed.

A particularly common problem in the choice of kernel is in the desired level of smoothness.

At the one extreme, one can use the squared exponential kernel

kse (x, x′) = σ2
f exp

(
−‖x− x

′‖2
2

2ρ2

)
(4.20)

which is infinitely differentiable. Here σ2
f is the “signal standard deviation”—a hyperparameter

that affects the scaling of the output from the GP: the larger σf , the higher the average standard

deviation of the function. Meanwhile, ρ is a hyperparameter that dictates the characteristic

©Tom Rainforth 2020



4. Bayesian Modeling 48

Figure 4.10: Effective of changing the length scale for Matérn-5/2 kernel. Again I apologize for the
consistent notation of the axis labels.

length scale of variation for the function—the higher ρ is, the slower the correlation decreases as

one moves away from the current point, and therefore the less “wiggly” the function is. Both

these hyperparameters are shared by most commonly used kernels. Although the presented kernel

is isotropic, this is easily relaxed by having a different ρ for each dimension.

In many practical problems, the squared exponential kernel is too smooth. One possible

alternative in these scenarios are the Matérn kernels. The Matérn-ν kernel, given by

kν (x, x′) = σf
21−ν

Γ (ν)

(√
2ν
ρ
‖x− x′‖

)ν
Kν

(√
2ν
ρ
‖x− x′‖

)
(4.21)

where Kν is the modified Bessel function of second kind order ν and Γ(·) is the gamma function,

is bν − 1c times differentiable and therefore different values of ν can be used to express different

levels of smoothness. Typically ν is set to n+ 1/2 for some integer n, for which it has a simple

closed form [Rasmussen and Williams, 2006].

Though the choice of kernel function is critical for a GP, the choice of hyperparameters such

as the scaling and length scale can have equally significant impact on the behavior. Figure 4.10

shows the effect of changing the length scale of a Matérn-5/2 kernel. When the length scale is

too large, as shown in orange, the regressed function is overly smooth and does not capture the

data. When the length scale is too small, as shown in green, wild fluctuations are permitted in

between the datapoints such that there is very high uncertainty between points and also potentially

overfitting as the regressor can model all the fluctuations in the data, including those originating

simply from noisy evaluations. As the hyperparameters are rarely known upfront, one must

typically either optimize them, or perform inference over them to produce a mixture of GPs.

©Tom Rainforth 2020



4. Bayesian Modeling 49

4.6.3 Weight–Space View & Reproducing Kernel Hilbert Space [Advanced
Topic]

One of the key advantages of GPs is that they can be used effectively without needing to know

the intricacies for why they work. The derivations we introduced in the last section and in

particular the calculations required to derive the GP posterior were spectacularly simple, albeit

computationally intensive (the need for a matrix inversion to calculate (4.18) means that training

is O(m3) for m training points). However, what is going on beneath the surface is substantially

more complicated, which is perhaps not surprising when one remembers that they are defined over

uncountably infinite many variables. To truly understand the underlying rationale and assumptions

for GPs, and to properly appreciate the restrictions on possible kernels, it is necessary to delve

into GPs more formally, taking a so–called weight–space view. In this section, we, therefore,

outline a more formal derivation of a GP from the viewpoint of reproducing kernels [Hofmann

et al., 2008] and show how they can be thought of as Bayesian linear regression using an infinite

number of features. We start with the following definitions.

Definition 4.1. An inner product 〈·, ·〉H is a function H × H → R associated with a vector

space H that is symmetric 〈u, v〉H = 〈v, u〉H, linear 〈au1 + bu2, v〉H = a〈u1, v〉H + b〈u2, v〉H,

and positive definitive 〈u, u〉H ≥ 0, 〈u, u〉H = 0 ⇔ u = 0.

Definition 4.2. A Hilbert space,H, is a, potentially uncountably infinite, vector space associated

with an inner product 〈·, ·〉H which is complete with respect to the norm ‖u‖H =
√
〈u, u〉H.

Less formally, we can think of Hilbert spaces as being a generalization of Euclidean space (i.e.

the space vectors live in) to include functions. Using Hilbert spaces, we can think of a function as

being an uncountably long vector defining the value of the function at each possible input point.

Consider now the linear (in the weights w) model

f (x) = wTZ (x) + µ (x) , w ∼ N (0, C) (4.22)

where Z (·) = [ζ1 (·) , . . . , ζm (·)]T , ζa : X → R for a = 1, . . . ,m is a feature map in m-

dimensional Hilbert space H. For any set of points x1, . . . , xt then F = [f (x1) , . . . , f (xt)]T

will be distributed according to a t−dimensional Gaussian with mean [µ (x1) , . . . , µ (xt)]T and

covariance k (xi, xj) = Z (xi)T CZ (xj) , ∀i, j ∈ {1, . . . , t}. Note that

Z (x)T CZ (x′) =
m∑
a=1

m∑
b=1

Cabζa (x) ζb (x′) ≥ 0, ∀x, x′ ∈ X (4.23)

©Tom Rainforth 2020



4. Bayesian Modeling 50

as C must be positive semi-definite for the distribution on w to be well defined5. This also

means that the Cholesky decomposition C1/2 exists and we can define Ψ (·) = C1/2Z (·) =

[ψ1 (·) , . . . , ψm (·)]T to give a covariance function k : X × X → R of the form

k (x, x′) = 〈Ψ (x) ,Ψ (x′)〉H =
m∑
a=1

ψa (x)ψa (x′) ≤
√√√√ m∑
a=1

(ψa (x))2

√√√√ m∑
a=1

(ψa (x′))2 (4.24)

where the inequality trivially follows using Cauchy-Schwarz. Now consider the case where m is

uncountably infinite such that H represents a functional space along with an inner product.

If Ψ (·) remains in L2 space, i.e.
∞∑
a=1

(ψa (x))2 <∞, ∀x ∈ X , (4.25)

then k (x, x′) < ∞, ∀x, x′ ∈ X using the inequality from equation (4.24), and our covariance

will remain bounded with infinitely many basis functions.

The key realization is now that the distribution of F only depends on Z and C through

the inner product 〈Ψ (x) ,Ψ (x′)〉H such that we need never compute the (potentially infinite)

mapping Ψ (x) if we can find a way to implicitly compute the inner product, for example

if k has the reproducing property

〈u (·) , k (·, x)〉H = u (x) , ∀x ∈ X , ∀u (·) ∈ H. (4.26)

This is called the kernel trick, where we have used the representation Ψ (x) = k (·, x) not-

ing that any feature map can be thought of as parameterizing a mapping H → R through

the inner product. We can now introduce the notion of reproducing kernel Hilbert space

(RKHS) [Aronszajn, 1950].

Definition 4.3. Given a Hilbert space H, then a function k : X × X → R is a reproducing

kernel andH is a reproducing kernel Hilbert space if k (·, x) ∈ H, ∀x ∈ X and the reproducing

property described in equation (4.26) is satisfied.

The significance of RKHSs for GPs is that their covariance functions correspond to reproducing

kernels and so a GP is defined over an RKHS. Most RKHSs do not contain all possible

functions—e.g. the RKHS associated with the squared exponential kernel contains only infinitely

differentiable functions—and so the choice of GP kernel will dictate the range functions it is

capable of encapsulating. Note that as k (x, x′) = 〈k (·, x) , k (·, x′)〉 = k (x′, x), all reproducing

kernels are symmetric.

5Z (xi)T CZ (xj) = 0 is only possible if w lives in a lower dimensional subspace of Rm

©Tom Rainforth 2020



4. Bayesian Modeling 51

Going back to our GP derivation, then for the realization of k (x, x′) at a finite number of

points to be a valid covariance matrix we further require it to be positive definite, i.e:
n∑
i=1

n∑
j=1

βiβjk (xi, xj) ≥ 0, ∀n ≥ 1, ∀ {β1, . . . , βn} ∈ Rn, ∀ {x1, . . . , xn} ∈ X n (4.27)

which can be proved to be the case given the restrictions we have placed on k by noting
n∑
i=1

n∑
j=1

βiβjk (xi, xj) =
n∑
i=1

βiΨ (xi)T
n∑
j=1

βjΨ (xj) =
∥∥∥∥∥
n∑
i=1

βiΨ (xi)
∥∥∥∥∥

2

H
≥ 0. (4.28)

Consequently, (4.25) is a sufficient condition for the distribution of F to be a multivariate

t−dimensional Gaussian with a valid and finite covariance matrix when we consider an un-

countable infinite number of basis functions. Furthermore, we note that many choices for Ψ

will lead to closed-form analytic expressions of 〈Ψ (x) ,Ψ (x′)〉H without the need to ever

calculate Ψ (x) explicitly.

To show a simple example of this consider the one-dimensional case where x ∈ R and basis

functions of the form ψa = σw exp
(
− (x−ca)2

2ρ2

)
where ca ∈ [cmin, cmax] represents the center of

the basis function and ρ is a common length scale. Further specify that σ2
w = β(cmax−cmin)

m
, i.e.

that σ2
w is proportional to the number of functions per unit length, then we have

k (x, x′) =
m∑
a=1

β (cmax − cmin)
m

exp
(
−(x− ca)2

2ρ2

)
exp

(
−(x′ − ca)2

2ρ2

)
. (4.29)

If we assume that the basis functions are evenly space in [cmin, cmax], then in the limit m→∞
we recover the integral

k (x, x′) = β
∫ cmax

cmin
exp

(
−(x− c)2

2ρ2

)
exp

(
−(x′ − c)2

2ρ2

)
dc. (4.30)

Now if we further take cmin → −∞ and cmax → ∞ then we have the analytic solution

k (x, x′) =
√
πρβ exp

(
−(x− x′)2

4ρ2

)
, (4.31)

which is the common squared exponential kernel in one dimension. Thus we have managed

to analytically marginalize over all basis functions and are left with a simple expression that

can be used to evaluate the covariance between any two given points that implicitly uses an

uncountably infinite number of basis functions.

More generally, the Moore-Aronszajin theorem [Aronszajn, 1950] states that

Theorem 4.1. Any symmetric, positive definite kernel k : X × X → R has a unique RKHS for

which k is a reproducing kernel.

©Tom Rainforth 2020



4. Bayesian Modeling 52

In other words, if we define a kernel function that is symmetric k (x, x′) = k (x′, x) and

positive definite as per (4.27), then at least one corresponding feature map Ψ: X → H must

exist. Therefore a corresponding Z : X → H and C must also exist (for example we can

trivially take C as the identity matrix and Z = Ψ), and if we further ensure that k is bounded

k (x, x′) < ∞, ∀x, x′ ∈ X , then finite realizations [f (x1) , . . . , f (xt)]T of equation (4.22)

must be distributed to a finite multivariate Gaussian distribution with mean [µ (x1) , . . . , µ (xt)]T

and covariance k (xi, xj) ∀i, j ∈ 1, . . . , t.

We can, therefore, think of GP regression as Bayesian linear regression using a feature

mapping to an RKHS. This shows the power of a GP—for appropriate choices of kernel it uses an

uncountable number of features—but also highlights their assumptions: the co-Gaussianity of the

weights and reliance of the target function to fall in RKHS represented by the covariance function.

4.7 Further Reading
• Chapters 1-3 and 8 of C. M. Bishop. Pattern recognition and machine learning. springer,

2006

• Chapter 5 of K. P. Murphy. Machine learning: a probabilistic perspective. MIT press,

2012

• Zoubin Ghahramani on Bayesian machine learning (there are various alternative variations

of this talk): https://www.youtube.com/watch?v=y0FgHOQhG4w

• Iain Murray on Probabilistic Modeling: https://www.youtube.com/watch?v=pOtvyVYAuW4

• Eric Xing’s course on Probabilistic Graphical Model: http://www.cs.cmu.edu/~epxing/

Class/10708-14/lecture.html

• C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press,

2006. Available at: http://www.gaussianprocess.org/gpml/chapters/RW.pdf

• S. J. Gershman and D. M. Blei. A tutorial on Bayesian nonparametric models. Journal of

Mathematical Psychology, 56(1):1–12, 2012

• Peter Orbanz and Yee Whye Teh on Bayesian nonparametrics: https://www.youtube.

com/watch?v=F0_ih7THV94.

©Tom Rainforth 2020

https://www.youtube.com/watch?v=y0FgHOQhG4w
https://www.youtube.com/watch?v=pOtvyVYAuW4
http://www.cs.cmu.edu/~epxing/Class/10708-14/lecture.html
http://www.cs.cmu.edu/~epxing/Class/10708-14/lecture.html
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
https://www.youtube.com/watch?v=F0_ih7THV94
https://www.youtube.com/watch?v=F0_ih7THV94


5
Probabilistic Programming

Probabilistic programming systems (PPSs) allow probabilistic models to be represented in the

form of a generative model and statements for conditioning on data [Gordon et al., 2014; Goodman

et al., 2008b]. Informally, one can think of the generative model as the definition of a prior,

the conditioning statements as the definition of a likelihood, and the output of the program as

samples from a posterior distribution. Their core philosophy is to decouple model specification

and inference, the former corresponding to the user-specified program code, which implicitly

defines a distribution on random variables, and the latter to an inference engine capable of

operating on arbitrary programs. Removing the need for users to write inference algorithms

significantly reduces the burden of developing new models and makes effective statistical methods

accessible to non-experts. The inference/model abstraction barrier further means that some

systems allow the definition of models that would be hard, or even impossible, to convey using

conventional frameworks like graphical models.

Two key challenges for PPS are providing the syntax and semantics to allow easy definition

of models, and in designing the solvers, i.e. inference engines, to provide effective inference

for those models. In this Chapter, we focus on the former of these, providing an introduction to

probabilistic programming from a user’s perspective. We we will outline PPSs how it can be used

for, and to extend, conventional Bayesian modeling and how it can also be used to reinterpret

many computational simulation techniques not usually associated with Bayesian modeling in

a more Bayesian mindset. We will mostly ignore the rather major issue of how to construct

inference engines for PPS. Instead, we will focus on how general purpose PPSs aim to provide the

flexibility to define wide-ranging and potentially obscure models, the expressivity of a framework

for model definition that is more in line with conventional scientific simulation than mainstream

statistical approaches, and the automation to run any problem the user might write by decoupling

model specification and inference. Together these characteristics produce a framework that

allows researchers whose expertise lies elsewhere, to carry out powerful statistical analyses for

their application specific tasks. This framework also aids in the development of both inference



5. Probabilistic Programming 54

algorithms and models for those within the machine learning and statistics communities, by

removing many of the complications of one while developing the other.

We note that it will be necessary at times during this chapter to refer briefly to some Bayesian

inference algorithms that will not be properly introduced until later chapters or which are

potentially not even covered in the course at all. We have situated this chapter before those partly

in order to emphasize the point that one should not need an intricate knowledge of inference

methods to use PPSs. Though it is difficult to introduce PPSs while completely omitting reference

to inference methods, readers who are not familiar with them should be able to safely ignore

which methods are be referred to at a first pass, noting only that different inference algorithms

have different requirements and sets of problems they perform well on, and thus that the design

of a PPS is often intricately linked to the inference method(s) used.

In general, this chapter is quite advanced, particularly the latter sections. Do not worry if

you are struggling to follow: later parts of the course will not be building further on the content

of this chapter. It has instead been provided because PPSs may prove a useful tool for some of

the assignment papers, one of which is explicitly on probabilistic programming.

5.1 Inverting Simulators
Though the use of Bayesian modeling through the sciences and engineering is widespread,

it is still dwarfed by the use of simulators more generally. Some simulations are inherently

probabilistic, such as many of those used in statistical physics [Landau and Binder, 2014],

financial modeling [Jäckel, 2002], and weather prediction [Evensen, 1994]. Others are deter-

ministic approximations of a truly stochastic world, such as lap time simulation for formula one

cars [Perantoni and Limebeer, 2014] and finite element simulations for fluid dynamics [Versteeg

and Malalasekera, 2007]. In many of these scenarios, real data is also available, but not in

sufficient quantities that the carefully constructed simulations can be done away with entirely

and replaced by a purely data–driven discriminative machine learning approach. Imagine the

potential utility of general–purpose methods for incorporating real data into these simulators to

improve them, without having to throw away the existing carefully constructed models. What

about if we could even find methods for automatically inverting these simulators? Given a target

lap time, we could return the best car setup; given observations of, and a simulator for, human

behavior, we could learn about the underlying cognitive processes; given a climate change model

and measurements, we might infer what the driving factors are.

©Tom Rainforth 2020



5. Probabilistic Programming 55

An ambitious long-term aim of probabilistic programming is to solve such problems and to

do so in an automated fashion so that it requires little or no statistical expertise on the behalf

of the user, allowing for simple, widespread usage across many fields. The key realization is

that stochastic simulators implicitly define probability distributions. They, therefore, represent

generative models and using probabilistic programming we can reason about, and work with,

these generative models explicitly. One typically thinks of Bayesian modeling in terms of the

prior and the posterior, but one can also think about it in terms of defining a joint distribution

over both parameters and data, then fixing the latter to the actual observations to get a conditional

distribution from this joint. Simulators implicitly define such joint distributions, with the outputs

of the simulator corresponding to the data, and the inputs and internal variables the parameters.

Probabilistic programming allows us to turn this on its head, using the same code as the original

simulator, but instead providing the observed data as the input and then inverting the simulator

through inference to learn about possible input parameters and other variables sampled during

the program’s forward execution. As well as the clear direct utility of allowing such inversion,

this process also allows us to improve our simulator using real data, by calculating the posterior

predictive distribution that incorporates both the original model and the information from the data.

To explain what we mean by inverting simulators more precisely, we will now consider

the example of inferring Captchas [Mansinghka et al., 2013]. Even if the name is not familiar,

everyone should hopefully have come across Captchas before when a website shows us an image,

such as those in Figure 5.1a, and asks us to type the characters in that image to demonstrate

we are not a robot. We now ask the question: how might we write an algorithm that breaks

this Captcha by automatically predicting these characters directly from the image? In other

words, can we build a robot that mimics a human on a task specifically designed to distinguish

between the two? If we had access to large supply of training examples, i.e. character-image

pairs, we could, of course, use an off-the-shelf discriminative algorithm: neural networks have

been used to try and solve the problem in exactly this way with reasonable success [Von Ahn

et al., 2008]. However, without access to an abundance of data, this is a rather challenging task

and we will need to exploit our prior knowledge about the problem.

Doing this process in reverse, i.e. simulating a Captcha, on the other hand, is a substantially

less daunting process. The true Captchas are actually generated by a simulator and so we can

attempt to mimic this original simulation process. For example, as shown in Figure 5.1b we

might first sample a number of characters, then a symbol for each character, apply manipulations

such as rotations and warpings, simulate some obscuring lines or other noise, and finally render

©Tom Rainforth 2020



5. Probabilistic Programming 56Fig. 4. Posteriors of real Facebook and Wikipedia Captchas. Conditioning on each Captcha, we show an approximate posterior produced by a set of weighted
importance sampling particles {(wm, x(m))}M=100

m=1 .

synthetic data generative model sets an empirical cornerstone
for future theory that quantifies and bounds the impact of
model mismatch on neural network and approximate inference
performance.

ACKNOWLEDGMENTS

Tuan Anh Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. Atılım Güneş Baydin and
Frank Wood are supported under DARPA PPAML through
the U.S. AFRL under Cooperative Agreement FA8750-14-2-
0006, Sub Award number 61160290-111668. Robert Zinkov
is supported under DARPA grant FA8750-14-2-0007.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[2] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best
practices for convolutional neural networks applied to

visual document analysis,” in Proceedings of the Seventh
International Conference on Document Analysis and
Recognition - Volume 2, ser. ICDAR ’03. Washington,
DC: IEEE Computer Society, 2003, pp. 958–962.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems,
2012, pp. 1097–1105.

[4] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zis-
serman, “Synthetic data and artificial neural networks
for natural scene text recognition,” arXiv preprint
arXiv:1406.2227, 2014.

[5] ——, “Reading text in the wild with convolutional neural
networks,” International Journal of Computer Vision,
vol. 116, no. 1, pp. 1–20, 2016.

[6] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic Data
for Text Localisation in Natural Images,” in Proceedings

Fig. 4. Posteriors of real Facebook and Wikipedia Captchas. Conditioning on each Captcha, we show an approximate posterior produced by a set of weighted
importance sampling particles {(wm, x(m))}M=100

m=1 .

synthetic data generative model sets an empirical cornerstone
for future theory that quantifies and bounds the impact of
model mismatch on neural network and approximate inference
performance.

ACKNOWLEDGMENTS

Tuan Anh Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. Atılım Güneş Baydin and
Frank Wood are supported under DARPA PPAML through
the U.S. AFRL under Cooperative Agreement FA8750-14-2-
0006, Sub Award number 61160290-111668. Robert Zinkov
is supported under DARPA grant FA8750-14-2-0007.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[2] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best
practices for convolutional neural networks applied to

visual document analysis,” in Proceedings of the Seventh
International Conference on Document Analysis and
Recognition - Volume 2, ser. ICDAR ’03. Washington,
DC: IEEE Computer Society, 2003, pp. 958–962.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems,
2012, pp. 1097–1105.

[4] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zis-
serman, “Synthetic data and artificial neural networks
for natural scene text recognition,” arXiv preprint
arXiv:1406.2227, 2014.

[5] ——, “Reading text in the wild with convolutional neural
networks,” International Journal of Computer Vision,
vol. 116, no. 1, pp. 1–20, 2016.

[6] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic Data
for Text Localisation in Natural Images,” in Proceedings

Fig. 4. Posteriors of real Facebook and Wikipedia Captchas. Conditioning on each Captcha, we show an approximate posterior produced by a set of weighted
importance sampling particles {(wm, x(m))}M=100

m=1 .

synthetic data generative model sets an empirical cornerstone
for future theory that quantifies and bounds the impact of
model mismatch on neural network and approximate inference
performance.

ACKNOWLEDGMENTS

Tuan Anh Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. Atılım Güneş Baydin and
Frank Wood are supported under DARPA PPAML through
the U.S. AFRL under Cooperative Agreement FA8750-14-2-
0006, Sub Award number 61160290-111668. Robert Zinkov
is supported under DARPA grant FA8750-14-2-0007.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[2] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best
practices for convolutional neural networks applied to

visual document analysis,” in Proceedings of the Seventh
International Conference on Document Analysis and
Recognition - Volume 2, ser. ICDAR ’03. Washington,
DC: IEEE Computer Society, 2003, pp. 958–962.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems,
2012, pp. 1097–1105.

[4] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zis-
serman, “Synthetic data and artificial neural networks
for natural scene text recognition,” arXiv preprint
arXiv:1406.2227, 2014.

[5] ——, “Reading text in the wild with convolutional neural
networks,” International Journal of Computer Vision,
vol. 116, no. 1, pp. 1–20, 2016.

[6] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic Data
for Text Localisation in Natural Images,” in Proceedings

Fig. 4. Posteriors of real Facebook and Wikipedia Captchas. Conditioning on each Captcha, we show an approximate posterior produced by a set of weighted
importance sampling particles {(wm, x(m))}M=100

m=1 .

synthetic data generative model sets an empirical cornerstone
for future theory that quantifies and bounds the impact of
model mismatch on neural network and approximate inference
performance.

ACKNOWLEDGMENTS

Tuan Anh Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. Atılım Güneş Baydin and
Frank Wood are supported under DARPA PPAML through
the U.S. AFRL under Cooperative Agreement FA8750-14-2-
0006, Sub Award number 61160290-111668. Robert Zinkov
is supported under DARPA grant FA8750-14-2-0007.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[2] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best
practices for convolutional neural networks applied to

visual document analysis,” in Proceedings of the Seventh
International Conference on Document Analysis and
Recognition - Volume 2, ser. ICDAR ’03. Washington,
DC: IEEE Computer Society, 2003, pp. 958–962.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems,
2012, pp. 1097–1105.

[4] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zis-
serman, “Synthetic data and artificial neural networks
for natural scene text recognition,” arXiv preprint
arXiv:1406.2227, 2014.

[5] ——, “Reading text in the wild with convolutional neural
networks,” International Journal of Computer Vision,
vol. 116, no. 1, pp. 1–20, 2016.

[6] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic Data
for Text Localisation in Natural Images,” in Proceedings

Fig. 4. Posteriors of real Facebook and Wikipedia Captchas. Conditioning on each Captcha, we show an approximate posterior produced by a set of weighted
importance sampling particles {(wm, x(m))}M=100

m=1 .

synthetic data generative model sets an empirical cornerstone
for future theory that quantifies and bounds the impact of
model mismatch on neural network and approximate inference
performance.

ACKNOWLEDGMENTS

Tuan Anh Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. Atılım Güneş Baydin and
Frank Wood are supported under DARPA PPAML through
the U.S. AFRL under Cooperative Agreement FA8750-14-2-
0006, Sub Award number 61160290-111668. Robert Zinkov
is supported under DARPA grant FA8750-14-2-0007.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[2] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best
practices for convolutional neural networks applied to

visual document analysis,” in Proceedings of the Seventh
International Conference on Document Analysis and
Recognition - Volume 2, ser. ICDAR ’03. Washington,
DC: IEEE Computer Society, 2003, pp. 958–962.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems,
2012, pp. 1097–1105.

[4] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zis-
serman, “Synthetic data and artificial neural networks
for natural scene text recognition,” arXiv preprint
arXiv:1406.2227, 2014.

[5] ——, “Reading text in the wild with convolutional neural
networks,” International Journal of Computer Vision,
vol. 116, no. 1, pp. 1–20, 2016.

[6] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic Data
for Text Localisation in Natural Images,” in Proceedings

Fig. 4. Posteriors of real Facebook and Wikipedia Captchas. Conditioning on each Captcha, we show an approximate posterior produced by a set of weighted
importance sampling particles {(wm, x(m))}M=100

m=1 .

synthetic data generative model sets an empirical cornerstone
for future theory that quantifies and bounds the impact of
model mismatch on neural network and approximate inference
performance.

ACKNOWLEDGMENTS

Tuan Anh Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. Atılım Güneş Baydin and
Frank Wood are supported under DARPA PPAML through
the U.S. AFRL under Cooperative Agreement FA8750-14-2-
0006, Sub Award number 61160290-111668. Robert Zinkov
is supported under DARPA grant FA8750-14-2-0007.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[2] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best
practices for convolutional neural networks applied to

visual document analysis,” in Proceedings of the Seventh
International Conference on Document Analysis and
Recognition - Volume 2, ser. ICDAR ’03. Washington,
DC: IEEE Computer Society, 2003, pp. 958–962.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems,
2012, pp. 1097–1105.

[4] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zis-
serman, “Synthetic data and artificial neural networks
for natural scene text recognition,” arXiv preprint
arXiv:1406.2227, 2014.

[5] ——, “Reading text in the wild with convolutional neural
networks,” International Journal of Computer Vision,
vol. 116, no. 1, pp. 1–20, 2016.

[6] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic Data
for Text Localisation in Natural Images,” in Proceedings

(a) Examples of real Captchas

Bayesian Optimization for Probabilistic Programs

Motivating Example - CAPTCHA

[Le, Baydin, and Wood. Inference Compilation and Universal Probabilistic Programming. AISTATS 2017 (to appear)]

In
fe

re
n
ce

Si
m

u
la

to
r

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters
3: Ÿ ≥ p(Ÿ) Û sample kerning value
4: Generate letters:
5: � Ω {}
6: for i = 1, . . . , ‹ do
7: ⁄ ≥ p(⁄) Û sample letter ID
8: � Ω append(�,⁄)
9: Render:
10: “ Ω render(�,Ÿ)
11: fi ≥ p(fi) Û sample noise parameters
12: “ Ω noise(“,fi)

return “

a1 = “L” a2 = “Ÿ” a3 = “⁄” a4 = “⁄”
i1 = 1 i2 = 1 i3 = 1 i4 = 2
x1 = 7 x2 = ≠1 x3 = 6 x4 = 23

a5 = “⁄” a6 = “⁄” a7 = “⁄” a8 = “⁄”
i5 = 3 i6 = 4 i7 = 5 i8 = 6
x5 = 18 x6 = 53 x7 = 17 x8 = 43

a9 = “⁄” Noise: Noise: Noise:
i9 = 7 displacement stroke ellipse
x9 = 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄1:t≠1) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (at, it) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters
3: Ÿ ≥ p(Ÿ) Û sample kerning value
4: Generate letters:
5: � Ω {}
6: for i = 1, . . . , ‹ do
7: ⁄ ≥ p(⁄) Û sample letter ID
8: � Ω append(�,⁄)
9: Render:
10: “ Ω render(�,Ÿ)
11: fi ≥ p(fi) Û sample noise parameters
12: “ Ω noise(“,fi)

return “

a1 = “L” a2 = “Ÿ” a3 = “⁄” a4 = “⁄”
i1 = 1 i2 = 1 i3 = 1 i4 = 2
x1 = 7 x2 = ≠1 x3 = 6 x4 = 23

a5 = “⁄” a6 = “⁄” a7 = “⁄” a8 = “⁄”
i5 = 3 i6 = 4 i7 = 5 i8 = 6
x5 = 18 x6 = 53 x7 = 17 x8 = 43

a9 = “⁄” Noise: Noise: Noise:
i9 = 7 displacement stroke ellipse
x9 = 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄1:t≠1) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (at, it) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters
3: Ÿ ≥ p(Ÿ) Û sample kerning value
4: Generate letters:
5: � Ω {}
6: for i = 1, . . . , ‹ do
7: ⁄ ≥ p(⁄) Û sample letter ID
8: � Ω append(�,⁄)
9: Render:
10: “ Ω render(�,Ÿ)
11: fi ≥ p(fi) Û sample noise parameters
12: “ Ω noise(“,fi)

return “

a1 = “L” a2 = “Ÿ” a3 = “⁄” a4 = “⁄”
i1 = 1 i2 = 1 i3 = 1 i4 = 2
x1 = 7 x2 = ≠1 x3 = 6 x4 = 23

a5 = “⁄” a6 = “⁄” a7 = “⁄” a8 = “⁄”
i5 = 3 i6 = 4 i7 = 5 i8 = 6
x5 = 18 x6 = 53 x7 = 17 x8 = 43

a9 = “⁄” Noise: Noise: Noise:
i9 = 7 displacement stroke ellipse
x9 = 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄1:t≠1) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (at, it) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

(b) Example simulation of a Captcha

Figure 5.1: Solving Captchas by simulator inversion. (a) gives examples of real Facebook Captchas taken
from Le et al. [2017b]. Here the corresponding generating strings going to clockwise from the top left
are YPL9ceu, mJGD7zP, 9xPBS5k, 8VNARw, z7T7Jda, and GePHEz4. A user is asked to type in these
strings when shown the corresponding image to show they are not a robot. (b) gives an example of the
process of simulating Captchas taken by Le et al. [2017a]. Here we see that we can generate a Captcha
by first simulating a series of characters, then simulating appropriate manipulations to those characters
such as warping, rotating, and adding noise. Inverting this simulation process corresponds to an inference
problem, where we want to find out the characters that lead to a particular image.

our simulated components into an image. Though admittedly it might take some time and

effort to construct a high fidelity simulator that well matches the produced images, the technical

requirements for doing this (other than possibly the final rendering) are minimal and so it could

be carried out by most people with a reasonable degree of experience in scientific programming.

The number of people able to write such a simulator should certainly be substantially larger

than the number of people with sufficient experience in Bayesian modeling to construct an

equivalent graphical model or direct mathematical formulation. The number of people with

the expertise to then write an appropriate inference scheme for the problem is even smaller. In

a PPS, writing this simulator and providing the data is all that is required. Given these, the

PPS will carry out the inference required to invert the simulator automatically, inferring the

characters from the image. More generally, we are estimating the inputs and internal variables

of our simulator, given target values for the outputs.

There are two key factors to realizing our aim of inverting simulators. Firstly we need to

provide a language which easily allows users to write down simulators and which has semantics

that allows the compiler to extract an appropriate representation of the joint distribution. In other

words, we need our language to be sufficiently general purpose and easy to use to not burden

the user, while at the same time having syntax and semantics that ensure the corresponding

joint distribution is well defined and can be converted into a form where we can run inference.

©Tom Rainforth 2020



5. Probabilistic Programming 57

Doing this will require the introduction of means for conditioning on data and of specially

defined random primitives whose behavior can be controlled at run time, rather than just always

sampling from the same predefined distribution as they would in an ordinary programming

language. The latter can be thought of as defining terms in the prior and the former as defining

terms in the likelihood as we will discuss in Section 5.3.

For certain cases, one can alternatively think of conditioning as applying constraints to the

program. For example, we can think of a probabilistic program as defining a simulator and a set

of constraints that must be satisfied; this is exactly how the PPS Church [Goodman et al., 2008b]

is designed. An important distinction here though is between hard and soft conditioning. Hard

conditioning is as per the conventional interpretation of a constraint—we condition on the fact

that an event occurs exactly. Soft conditioning instead assigns a weight to the program based

on the probability (or probability density) of a given event occurring. Though hard conditioning

is a particular case of soft conditioning (for which the weight is either 1 or 0), one can, at

least semantically, use it to specify a soft conditioning, say p(Y = y|X = x), by sampling

Y ∼ p(y|X = x) and then imposing the constraint Y = y. However, only supporting hard

conditioning in a PPS is somewhat restrictive for practical use, as one cannot effectively condition

on continuous data because there is zero probability of satisfying the resulting constraint.

The second key factor is that our language needs a general purpose inference(s) engine

capable of working on any program the user writes. Bayesian models are fully defined by their

joint distribution and the data. Therefore, once a user has written their simulator and provided the

data, this uniquely defines a posterior and the only problem is in solving the resulting Bayesian

inference. If we can now construct inference engines capable of working on arbitrary code, we

can automate inference on any simulator or model the user defines, creating an abstraction barrier

between model definition and drawing inferences from that model.

If we can construct a system that can successfully carry out these tasks, the huge potential

applications this could provide should be clear. We would have a system where the user requires

no expertise in inference or conventional Bayesian modeling in order to write application-specific

models and have them solved automatically. Instead, they need only have the ability to write

stochastic simulators for the process they wish to model, a skill possessed by most of the scientific

community and many of those outside it as well. In a hypothetical future where scientists code

all their simulators in extremely powerful PPSs, tasks such as inverting those simulators and

improving the simulator by incorporating real data would be automated in the same way current

compilers convert high-level coding languages to machine code. However, this ability is not

©Tom Rainforth 2020



5. Probabilistic Programming 58

completely hypothetical—many such problems can already be handled by existing systems. An

important current research challenge is improving and scaling such systems to deal effectively

with more difficult and more wide-ranging models in a tractable manner. The need for such

systems to work in an automated manner for a wide array of possible problems makes this a very

difficult problem; after all, we are somewhat flaunting the no-free-lunch theorem. However, there

is a key component that provides hope that this may be possible: we have access to the target

source code of the simulator itself, rather than needing to treat it as a black-box.

5.2 Differing Approaches
Rather than being a clearly defined method, probabilistic programming is more of an umbrella

term that covers a spectrum of different approaches, varying from inference toolboxes through

to universal probabilistic programming languages (PPLs) that allow arbitrary probabilistic code

to be written. Often there is a trade-off between efficiency and expressivity: the more restricted

one makes the language, the more those restrictions can be exploited to improve the efficiency of

the inference. This lends itself to two distinct philosophies when developing a system. Firstly

one can start with a particular inference algorithm and then design a system around making it as

easy as possible to write models for which that inference algorithm is suitable. Secondly one can

start with a general purpose language that allows as many models as possible to be written and

then try to construct inference engines that are capable of working in such a general framework.

Both approaches have their merits and drawbacks, with the distinction typically coming down

to the intended use. We will now elucidate each approach more precisely.

5.2.1 Inference Driven Systems
Though there is a plethora of bespoke inference algorithms designed for particular models, the

vast majority of these are based around a relatively small number of foundational methods such

as importance sampling, sequential Monte Carlo, Metropolis-Hastings, Gibbs sampling, message

passing, and variational inference (we will introduce a number of these in the coming chapters).

The extensive use of these core inference approaches throughout Bayesian statistics and machine

learning means that it makes clear sense to write packages for automating them and which

make it easy for the user to define appropriate graphical models for which the inference can be

automated. This both improves the efficiency of constructing models and reduces barriers to

entry by reducing the required expertise for users. This inference-first philosophy is taken by

a number of successful PPSs and inference toolboxes (the distinguishing line between which

can be a little blurry), a small number of which we now briefly outline.

©Tom Rainforth 2020



5. Probabilistic Programming 59

BUGS (Bayesian inference Using Gibbs Sampling) [Spiegelhalter et al., 1996] and its

extensions [Lunn et al., 2000; Plummer et al., 2003; Todeschini et al., 2014] allow finite DAGs

to be specified using declarative code or pictorially using a graphical user interface. These are

converted to a form that is suitable for inference, the exact nature of which depends on the

implementation, with the original work being based on Gibbs sampling.

Infer.Net [Minka et al., 2010] is modeling language for defining, and automating approximate

inference in both DAGs and Markov random fields, using predominantly message-passing

algorithms. Distributions are generally, though not exclusively, restricted to be exponential

families. Branching (i.e. if) is allowed but requires enumeration of all possible paths at run time.

LibBi [Murray, 2013] is a package for doing Bayesian inference for state-space models,

using particle-based inference methods. It has a strong focus on scalable computation, providing

support for multi-core architectures and graphics processing units.

PyMC3 [Salvatier et al., 2016] is a python framework for carrying out MCMC and varia-

tional inference, using Theano [Bergstra et al., 2010] to calculate the gradients required by

some inference methods.

Stan [Carpenter et al., 2015] is a PPS with interfaces to many difference languages and a focus

on performing Hamiltonian Monte Carlo inference [Duane et al., 1987; Hoffman and Gelman,

2014], though other inference methods such as variational inference are also provided [Kucukelbir

et al., 2015]. As with PyMC3, automatic differentiation [Baydin et al., 2015] is used to calculate

the required gradients. The need to take derivatives means that there is limited support for

discrete variables or branching.

Edward [Tran et al., 2016] is a PPS based around Tensorflow [Abadi et al., 2016] that

supports directed graphical models, neural networks, and combinations of both. It supports

both Monte Carlo and variational inference methods (again using automatic differentiation)

and has a strong emphasis on model criticism.

These systems do not allow users to write models that would be difficult (at least for an

expert) to code without a PPS—in general, they can all be thought of as defining a graphical

model or sometimes a factor graph—but they offer substantial utility through ease of model

exposition and automating inference.

©Tom Rainforth 2020



5. Probabilistic Programming 60

5.2.2 Universal Probabilistic Programming

As useful as these inference-driven systems are, they do not fit very well with the notion of

inverting simulators we introduced in Section 5.1. They are still closely tied to graphical

models and are more toolboxes for streamlining the Bayesian modeling process than a means

of writing models that would be problematic to define by conventional means. Achieving the

aforementioned long-term ambitious aim of making general purpose systems for conducting

inference on arbitrary simulators requires us to take a somewhat different approach that instead

starts with a general-purpose language and then attempts to design inference algorithms capable

of working on arbitrary models and code. Such systems need to support models where the set of

random variables is dynamically typed, such that it is possible to write programs in which this

set, and thus potentially the number of random variables, differs from execution to execution. To

avoid hindering the user or restricting the models which can be defined, it will important to allow

things such as branching, recursion, higher-order functions, conditional existence of variables,

and arbitrary deterministic functions. Ideally, one would like to provide no restrictions on the

code that the user can write, except for eliminating programs that do not define valid probability

distributions, such as those that have a non-zero probability of never terminating. In practice

catching such invalid cases can be hard or even impossible and so many systems actually adopt a

philosophy of applying no restrictions, such that it is perfectly possible to define invalid models.

General purpose PPSs actually bring up new theoretical questions about what constitutes a valid

probability model [Heunen et al., 2017] and the set of valid definable models is a strict superset

of those definable by graphical models for many systems [Goodman, 2013].

These systems are sometimes known as universal PPLs [Goodman et al., 2008a; Staton

et al., 2016], so-called because they are based on Turing complete languages that can specify

any computable distribution [Goodman, 2013]. Here we will briefly discuss some promi-

nent higher order PPLs.

Church is a PPL based on Scheme [Goodman et al., 2008a]. The original seminal paper and

accompanying system form a foundation on which many of the prominent existing systems are

built, through its demonstration that higher-order probabilistic programs define valid probability

models, even in the presence of infinite recursion. However, Church predominantly only allows

hard conditioning,1 namely a model in Church comprises of a generative sampler and a separate

predicate procedure which returns true if the desired conditions are satisfied. In addition to the

1Some very limited support for soft-conditioning is provided in current implementations through a “noisy equals”
that equates to a Gaussian likelihood.

©Tom Rainforth 2020



5. Probabilistic Programming 61

aforementioned issues of hard conditioning, this complete separation of the generative process

and the conditioning can also be wasteful in not allowing the structure of a model to be exploited.

Later systems therefore mostly allow soft conditioning statements to be interleaved through

the generative progress (in an analogous manner to likelihood terms), increasing the range

of (solvable) models that can be encoded and the potential efficiency of inference algorithms.

Inference in Church (and its direct derivatives) is typically carried out using either rejection

sampling or MCMC. Church places a particularly strong emphasis on the ability to carry out

nested inference [Rainforth, 2018].

Venture [Mansinghka et al., 2014] is a probabilistic programming platform providing a

flexible system for both specification of models and inference methods. It has a strong emphasis

on being extensible and for allowing the hosting of external applications. For example, it allows

the user to provide proposals for the inference engine or reprogram the inference strategy entirely.

Venture is predominantly used via the VentureScript PPL [Mansinghka et al., 2014].

Anglican [Wood et al., 2014] is a universal PPL integrated into Clojure [Hickey, 2008].

Anglican inherits most of the syntax of Clojure, but extends it with the key special forms sample

and observe [Tolpin et al., 2015, 2016; Rainforth, 2017], defined in the same way as our example

language setup in the next section. Despite using predominantly the same syntax, Anglican has

different probabilistic semantics to Clojure, i.e. code is written in the same way, but is interpreted

differently. Anglican was the first PPL to introduce particle based inference schemes such as

sequential Monte Carlo (SMC) [Doucet et al., 2001] and particle MCMC [Andrieu et al., 2010],

which was a key advancement for universal PPSs because it allows the structure of the query to

be exploited, often providing substantially more efficient inference then previous approaches.

WebPPL [Goodman and Stuhlmüller, 2014] is a PPL built using a purely functional subset

of Javascript, conveniently allowing for embedding in web pages. It combines the ability to

write a generative process using sampling statements and to add in likelihood terms through

a factor primitive that is analogous to the observe primitive that we will introduce in

Section 5.3.1. At its back end, WebPPL provides a number of different inference algorithms,

such as SMC and MCMC methods.

Pyro [Bingham et al., 2017] and ProbTorch [Siddharth et al., 2017] are two more recent

PPLs based on PyTorch [Paszke et al., 2017] that share many design characteristics. Similarly

to Edward, they allow modeling of neural networks, but differ in that they construct gradients

dynamically, allowing things such as stochastic control and recursion.

©Tom Rainforth 2020



5. Probabilistic Programming 62

The price for the expressivity of these general purpose systems is a substantial extra burden

on the inference engine. In general, inference methods for such systems must be formulated in

such a manner that they are applicable to models where the density function is intractable and

can only be evaluated during forwards simulation of the program. For example, it may not be

possible to know if a variable is continuous or discrete except by running the program, while

some variables will only exist conditioned on the values of others. This required generality

of the inference engine will naturally lead to a drop in performance compared to custom

written inference code, but this is often a price worth paying for generality and automation,

particularly when considering models that would be challenging to express, let alone do inference

in, using more conventional frameworks.

5.3 Bayesian Models as Program Code [Advanced Topic]
In Section 5.1 we showed how one can think of PPSs as inverting simulators, predicting internal

variables given the outputs. In this section, we will take a different perspective and show how

we can translate Bayesian modeling into the framework of program code. In the previous

chapters, we showed how a Bayesian model is defined by a prior over parameters and a likelihood

function for those parameters given the data. This viewpoint will mostly translate into the

probabilistic programming setting by equating between the prior and sampling statements and

between the likelihood and conditioning statements. However, in Section 5.3.2 we will why

explain why this is not always exactly true.

A key point to note throughout this section is that probabilistic programs define models

rather than procedures. We refer to these models as queries [Goodman et al., 2008b] which are

analogous to functions in a ordinary language. In a standard programming language, functions

take in inputs and then run through a series of commands in order until termination is reached.2

Likewise, random sampling statements like rand, randn etc, make a single independent draw

from the same distribution each time they appear in the execution trace. Neither is the case for

a probabilistic program query. Instead a query defines a model which is compiled to a form

that can be interpreted by an inference engine which then outputs some characterization of the

posterior such as a series of samples. Perhaps the easiest way to think about how a probabilistic

programming language works (though not necessarily what happens for all systems) is that

2In functional programming languages operations are not necessarily carried out in the order they are defined, but
it still holds that the function takes inputs and then carries out a series of actions until the desired output is calculated.

©Tom Rainforth 2020



5. Probabilistic Programming 63

the query is, or sometimes parts of the query are, run many times and the exact behavior of

this running is control by the inference engine.

5.3.1 A Simplified Probabilistic Programming Setup

We first consider the case of constructing a restricted hypothetical example PPL. We emphasize

that this is by no means the only setup one can use, with design choices made in the interest

of exposition. We will presume that our PPL has no branching (i.e. there are no if statements

or equivalent), recursion, or memoization (i.e. functions are always re-evaluated from scratch

when called); is first order (i.e. variables cannot be functions); and that it does not allow any

conditioning on internally sampled variables. We will give our language two special constructs,

sample and observe, between which the distribution of the query is defined.

Informally, sample will be used to specify terms in the prior and observe terms in the

likelihood. More precisely, sample will be used to make random draws xt ∼ ft(xt|Ξt), where

Ξt is a subset of the variables in scope at the point of sampling, and observe will be used to

condition on data ys, factoring the program density by gs(ys|Λs), with Λs defined in the same way

as Ξt. For our inference, it will be necessary to control the sampling and so we define the syntax

of sample to take a distribution object as its only input and for observe to take a distribution

object and an observation as input. We further define each distribution object as containing a

sampling procedure and a density function that can be evaluated exactly. Our language will be

provided with a number of elementary random procedures in the form of distribution classes

for common sampling distributions such as the normal and Poisson distributions, but will also

provide the ability for users to define their own distribution classes. These classes allow a

distribution object to be constructed when provided with the required parameters, such that

the distribution is fully defined before being passed to a sample or observe. We complete

our syntactic definition of sample and observe by defining them to return a sample and nil

respectively. We will presume here and throughout that, other than the effects of sample and

observe, functions in our PPL are pure, such that they always provide the same outputs when

called with the same inputs. This restriction naturally means that queries should not have any

random components other than dictated by sample and observe, but also suggests that they

should be free from side effects such as modifications of global variables.

For our simplified setup, we distinguish between two types of inputs to our queries: external

parameters φ and data y1:S . The external parameters are defined as the inputs that are not

“observed” at any point but can affect the conditioning through Ξt and Λs. We presume that

©Tom Rainforth 2020



5. Probabilistic Programming 64

Inputs: Student-t degrees of freedom ν, error
scale σ, data y1:S = {us, vs}Ss=1

1: m←sample (normal (0,1))
2: c←sample (normal (0,1))
3: obs-dist← student-t (ν)
4: for s = 1, . . . , S do
5: d← (vs −mus − c)/σ
6: observe (obs-dist, d)
7: end for
8: return m, c

m c

y1 y2 • • • yS-1 yS

p(m, c, y1:S |ν, σ) = N (m; 0, 1) N (c; 0, 1)
S∏
s=1

STUDENT-T
(
vs −mus − c

σ
; ν
)

(a) Bayesian linear regression model with student-t likelihood, namely vs = mus + c + σεs where
εs ∼ STUDENT-T(ν). We presume that the scaling of the error σ and the number of degrees of freedom
ν are fixed input parameters (i.e. φ = {ν, σ}), that our fixed data is y1:S = {us, vs}St=1, and that we are
trying to infer the slope m and intercept c (we thus have x1 = m, x2 = c in our general notation), both of
which are assigned a unit Gaussian as a prior. Our query first samples m and c (note that normal (0,1)
generates a unit Gaussian distribution object) and constructs a student-t distribution object obs-dist. It
then cycles over each datapoint and observes (vs−mus− c)/σ using obs-dist, before finally returning
m and c as outputs. Note that if we instead wished to directly predict the outputs at some untested inputs
points uS+1:S+n then we could predict these anywhere in the query (after m and c have been defined) and
return them as outputs along with, or instead of, m and c.

Inputs: Transition std-dev σ, output shape
α, output rate β, data y1:T

1: x0 ← 0
2: tr-dist← normal (0, σ)
3: obs-dist← gamma (α, β)
4: for t = 1, . . . , T do
5: xt ← xt−1+sample (tr-dist)
6: observe (obs-dist, yt − xt)
7: zt ← I(xt > 4)
8: end for
9: return z1:T

x1 x2 • • • xT -1 xT

y1 y2 yT -1 yT

p(x1:T , y1:T |σ, α, β) =
N (x1; 0, σ2) GAMMA(y1 − x1;α, β)
T∏
t=2
N (xt − xt−1; 0, σ2) GAMMA(yt − xt;α, β)

(b) State-space model with Gaussian transition and Gamma emission distributions. It is a form of
the HMM model given in (4.7) with p(x1) = N (x1; 0, σ2), p(xt|xt−1) = N (xt − xt−1; 0, σ2), and
p(yt|xt) = GAMMA(yt − xt;α, β) with shape parameter α and scale parameter β. We assume that the
input parameters φ = {σ, α, β} are fixed and we want to sample from p(z1:T |y1:T , φ) given data y1:T ,
where each zt is an indicator for if xt exceeds a threshold of 4. Our query, exploiting the equivalence
between p(x1) and p(xt|xt−1 = 0), first initializes x0 = 0 and creates distribution objects for the
transitions tr-dist and emissions obs-dist. It then loops over time steps, sampling each xt given
xt−1, observing yt given xt, and deterministically calculating zt. Finally the z1:T are returned as the
desired output.

Figure 5.2: Example pseudo-queries for our simplified probabilistic programming setup with correspond-
ing graphical models and joint distributions.

©Tom Rainforth 2020



5. Probabilistic Programming 65

the data terms, defined as the inputs we observe, appear in neither Ξt or Λs. We now define

both sample and observe from the probability model perspective as adding a factor to the

joint distribution which is therefore given by

p(x1:T , y1:S|φ) =
T∏
t=1

ft(xt|Ξt)
S∏
s=1

gs(ys|Λs). (5.1)

The two vary in whether they define a new random variable (sample) or affect the probability

of the execution given particular instances of the other random variables (observe). Our

presumptions for this simplified setup that no ys terms are present in the Ξt or Λs and that

we do not condition on internally sampled variables, means that the product of the sample

terms correspond exactly to our prior
∏T
t=1 ft(xt|Ξt) =: p(x1:T |φ) and that the product of

the observe terms corresponds exactly to our likelihood
∏S
s=1 gs(ys|Λs) =: p(y1:S|x1:T , φ).

Consequently, for our simplified setup, each query defines a finite DAG (see Section 4.3) where

the conditional relationships are defined through the definitions of ft and gs. This breakdown into

a prior and likelihood and the equivalence to graphical models will not hold in the more general

cases we consider later. Our aim will be to perform inference to provide a characterization of

p(x1:T |y1:S, φ) (or the posterior for some deterministic mapping of x1:T ), typically in the form

of (approximate) samples. Figure 5.2 shows two example queries along with the corresponding

graphical models and joint distributions they define.

Other than sample and observe statements, the rest of our query is, by construction,

totally deterministic. Therefore, though it may contain random variables other than x1:T , these

random variables are deterministic functions of the “raw” random draws x1:T and inputs φ

and y1:S . We can therefore define the outputs of our query as Ω := h(x1:T , y1:S, φ) for some

deterministic function h. As we explained in Section 2.7, this change of variables means that

the density function on Ω, p(Ω|y1:S, φ) can have a different form to the posterior implied by

our query, namely p(x1:T |y1:S, φ). Though this is a serious complication in the context of

optimization (we may not in general be able to find arg maxΩ p(Ω|y1:S, φ) or even evaluate

p(Ω|y1:S, φ) exactly), it is perfectly acceptable in the context of calculating expectations as the

law of the unconscious statistician tells us that∫
f(Ω)p(Ω|y1:S, φ)dΩ =

∫
f(h(x1:T , y1:S, φ))p(x1:T |y1:S, φ)dx1:T (5.2)

for implicitly defined reference measures dΩ and dx1:T . One consequence of this is that we can

express any expectation calculated by our query as an expectation over p(x1:T |y1:S, φ) which

is fully defined by the joint (5.1). Another is that, provided we are not worried about carrying

©Tom Rainforth 2020



5. Probabilistic Programming 66

out optimization, we do not need to explicitly worry about the implicit measures defined by

the definition of our query, other than any potential effects on the inference scheme and the

assumption that suitable measures exist [Staton et al., 2016]. In particular, if our aim is to

generate samples from p(Ω|y1:S, φ) then we can simply generate samples from p(x1:T |y1:S, φ)

and deterministically convert each sample to the space of Ω. In other words, our inference

engine does not need to worry about the consequences of changes of variables if our intended

output is just a sequence of samples.

An important point to note is that (5.1) shows that all of our sample and observe statements

are exchangeable, in the sense that their order can be moved around and still define the same

joint distribution, up to restrictions about all the required variables existing and being in scope.

For example, if all variables remain in scope and are not redefined, we can generally move

all our observe statements to the end of the query without changing the joint distribution.

Therefore the query given in Figure 5.2b would define the same model if all the xt were sampled

upfront before making any observations. Nonetheless, the position of the observe statements

can often be important from the perspective of the performance of the inference engine. This

exchangeability result will carry over to the non-simplified case.

5.3.2 A General Probabilistic Programming Setup [Very Advanced Topic]

Perhaps surprisingly, we do not need to do anything to our language to extend it to a universal

PPL other than to relax a number of the restrictions made for our simplified case. Namely,

we will allow branching, higher order functions, (potentially infinite) recursion, stochastic

memoization [Goodman et al., 2008b], conditioning on internally sampled variables, and the

use of the “data” inputs y1:T in the definition of our generative model (instead of just allowing

them to be observed). One assumption we will make is that our program terminates with

probability 1, asserting that any program that does not satisfy this assumption does not define

a valid model. We will maintain the syntax of our simplified setup, along with the assumption

that functions are pure other than the effect of sample and observe. An important point to

note though for why such a language is universal, is that arbitrary distributions with countable

parameters can be defined through a series of uniform [0, 1] draws followed by an arbitrary

deterministic mapping—after all, this is effectively how all probability distributions are defined

from a measure theoretic point of view.3

3Interestingly, this viewpoint breaks down for distributions over functions for which measure theory itself
somewhat breaks down Heunen et al. [2017]. As such, universal PPSs actually go beyond the standard measure-
theoretic view of probability.

©Tom Rainforth 2020



5. Probabilistic Programming 67

Despite their ostensibly modest nature, these generalizations will have a substantial effect

on the intuitions relating our universal PPL to the Bayesian framework, the range of models

we can define, and the difficulty of performing general purpose inference. For example, as ys

terms can appear in the Ξt terms, it can be the case that p(x1:T |φ) 6= ∏T
t=1 f(xt|Ξt), such that the

latter no longer explicitly corresponds to a conventional definition of a prior. Some variables

may change type (e.g. between continuous and discrete) or even not exist depending on the

value of other variables. The number of variables may change from one execution to the next

and it could even be the case that the number of latent variables is unbounded provided that

any possible execution has a finite number of variables is with probability 1, such as is the

case for certain Bayesian non-parametric models such as the Dirichlet process [Ferguson, 1973;

Teh, 2011; Bloem-Reddy et al., 2017]. Note that the number sample and observe statements

lexically defined within our query must, for obvious reasons, be finite, but recursion or looping

may mean that they are evaluated an infinite number of times. It is also possible for a variable

within a query to itself encode an infinite number of parameters, for example, one might include

a Gaussian process within the query (see Section 4.6). These complications make it difficult

to mathematically reason about the joint distribution defined by a query in a universal PPS, let

alone reason about its breakdown into a prior and a likelihood, or represent the query using a

graphical model (which might actually not even be possible).

One way to conceptually overcome these difficulties is to reason in terms of execution paths.

Even though we might not know upfront which sample and observe statements are invoked by

a particular query output, if we execute the query in order, the draws of the sample statements

made thus far in an execution trace uniquely identify which sample statement will be invoked

next and the value of all the variables up to that sample statement. In other words, given the

outcome of the first t evaluated sample statements, which sample statement corresponds to

the (t+ 1)-th to be evaluated is uniquely defined and the query up to that sample statement is

completely deterministic, including which path to take at each if statement, which variables are

defined and their values, and the probability arising from the observe conditioning statements.4

Thus although the distribution of the query is not necessarily statically determinable, it can

still be evaluated through execution as each sample statement provides the information we

require, in addition to the information from the previous sample statements, to deterministically

evaluate up to the next sample statement. Consequently, we can evaluate the probability of

4Note that our inference algorithm might induce probabilistic behavior at observe statements, but we can
safely ignore this in terms of defining the distribution represented by the query.

©Tom Rainforth 2020



5. Probabilistic Programming 68

any particular trace as we run it, even though it might be challenging to evaluate the probability

of a predefined configuration of the variables.

Using this idea of execution paths, we can define an expression for the conditional probability

a query defines, albeit in a complex and somewhat abstract manner that only really retains

meaning in our calculation through evaluation mindset, by defining the probability of a particular

trace. First let λ denote the value of all the inputs to the query (including both parameters

and data as we will now have no explicit distinction between the two). Further let nx and ny

be the number of sample and observe statements respectively invoked by the trace, noting

that nx and ny may themselves be random variables and could potentially be unbounded (e.g.

nx could follow a Poisson distribution). We can now define, for any given execution, x1:nx =

x1, . . . , xnx and y1:ny = y1, . . . , yny respectively as the outputs of our nx sample statements and

observation inputs for our ny observe statements. To avoid complications regarding variable

reassignment, we will not consider the xj as being variables in our program, such that calling

a←sample(dist) effectively creates an internal protected variable xj (whose value can never

be reassigned) and then immediately assigns the value of xj to a. All variables generated before

xj are a deterministic function of x1:j−1 and λ. Therefore, even though all variables in our

program might be random, including the observations yk, all are deterministically calculable

given x1:nx and λ. Even nx itself is a deterministic function of the output of the sample

statements, as {x1:j, λ} deterministically dictates whether there will be any further sample

statements encountered. Consequently, in the same way we only needed to worry about x1:nx

to reason about the distribution over the program outputs for our simplified case, we can reason

about the distribution on all variables in program (for a given λ) through considering x1:nx in

our general case. We can thus think of our trace as being defined by x1:nx .

We continue by defining f1, . . . , fns and g1, . . . , gno respectively as the densities (with respect

to an implicitly defined reference measure) associated with the ns sample and no observe

statements defined lexically within the program (i.e. the distinct sample and observe statements

appearing anywhere in the raw program code), noting that ns and no are not random variables.

To express these densities, we use the notation fi(xj|ηj) to indicate the density of lexical sample

statement i returning outputs xj when provided with distribution object ηj , which will typically

be a random variable itself. Note here that parameters of the density are encoded through the

distribution object, so, for example, we can think of sample (normal (µ, 1)) for a random

variable µ as first creating the random distribution object ηj =normal (µ, 1) before passing

this to the sample call. We similarly use the notation gi(yk|ψk) to express the density of using

©Tom Rainforth 2020



5. Probabilistic Programming 69

lexical observe gi to observe output yk with the (random) distribution object ψk. We define

aj ∈ {1, . . . , ns}, ∀j ∈ {1, . . . , nx} and bk ∈ {1, . . . , no}, ∀k ∈ {1, . . . , ny} as the random

variables respectively used to index which of the lexical sample and observe statements

correspond to the j th and kth execution trace sample and observe statements.

To encapsulate the notion of a valid trace, i.e. a x1:nx that can be generated by the program

and for which all the density terms are well-defined, we introduce the deterministic boolean

function B(x1:nx , λ) which returns 1 if the trace is valid and 0 otherwise. This is something we

do not need to worry about if we take an evaluation based inference approach, whereby we rely

on methods that only propose from the generative model, but it is necessary to ensure that the

density is well defined if we try to evaluate it at a predetermined point, chosen externally to

the program. For example, B(x1:nx , λ) is necessary to ensure that x1:nx is a “complete” trace:

it may be that a certain x1:nx implies that further sample statements are still to be invoked

after the nth
x , in which case the trace is not valid as these additional outputs are undefined. For

example, if the program defines the distribution N (x1; 0, 1)N (x2; 0, 1)N (4;x2, x1), then the

trace x1 = 3.2 is incomplete. Similarly, we can use B(x1:nx , λ) to encode that in our example

P (nx > 2) = 0. Meanwhile, B(x1:nx , λ) also ensures that all terms within the trace probability

are well defined. For example, an invalid trace might provide parameters of the wrong type to

one of the distribution objects, meaning that density of that distribution object is undefined.

We are now finally ready to define the conditional distribution on the trace T implied by

our query as p(T = x1:nx|λ) ∝ γ(x1:nx , λ) where

γ(x1:nx , λ) =


∏nx
j=1 faj

(xj|ηj)
∏ny

k=1 gbk
(yk|ψk) if B(x1:nx , λ) = 1

0 otherwise
, (5.3)

remembering that although the aj , ηj , etc are random variables, they are all deterministically

calculable from x1:nx for a given query and λ. As a consequence, our program implies a well

defined, normalized, conditional distribution, or “posterior”, on the produced traces (presuming

the normalization constant is finite and non-zero). Note that this definition is explicitly on

outcomes of the trace and so, in general, p(T = x1:j|λ) 6= ∫
p(T = x1:nx|λ)dxj+1:nx . In

fact, because x1:j deterministically dictates whether xj+1 exists, it is not possible to have

B(x1:nx , λ) = B(x1:j, λ) = 1, i.e. we cannot have that both x1:j and {x1:j, xj+1:nx} are complete

traces. Consequently, it is always necessary that at least one of p(T = x1:j|λ) and p(T = x1:nx|λ)

are equal to zero. Note though that we can still define a program that places non-zero weight

on, for example, both the outputs [2.3, 3.5] and [2.3, 3.5, 1.2], remembering that x1:nx relates

to the raw draws from the sample statements.

©Tom Rainforth 2020



5. Probabilistic Programming 70

L = exp(��)

k = 0

p = 1

u x1

p pu
if

p  L

f1

g1

p > L

f1

p pu
if

k  1

k = 0

u x2 p  L

g1 k = 1

p > L

f1

p pu
if

p  L

g1

p > L

k = 2

k  2

k  3

u x3

g2

g2

g2

(a) Possible traces for our query. sample statements are shown in red, observe statements are shown in
shades of green, and deterministic computations (given the outputs of the sample statements) are shown
in shades of blue. Subscripts for the sample and observe statements show the lexical index (i.e. aj ∈ {1}
and bk ∈ {1, 2}), as do the different shades. The cyan arrows correspond to a particular execution path
which gives output k = 1 and has nx = 2, ny = 2, b1 = 2, and b2 = 1. Valid traces for this particular
path must have x1 > exp(−λ) and x2 ≤ exp(−λ)/x1.

Inputs: Event rate λ
1: L← exp(−λ), k ← 0, p← 1
2: while p > L do
3: u←sample (uniform (0,1))
4: p← pu
5: if p ≤ L then; break while; end if
6: observe (bernoulli (0.2), 1)
7: k ← k + 1
8: end while
9: observe (bernoulli (0.99), I(k>3))

10: return k
(b) Query code for warped Poisson sampler (c) Conditional distribution on k for λ = 4.

Figure 5.3: Demonstration of stochastic execution traces using a warper Poisson sampler, adapted
from [Paige, 2016, Figure 3.3]. The query defined in (b) would output k as per a Poisson distribution
with event rate λ if it were not for the observe statements. As shown in (c) though, these observe
statements warp the distribution to give a lighter tail while discouraging k ≤ 3. Here both nx ∈ N+ and
ny ∈ N+ depend on the trace and are unbounded. Which observe we see first is also probabilistic, while
some traces will be invalid, e.g. x1:nx = [1, 0.5] as x1 = 1 indicates there will be only a single sample
encountered. Nonetheless, we can calculate the probability of a trace by following its path to completion
while accumulating sample and observe factors.

©Tom Rainforth 2020



5. Probabilistic Programming 71

An illustrative example for calculating the probability of a program through execution traces

is shown in Figure 5.3. This corresponds to a problem that cannot not be expressed using our

simplified PPL or a graphical model, but which is simple to write in our universal framework.

Imagine we want to calculate the unnormalized trace probability γ(x1:nx = [0.2, 0.07], λ = 4)

which we can do by stepping through the program and accumulating terms (for reference

we will be following the cyan path in Figure 5.3a). On our path we first hit f1(x1|η1) =

UNIFORM(0.2; 0, 1) = 1, we fix u← x1 and p← 1 ·u, and test if p = 0.2 ≤ exp(−4) ≈ 0.0183.

This gives false and so we do not break the while loop, instead encountering g2(y1|ψ1) =

BERNOULLI(1; 0.2) = 0.2 and so our running value for γ(x1:nx = [0.2, 0.07], λ = 4) is 1 ×
0.2 = 0.2. Updating k ← 1 and going back to the start of the while loop we encounter

f1(x2|η2) = UNIFORM(0.07; 0, 1) = 1, so our running score is 1× 0.2× 1 = 0.2. Reassigning

u and p we see that p = 0.014 ≤ exp(−4) is now true and so we take the opposite branch

to before with our if statement, thus breaking the while loop. To finish the program we pass

through g1(y2|ψ2) = BERNOULLI(k > 3; 0.99) = 0.01 giving the final unnormalized density

of γ(x1:nx = [0.2, 0.07], λ = 4) = 0.01 × 0.2 = 0.002 and an output of k = 1. We finish by

checking that our trace was valid, which we can easily see is the case because no terms were

undefined and we generated the correct number of sample outputs (i.e. nx = 2 as required).

An important point of note is that, in general, γ(x1:nx , λ) is not a normalized joint distribution.

This is firstly, and most obviously, because λ might contain terms, referred to as φ before, that

are not observed and so have no implied density. Secondly, and more critically, even if φ = ∅,
γ(x1:nx , λ) is not necessarily correctly normalized, because of the ability to observe sampled

variables and condition the sample statements on the observations. As a simple example, our

model might consist of a x1 ←sample (normal (0,1)) term followed by an observe (normal

(−1, 2, x1)) term. This does not directly define any properly normalized joint distribution on

any particular variables (noting that N (x1; 0, 1)N (x1; 0, 2) is an unnormalized distribution with

only the variable x1). Consequently, there is no means of writing down a normalized joint

distribution for a general query in our universal PPL setup in closed form—we might actually

need to empirically estimate the normalization constant to evaluate the joint. This actually

steps outside the conventional Bayesian modeling framework and raises a number of interesting

theoretical questions. However, from a practical perspective, we can note that provided the

implicitly defined normalization constant is finite, the query also implicitly defines a correctly

normalized conditional distribution (noting that γ(x1:nx , λ) ≥ 0). This is analogous to knowing

©Tom Rainforth 2020



5. Probabilistic Programming 72

the joint but not the posterior in Bayesian inference, though it is not exactly equivalent because

the normalization constant is no longer the marginal likelihood.

For a simple example of why it is important to be able to define models up to an unnormalized

joint distribution, consider a model where a and b are each sampled from discrete distributions

and we want to condition on the value of a and b being equal. Here the combination of the

sample statements and the observation that the two are equal clearly does not lead to a correctly

normalized joint (we do not even really have a conventional notion of a likelihood), but it clearly

defines an unnormalized conditional distribution as

P (a, b|I(a = b)) = P (a)P (b|a)I(a = b)∑
a

∑
b P (a)P (b|a)I(a = b) .

In such cases where our observation is a hard constraint, we can view the normalizing constant

for the conditional defined by the query as the probability of our constraint being satisfied. For

more general queries of discrete variables, we might have, for example,

P (x|λ) ∝ f(x|λ)g(y = κ(x, λ)|x, λ)

for some deterministic function κ. Here we can view the marginalization as being the probability

of the event y = κ(x, λ) under the joint P (x, y) = f(x|λ)g(y|x, λ). For our previous example

we have x := a, y := b, κ(a, λ) := a, f(a) := p(a), and g(b = a) := p(b = a|a). The

same intuition applies to continuous cases where we now have the density of the event y =

κ(x, λ). We can also think of f(x|λ)g(κ(x, λ)|x, λ) as defining an unnormalized distribution

on x whose normalization constant is
∫
f(x|λ)g(κ(x, λ)|x, λ)dx. In general, our normalization

constant will be a combination of conventional marginal likelihood terms and contributions

from these “doubly defined” terms. We refer to this normalization constant as the partition

function5 and note that it is given by

Z(λ) = E
[ ny∏
k=1

gbk
(yk|ψk)

∣∣∣∣∣λ
]

=
∫
γ(x1:nx , λ)dx1:nx

=
∫
x1:nx∈{X:B(X,λ)=1}

nx∏
j=1

faj
(xj|ηj)

ny∏
k=1

gbk
(yk|ψk)dx1:nx (5.4)

where the expectation is under running the query forwards (i.e. the distribution implied by

simulating from an equivalent query with all the observe statements removed) and all terms

in the integral are deterministically calculable for the query given λ and x1:nx . For our query

5Note this is not a term that is usually used in the probabilistic programming literature, where it is usually
just referred to as a marginal likelihood. Similarly, it is common in the literature to refer to a query as defining a
“normalized joint” density of pφ(x1:nx

, y1:ny
) =

∏nx

j=1 faj
(xj |ηj)

∏ny

k=1 gbk
(yk|ψk). We have deviated from both

of these because, as our examples demonstrate, this viewpoint is actually an approximation. For an even more
rigorous treatment of the distributions defined by PPSs, we refer the reader to Staton et al. [2016].

©Tom Rainforth 2020



5. Probabilistic Programming 73

to represent a well-defined conditional distribution, it is necessary to have 0 < Z(λ) < ∞.

Although Z(λ) does not correspond exactly to a marginal likelihood, we can still think of it

in terms of representing a model evidence in the same way, it just might not be a correctly

normalized density in the same way a marginal likelihood is.

We now see that we can draw a direct analogy to the Bayesian framework whereby the

product of the sample terms is analogous to the prior, the product of the observe terms is

analogous to the likelihood, and the partition function is analogous to the marginal likelihood.

If observed variables are not sampled within or used elsewhere in the query (e.g. being used as

parameters in distribution objects later used for sampling), then this analogy becomes exact as

per our simplified setup. However, as we have explained, it will often be desirable to go beyond

this framework to specify some models. When we do, we still have an implicit Bayesian model,

in the same way that Bayes’ rule means that a prior and a likelihood implicitly define a posterior,

but we may not actually have access to our implicitly defined prior and likelihood.

Given our query is now defined to specify an unnormalized conditional distribution rather

than a normalized joint distribution, it is natural to ask whether it is necessary for each observe

term to correspond to a correctly normalized density for its output, instead of just restricting it to

be a positive semi-definite function representing an arbitrary soft constraint. The answer is that it

is not. In fact, from a theoretical perspective, it perhaps easier to not think of the density defined

by the query as being a combination of sampling and conditioning terms, but instead the product

of a correctly normalized generative model density and a positive semi-definite score function

that applies an unnormalized weighting to any possible sample the generative model can produce.

This is exactly the approach taken by [Staton et al., 2016] and [Goodman and Stuhlmüller, 2014]

who explicitly use such score functions, calling them score and factor respectively.

5.4 Further Reading
The main recommendation for further reading here is to go investigate some individual probabilis-

tic programming systems—try searching for some of those listed in Section 5.2. I would

recommend Pyro as a system that covers at lot of the relevant ideas, is relatively easy to

use, and is well documented.

• Video tutorial on probabilistic programming by Frank Wood: https://www.youtube.

com/watch?v=Te7A5JEm5UI&t=500s

• Full conference of talks on probabilistic programming: https://www.youtube.com/

channel/UCTFDb7aQY1ewBYwJJrpKp6Q

©Tom Rainforth 2020

https://www.youtube.com/watch?v=Te7A5JEm5UI&t=500s
https://www.youtube.com/watch?v=Te7A5JEm5UI&t=500s
https://www.youtube.com/channel/UCTFDb7aQY1ewBYwJJrpKp6Q
https://www.youtube.com/channel/UCTFDb7aQY1ewBYwJJrpKp6Q


6
Foundations of Bayesian Inference and

Monte Carlo Methods
In the previous chapters we introduced the concept of Bayesian modeling and showed how we

can combine prior information p(θ) and a likelihood model p(D|θ) using Bayes’ rule (i.e. (3.6)),

to produce a posterior p(θ|D) on variables θ that characterizes both our prior information and

information from the dataD. We now consider the problem of how to calculate (or more typically

approximate) this posterior, a process known as Bayesian inference. At first, this may seem like

a straightforward problem: by Bayes’ rule we have that p(θ|D) ∝ p(D|θ)p(θ) and so we already

know the relative probability of any one value of θ compared to another. In practice, this could

hardly be further from the truth. Bayesian inference for the general class of graphical models is,

in fact, an NP-hard problem [Cooper, 1990; Dagum and Luby, 1993]. In this chapter, we will

outline these challenges and introduce foundational methods for overcoming them in the form of

inference algorithms. We will focus, in particular, on Monte Carlo methods, for which we will

introduce some key underlying results, before introducing a number of foundational methods that

form the building blocks for the more advanced strategies discussed in the next chapter.

6.1 The Challenge of Bayesian Inference
We can break down Bayesian inference into two key challenges: calculating the normalization

constant p(D) =
∫
p(D|θ)p(θ)dθ and providing a useful characterization of the posterior, for

example, a set of approximate samples. Interestingly, each of these constitutes a somewhat

distinct problem and many inference methods focus only on solving the latter problem. However,

this breakdown will still prove useful in illustrating the intuitions about the difficulties presented

by Bayesian inference.

6.1.1 The Normalization Constant

Calculating the normalization constant in Bayesian inference is essentially a problem of inte-

gration. Our target, p(D), is the expectation of the likelihood under the prior, hence the name

marginal likelihood. When p(D) is known, the posterior can be evaluated exactly at any possible

input point using (3.6) directly. When it is unknown, we lack a scaling in the evaluation of



6. Foundations of Bayesian Inference and Monte Carlo Methods 75

any point and so we have no concept of how relatively significant that point is relative to the

distribution as a whole. For example, for a discrete problem then if we know the normalization

constant, we can evaluate the exact probability of any particular θ by evaluating that point alone.

If we do not know the normalization constant, we do not know if there are other substantially

more probable events that we have thus–far missed, which would, in turn, imply that the queried

point has a negligible chance of occurring.

To give a more explicit example, consider a model where θ ∈ {1, 2, 3} with a corresponding

uniform prior P (θ) = 1/3 for each θ. Now presume that for some reason we are only able

to evaluate the likelihood at θ = 1 and θ = 2, giving p(D|θ = 1) = 1 and p(D|θ = 2) = 10

respectively. Depending on the marginal likelihood p(D), the posterior probability of P (θ = 2|D)

will vary wildly. For example, p(D) = 4 gives P (θ = 2|D) = 5/6, while p(D) = 1000

gives P (θ = 2|D) = 1/100.

Though this example may seem far-fetched, this lack of knowledge of the marginal likelihood

is almost always seen in practice for realistic models, at least those with non-trivial solutions.

Typically it is not possible to enumerate all the possible values of θ in a reasonable time and we

are left wondering: how much probability mass is left that we have not seen? The problem is

even worse in the setting where θ is continuous, for which it is naturally impossible to evaluate

all possible values for θ. Knowing the posterior only up to a normalization constant is deceptively

unhelpful: we never know how much of the probability mass we have missed and therefore

whether the probability (or probability density) where we have looked so far is tiny compared to

some other dominant region we are yet to explore. At its heart, the problem of Bayesian inference

is a problem of where to concentrate our finite computational resources so that we can effectively

characterize the posterior. If p(D) is known, then we generally have some idea of whether we are

looking in the right place or whether there are places left to look that we are yet to find.1 This

brings us onto our second challenge: knowing the posterior in closed form is often not enough.

6.1.2 Characterizing the Posterior

Once we have the normalization constant, it might seem that we are done; after all, we now

have the exact form of the posterior using Bayes’ rule. Unfortunately, it tends to be the case,

particularly when θ is continuous, that this is insufficient to carry out most tasks that we might

1For continuous problems, it might still be difficult to fully calibrate this even when p(D) is known because we
may not know what the effective scaling of the input space is. For example, different problem parameterizations will
lead to different posterior densities.

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 76

want to use our posterior for. There are a number of different, often overlapping, reasons for

wanting to calculate a posterior including

• To calculate the posterior probability or probability density for one or more particular

instances of the variables.

• To calculate the expected value of some function, µf = Ep(θ|D) [f(θ)]. For example, we

might want to calculate the expected values of the variables themselves µθ = Ep(θ|D) [θ].

• To make predictions as per the posterior predictive distribution introduced in Section 3.3.2.

• To find the most probable variable values θ∗ = arg maxθ p(θ|D). This is known as

maximum a posteriori estimation.

• To produce a useful representation of the posterior, e.g. a set of samples, for passing on to

another part of a computational pipeline or to be directly observed by a user.

If θ is continuous, or some elements of θ are continuous, then only the first of these can be carried

out directly using the form of the posterior provided by Bayes’ rule with known normalization

constant. We see, therefore, that knowing the normalization alone will not be enough to fully

solve the Bayesian inference problem in a useful manner. In particular, it will generally not

be sufficient in order to be able to sample from the posterior. As we will see later, the ability

to sample will be at the core of most practical uses for the posterior as it allows use of Monte

Carlo methods [Metropolis and Ulam, 1949; Robert, 2004; Rubinstein and Kroese, 2016], which

can, in turn, be used to carry out many of the outlined tasks.

To further demonstrate why knowing the normalization constant is insufficient for most

Bayesian inference tasks, we consider the following simple example

p(θ) = GAMMA (θ; 3, 1) = θ2 exp(−θ)
2 , θ ∈ (0,∞) , (6.1a)

p(y = 5|θ) = STUDENT-T (θ − 5; 2) = Γ(1.5)√
2π

(
1 + (θ − 5)2

2

)−3/2

, (6.1b)

p(θ|y = 5) ≈ 5.348556 θ2 exp(−θ)
(
2 + (5− θ)2

)−3/2
. (6.1c)

Here we have that the prior on θ is distributed according to a gamma distribution with shape pa-

rameter 3 and rate parameter 1. The likelihood function is a student-t distribution on the difference

between θ and the output y = 5. Using a numerical integration over θ, the normalization constant

can be calculated to a high accuracy, giving the provided closed-form equation for the posterior

shown in (6.1c). This posterior, along with the prior and likelihood are shown Figure 6.1.

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 77

Figure 6.1: Example inference for prob-
lem given in (6.1). Also shown is the
cumulative distribution for the posterior
as per (6.2). This is scaled by a factor of
0.4 for visualization.

Here knowing the marginal likelihood means that we

have a closed-form equation for the posterior. Imagine

though that we wish to sample from it. As it does not

correspond to a standard distribution, there is, in fact,

no way to directly sample from it without doing further

calculations. For example, if we also know the inverse

of the cumulative density function of the posterior

P (Θ ≤ θ|y = 5) =
∫ Θ=θ

Θ=0
p(θ = Θ|y = 5)dΘ, (6.2)

then we can sample from the posterior by first sampling

û ∼ UNIFORM(0, 1) and then taking as our exact sample θ̂ = P−1(û) such that û = P (Θ ≤
θ̂|y = 5). However, the cumulative distribution function and its inverse cannot, in general,

be calculated analytically. Though in this simple one-dimensional problem they can be easily

estimated numerically, this will prove prohibitively difficult for most problems where θ has more

than a few dimensions. Similarly, if we wish to estimate an expectation with respect to this

posterior we could do this relatively easily numerically for this simple problem, for example

using Simpson’s rule, but in higher dimensions, this will be impractical.

There are a number of indirect methods we could use instead to sample from the posterior

such as rejection sampling, importance sampling, and MCMC. However, as we will show

in Section 6.4, these all only require that we can evaluate an unnormalized version of target

distribution, such that they side-step the need to calculate the marginal likelihood. Nonetheless,

knowledge of the marginal likelihood can still be helpful in a number of scenarios (e.g. in

adapting our inference algorithm) for the reasons outlined in Section 6.1.1.

6.2 Deterministic Approximations
One of the simplest approaches to Bayesian inference is to effectively ignore the problem

completely and instead resort to a heuristic approximation. The simplest such deterministic

approximation is just to take a point estimate θ̃ for θ and then approximate the posterior predictive

distribution using only this value:

p(D∗|D) ≈ p(D∗|θ̃). (6.3)

In general, finding θ̃ requires only an optimization problem to be solved, which is generally

far easier than the integration problem posed by estimating the full posterior predictive or an

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 78

expectation with respect to the posterior. The two most ways of choosing a θ̃ are to take either a

maximum likelihood (ML) estimate or maximum a posteriori (MAP) estimate.

ML estimation is not a Bayesian approach at all: it completely ignores the prior and instead

tries to find the parameters that maximize the likelihood. Namely it takes

θ̃ML = arg max
θ∈ϑ

p(D|θ). (6.4)

Many classical statistical and machine learning techniques on based on ML estimation as it

is intuitively the most probable set of parameters given data and a model. However, this can

be prone to overfitting and so it typically requires some form of regularization [Hastie et al.,

2001]. Many of the relative advantages and disadvantages of maximum likelihood estimation

relative to a Bayesian approach are the same of those of frequentist versus Bayesian methods

as discussed in Section 3.4 (note though that ML estimation is far from the only frequentist

approach). In particular, it fails to incorporate prior information (thing back to the sun exploding

example in the lectures) and fails to capture uncertainty in θ.

MAP estimation corresponds to maximizing the posterior probability, which is equiva-

lent to extending ML estimation to also include a prior term, noting that p(D) is a con-

stant, such that we have

θ̃MAP = arg max
θ∈ϑ

p(θ|D) = arg max
θ∈ϑ

p(D|θ)p(θ). (6.5)

This provides regularization compared to ML estimation (indeed many priors and ML regular-

ization methods are exactly equivalent [Bishop, 2006]), but still has a number of drawbacks

compared to full inference when the latter is possible. For example, the position of the MAP

estimate is dependent of the parametrization of the problem (see Section 2.7). Using a MAP

estimate also, of course, incorporates less information into the predictive distribution than using

a fully Bayesian approach. Nonetheless, MAP estimation is still an important tool of Bayesian

machine learning, necessary when a single estimate is required because the parameter has some

real world meaning we are trying to learn about, or when inference is infeasible. Note that when

ϑ is bounded, then ML estimation is recovered from MAP estimation by using a uniform prior.

When θ is continuous and p(θ|D) is twice differentiable, the MAP estimate can often

be refined by instead using the Laplace approximation of the posterior. This is based on

approximating the posterior with Gaussian centered at the MAP estimate, with covariance

dictated by the curvature of the density around this point. Specifically it uses

p(θ|D) ≈ N
(
θ; θ̃MAP, (ΛMAP)−1

)
(6.6)

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 79

where ΛMAP is the negative Hessian of the log joint density evaluated at the MAP, i.e.

ΛMAP = −∇2
θ log (p(θ,D)) |θ=θ̃MAP

. (6.7)

The derivation of this stems from taking a Taylor expansion of log p(θ|D) about θ̃MAP, see Bishop

[2006, Section 4.4] for more details. The Laplace approximation can be quite effective if the

true posterior is close to Gaussian, which is actually the case more often than one might expect

when their are a large number of observations (due to the Bernstein–von Mises theorem as

per 4.2)). However, it, unsurprisingly, performs poorly when this is not the case, particularly

when the posterior is not unimodal.

6.3 Monte Carlo
In many scenarios, the deterministic posterior approximations discussed in the last section are not

sufficient. In particular, for cases where uncertainty is important or where a significant proportion

of the posterior mass is in its tails, these approaches can lead to highly unsatisfactory solutions.

In the rest of this chapter we therefore consider more a flexible class of methods that allow

arbitrary good approximation of the posterior: Monte Carlo methods. We start by introducing

the concept of Monte Carlo itself and some of its fundamental properties, before moving onto

how it can be used for Bayesian inference in the next section.

Monte Carlo [Metropolis and Ulam, 1949] is the characterization of a probability distribution

through random sampling; it forms the underlying principle for all stochastic computation. It is

the foundation for a huge array of methods for numerical integration, optimization, and, most

notably for our purposes, Bayesian inference. Monte Carlo provides us with a means of dealing

with complex models and problems in a statistically principled manner. As we will show, it is

a highly composable framework that will allow the output of one system to be input directly

to another. For example, the Monte Carlo samples from a joint distribution will also have

the correct marginal distribution over any of its individual components, while sampling from

the marginal distribution then sampling from the conditional distribution given these samples,

will give samples distributed according to the joint. These characteristics prove to be hugely

important as they mean that Monte Carlo can be used as a mechanism for unbiasedly propagating

information: passing our beliefs through samples allows us to avoid the flaw of averages. In

other words, if we take some fixed approximation of a random variable (e.g. its mean) and pass

this onto another part of the computational pipeline this induces biases through the fact that, in

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 80

general, f(E[θ]) 6= E[f(θ)] [Rainforth et al., 2018]. The composability of Monte Carlo means

that this can be avoided if we avoid making approximations and pass on samples instead.

The critical importance of Monte Carlo estimation stems from the fact that most of the

example target tasks laid out in 6.1.2 can be formulated as expectations. Even when our intention

is simply to generate samples from a target distribution, we can usually think of this as being

an implicit expectation of an, as yet unknown, target function. Here our implicit aim is to

minimize the bias and variance of whatever process the samples are eventually used for, even

if that process is simply visual inspection.

As such, we will, for now, digress from directly thinking about how to approximate the

posterior and instead think about the implications of approximating it with a set of samples.

Through this we will demonstrate what we desire from our approximations, before returning

to how we can do this.

6.3.1 Monte Carlo Estimates

Consider the problem of calculating the expectation of some function f(θ) under the distribution

θ ∼ π(θ) (= p(θ|D) for the Bayesian inference case), which we will denote as

I := Eπ(θ) [f(θ)] =
∫
f(θ)π(θ)dθ. (6.8)

This can be approximated using the Monte Carlo estimator IN where

I ≈ IN := 1
N

N∑
n=1

f(θ̂n) and θ̂n ∼ π(θ) (6.9)

are independent draws from π(θ). In other words, the Monte Carlo estimator estimates an

expectation by making a number of draws from the reference distribution, evaluating the target

function for each of these samples, then taking the empirical average of these evaluations.

The first result we note is that (6.9) is an unbiased estimator for I , i.e. we have

E [IN ] = E
[

1
N

N∑
n=1

f(θ̂n)
]

= 1
N

N∑
n=1

E
[
f(θ̂n)

]
= 1
N

N∑
n=1

E
[
f(θ̂1)

]
= I (6.10)

where we have first moved the sum outside of expectation using linearity,2 then the fact that

each θ̂n is identically distributed to note that each E
[
f(θ̂n)

]
= E

[
f(θ̂1)

]
, and finally that

E
[
f(θ̂1)

]
= I by the definition of I and the distribution on θ̂1. This is an important result as it

means that Monte Carlo does not introduce any systematic error, i.e. bias, into the approximation:

in expectation, it does not pathologically overestimate or underestimate the target. This is not

2Note that this presumes that N is independent of the samples. This is usually the case, but care is necessary in
some situations, namely when the number of samples taken is adaptively chosen based on the sample values.

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 81

to say though that it is equally likely to overestimate or underestimate as it may, for example,

typically underestimate by a small amount and then rarely overestimate by a large amount. Instead,

it means that if we were to repeat the estimation an infinite number of times and average the results,

we would get the true value of I . This now hints at another important question: do we also recover

the true value of I when we conduct one infinitely large estimation, namely if we take N →∞?

This is known as consistency of a statistical estimator, which we will now consider next.

6.3.2 The Law of Large Numbers

A key mathematical idea underpinning many Monte Carlo methods is the law of large numbers

(LLN). Informally, the LLN states that the empirical average of independent and identically

distributed (i.i.d.) random variables converges to the true expected value of the underlying

process as the number of samples in the average increases. We can, therefore, use it to prove

the consistency of Monte Carlo estimators where the samples are drawn independently from

the same distribution. The high-level idea for the LLN can be shown by considering the mean

squared error of a Monte Carlo estimator as follows

E
[
(IN − I)2

]
= E

( 1
N

N∑
n=1

f(θ̂n)− I
)2 = 1

N2E

( N∑
n=1

(
f(θ̂n)− I

))2
= 1
N2

N∑
n=1

E
[(
f(θ̂n)− I

)2
]

+ 1
N2

N∑
n=1

N∑
m=1,m6=n

E
[
(f(θ̂n)− I)(f(θ̂m)− I)

]

= 1
N2

N∑
n=1

E
[(
f(θ̂1)− I

)2
]

+ 1
N2

N∑
n=1

N∑
m=1,m 6=n�

���
���

���:
0(

E
[
(f(θ̂1)− I)

])2

= σ2
θ

N
where σ2

θ := E
[(
f(θ̂1)− I

)2
]

= Var [f(θ)] . (6.11)

Here the second line follows from the first simply by expanding the square and using linearity

to move the sum outside of the expectation as in the unbiasedness derivation. The first term

in the third line follows from the equivalent term in the second line by again noting that each

θ̂n has the same distribution. The second term in the third line follows from the assumption

that the samples are drawn independently such that

E
[
(f(θ̂n)− I)(f(θ̂m)− I)

]
= E

[
(f(θ̂n)− I)

]
E
[
(f(θ̂m)− I)

]
= 0.

by unbiasedness of the estimator. The last line simply notes that E
[(
f(θ̂1)− I

)2
]

is a constant,

namely the variance of f(θ) when θ ∼ π(θ).

Our final result has a simple and intuitive form:the mean squared error for our estimator

using N samples is 1/N times the mean squared error of an estimator that only uses a single

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 82

sample, which is itself equal to the variance of f(θ̂). As N → ∞, we thus have that our

expected error goes to 0.

A key upshot of this result is that the difference between our empirical estimate and the true

value (i.e. IN − I) should be of order O(1/
√
N). In some ways this is rather slow: deterministic

numerical integration schemes often have much faster theoretical convergence rates. For example,

Simpson’s rule has a convergence rate of O(1/N4) for one-dimensional functions [Owen, 2013,

Chapter 7]. As such, Monte Carlo is often an inferior way of estimating integrals for smooth

functions in low dimensions. However, these deterministic numerical integration schemes require

smoothness assumptions on f and, more critically, their convergence rates diminish rapidly

(typically exponentially) with the dimensionality. By comparison, the dimensionality only affects

the Monte Carlo convergence rate through changes in the constant factor σθ and though this

will typically increase with the dimensionality, this scaling will usually be substantially more

graceful than deterministic numerical methods.

6.3.3 The Central Limit Theorem [Advanced Topic]

The central limit theorem (CLT) is another core result in the study of Monte Carlo methods. In

its simplest form, it states that the empirical mean of N i.i.d. random variables tends towards a

normal distribution in the limit N →∞. While the LLN demonstrated the convergence of the

average of i.i.d. random variables towards the true mean, the CLT gives us information about

how this convergence occurs. Furthermore, it has variants that do not require that the variables

are i.i.d., meaning we can use it do demonstrate convergence in scenarios where samples are

correlated, such as occurs when doing MCMC inference as we will consider in the next chapter.

In the i.i.d. sampling case, the CLT is as follows.

Theorem 6.1 (Central Limit Theorem). Assume X1, . . . , XN is a sequence of i.i.d. random

variables and let IN := 1
N

∑N
n=1Xn be the sample average of this sequence. If E[X1] = I and

E[X2
1 ] = σ <∞, then the following result holds

√
N (IN − I)

σ
→ N (0, 1) as N →∞ (6.12)

where N (0, 1) represents the unit normal distribution.

Proof. See, for example, [Durrett, 2010, Chapter 3].

The above assumes that our random variables are i.i.d.. In fact, neither the assumption of

being identically distributed nor that of independence is actually necessary for the CLT to

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 83

hold. One can instead use the concept of strong mixing, namely that variables sufficiently

far apart in the sequence are independent, to generalize beyond the i.i.d. setting [Jones et al.,

2004]. This is critical for the numerous Monte Carlo inference schemes, such as MCMC

methods, that do not produce independent samples but instead rely on the samples converging

in distribution to a target distribution.

6.4 Foundational Monte Carlo Inference Methods
In this section, we introduce the key methods that form the basis upon which most Monte Carlo

inference schemes are based. The key idea at the heart of all Monte Carlo inference methods

is to use some form of proposal distribution that we can easily sample from and then make

appropriate adjustments to achieve (typically approximate) samples from the posterior. Most

methods will require only an unnormalized distribution

γ(θ) = π(θ)Z (6.13)

as a target where Z =
∫
γ(θ)dθ. As such they will apply to any situation where we desire to

sample from an unnormalized (or in some cases normalized) distribution, for which the Bayesian

inference setting is a particular case where

γ(θ) = p(θ,D) = p(D|θ)p(θ) and Z = p(D). (6.14)

Nonetheless, knowing Z can be useful in a number of scenarios, e.g. allowing for unbiased

importance sampling estimators. The methods we introduce will, in general, vary only on how

samples are proposed and the subsequent adjustments that are made. However, this will lead to a

plethora of different approaches, varying substantially in their motivation, theoretical justification,

algorithmic details, and the scenarios for which they are effective.

To aid linking this material to the rest of the course, we will presume a Bayesian inference

setting from here on in. However, we note that the methods introduced all apply more generally

for unnormalized targets γ(θ).

6.4.1 Rejection Sampling

Rejection sampling is one of the simplest Monte Carlo inference methods and one of the only ones

to produce exact samples from the target. Before going into the method itself, we first consider an

example to demonstrate the underlying intuition. Imagine we want to generate samples distributed

uniformly over some arbitrary two-dimensional shape. One simple way of doing this would be to

sample uniformly from a box enclosing the shape and then only taking the samples which fall

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 84

Figure 6.2: Sampling uniformly from
an arbitrary shape by rejection. Samples
are proposed uniformly from the [−1, 1]
square. Any sample falling within the
black outline is accepted (blue), other-
wise it is rejected (red).

within the shape. An example of such sampling by rejec-

tion is shown in Figure 6.2. As all the samples within the

box are distributed uniformly, they are also uniformly

distributed on any subset of the space. Therefore if we

sample from the box and then only take the samples that

fall within the desired shape, we will generate samples

uniformly over that shape. We can also use this method

to estimate the area of the shape by using the fact that the

probability of any one sample falling within the shape

is equal to the ratio of the areas of the shape and the

bounding box, namely

Ashape = AboxP (θ ∈ shape)

≈ Abox

N

N∑
n=1

I(θ̂n ∈ shape) where θ̂n ∼ UNIFORM(box)

and we have used a Monte Carlo estimator for P (θ ∈ shape). Note that the value of P (θ ∈
shape) will dictate the efficiency of our estimation as it represents the acceptance rate of our

samples. In other words, we need to generate on average 1/P (θ ∈ shape) samples from our

proposal for each sample created in the target area. As we will show later, P (θ ∈ shape)

typically becomes very small as θ becomes high-dimensional, so this approach will typically

only be effective in low dimensions.

The underlying idea to extend this approach to rejection sampling more generally, is that

we can sample from any distribution by sampling uniformly from the hyper–volume under its

unnormalized probability density function. Though formally this is effectively axiomatic by the

definition of a probability density function with respect to the Lebesgue measure, we can get

a non measure-theoretic intuition for this by considering augmenting a target distribution with

a new variable u such that p(u|θ,D) = UNIFORM(0, p(θ,D)). Sampling θ̂ ∼ p(θ|D) and then

û ∼ p(u|θ,D) corresponds to sampling uniformly from the hyper-volume under the probability

density function, while we clearly have that the marginal distribution on θ is p(θ|D).

Using this idea, we can sample from any unnormalized distribution by sampling from an

appropriate bounding as per Figure 6.2 and then accepting only samples that fall within the hyper-

volume of the probability density function. More specifically, we define a proposal distribution

q(θ) which completely envelopes a scaled version of the unnormalized target distribution

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 85

Figure 6.3: Demonstration of rejection sampling for problem shown in (6.1). We first sample θ̂ ∼ q(θ),
corresponding to sampling from the distribution shown in blue, and then sample û ∼ UNIFORM(0, q(θ)),
corresponding to sampling a point uniformly along the black lines for the two shown example values
of θ̂. The point is accepted if û ≤ Cp(θ, y = 5) (i.e. if it below the yellow curve), where we have
taken C = 0.036 to ensure Cp(θ, y = 5) ≤ q(θ) for all theta. Here the example sample pair {θ̂1, û1} is
accepted, while {θ̂2, û2} is rejected. The resulting accepted sample pairs will be uniformly sampled from
the region under the unnormalized target distribution given by the yellow curve and therefore the accepted
θ̂ will correspond to exact samples from the posterior p(θ|y = 5).

Cp(θ,D), for some fixed C, such that q(θ) ≥ Cp(θ,D) for all values of θ. We then sample a pair

{θ̂, û} by first sampling θ̂ ∼ q(θ) and then û ∼ UNIFORM(0, q(θ)). The sample is accepted if

û ≤ Cp(θ̂,D) (6.15)

which occurs with an acceptance rate Cp(D) (note that q(θ) ≥ Cp(θ,D) ∀θ ensures that

C ≤ 1/p(D)). This can be used to estimate the normalization constant p(D), corresponding

to the marginal likelihood for Bayesian models, by calculating the empirical estimate of the

acceptance rate and dividing this by C. A graphical demonstration of the rejection sampling

process is shown in Figure 6.3.

Rejection sampling can be a highly effective sampling or inference method in low dimensions.

In particular, the fact that it generates exact samples from the target distribution can be very useful.

This very rare characteristic is used to construct efficient samplers for many common distributions

such as in the ziggurat algorithm for generating Gaussian random variables [Marsaglia et al.,

2000]. More generally, whenever one wishes to construct a sampler for a non-standard low

dimensional distribution, rejection sampling is the clear go-to approach because it produces

exact samples and because one can usually engineer a very efficient sampler. However, the

efficiency of rejection sampling is critically dependent on the value of C, because C is directly

proportional to the acceptance rate. By proxy, it is also critically dependent on the proposal

q(θ) as this dictates the minimum possible value of C, namely Cmin = minθ q(θ)p(D)/p(θ|D).

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 86

Consequently, it is very prone to the curse of dimensionality as we discuss in the next chapter,

meaning performance cannot be maintained for higher dimensional problems.

6.4.2 Importance Sampling

Importance sampling is another common sampling method that it the cornerstone for many more

advanced inference schemes. It is closely related to rejection sampling in that it uses a proposal,

i.e. θ̂ ∼ q(θ), but instead of going through an accept/reject step, it assigns an importance weight

to each sample. These importance weights act like correction factors to account for the fact

that we sampled from q(θ) rather than our target p(θ|D).

To demonstrate the key idea, consider the problem of calculating an expectation as per (6.8).

We will assume for now that we can evaluate p(θ|D) exactly, but not draw samples from it,

such that we cannot form a direct Monte Carlo estimate as per (6.9). Here, we can rearrange

the form of our expectation to generate a different Monte Carlo estimator which we can

evaluate directly as follows

I := Ep(θ|D) [f(θ)] =
∫
f(θ)p(θ|D)dθ =

∫
f(θ)p(θ|D)

q(θ) q(θ)dθ

≈ 1
N

N∑
n=1

p(θ̂n|D)
q(θ̂n)

f(θ̂n) where θ̂n ∼ q(θ) (6.16)

where p(θ̂n|D)
q(θ̂n) =: wn is known as an importance weight. The key trick we have applied is

to multiply the integrand by q(θ)
q(θ) , which equals 1 for all points where q(θ) 6= 0. Thus if

q(θ) 6= 0 for all θ for which p(θ|D) 6= 0 (to avoid infinite importance weights), this has no

effect on the expectation. However, we can informally view the new formulation as being the

expectation of f(θ)p(θ|D)
q(θ) under the distribution q(θ). We can now construct a Monte Carlo

estimator for this new formulation, by choosing q(θ) to be a distribution we sample from. A

graphical demonstration of importance sampling is given in Figure 6.4 in the more general

setting where we do not have access to the p(θ|D) exactly, but only an unnormalized version

p(θ,D) = p(θ|D)p(D). As we will show in detail in Section 6.4.2.1, we can still use importance

sampling in this case by self-normalizing the weights.

Importance sampling has a number of desirable properties as an inference method. In

particular, it is both unbiased and consistent. The former can be shown as follows

E

 1
N

N∑
n=1

p(θ̂n|D)
q(θ̂n)

f(θ̂n)
 = 1

N

N∑
n=1

Eq(θn)

p(θ̂n|D)
q(θ̂n)

f(θ̂n)


= Eq(θ1)

p(θ̂1|D)
q(θ̂1)

f(θ̂1)
 = Ep(θ|D) [f(θ)] (6.17)

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 87

Figure 6.4: Demonstration of importance sampling for problem shown in (6.1). We are trying to estimate
Ep(θ|D)[f(θ)]: the expectation of the function f(θ) := θ2/50 under the posterior p(θ|D) := p(θ|y = 5)
defined as per (6.1c). We assume the setting where p(θ|D) is only known up to a normalization constant
(see Section 6.4.2.1), namely we only have access to p(θ,D) := p(θ)p(y = 5|θ) as shown in yellow. Our
procedure is to draw samples independently θ̂n ∼ q(θ) and then evaluate their weight wn = w(θ̂n) =
p(θ̂n,D)/q(θ̂n). This produces a set of weighted samples which can then be used to estimate to estimate
the expectation using (6.24) (one can also use (6.16) if the normalized p(θ|D) is used instead of p(θ,D)).

where we have effectively stepped backward through (6.16).3 Consistency, on the other hand,

follows from applying the LLN in the same manner as (6.11), but replacing each f(θ̂n) with
p(θ̂n|D)
q(θ̂n) f(θ̂n), leading to the same result except that σθ is now

σ2
θ = Eq(θ)


p(θ̂1|D)

q(θ̂1)
f(θ̂1)− I

2
 = Varq(θ)

[
p(θ|D)
q(θ) f(θ)

]
. (6.18)

The form of this variance further gives insight into how to best to set the proposal: the lower that

Varq(θ)
[
p(θ|D)
q(θ) f(θ)

]
is, the better the expected performance of our estimator. One obvious question

is what is the optimal proposal q∗(θ)? It turns out that [Kahn and Marshall, 1953; Owen, 2013]

q∗(θ) = p(θ|D) |f(θ)|∫
p(θ|D) |f(θ)| dθ , (6.19)

which can be shown as follows where we will make use of Jensen’s inequality and comparing

to an arbitrary proposal q(θ)

Varq∗(θ)

[
p(θ|D)
q∗(θ) f(θ)

]
= Eq∗(θ)

(p(θ|D)
q∗(θ) f(θ)

)2
− (Eq∗(θ)

[
p(θ|D)
q∗(θ) f(θ)

])2

=
∫ p(θ|D)2f(θ)2

q∗(θ) dθ − I2 =
(∫

p(θ|D) |f(θ)| dθ
)2
− I2 (6.20)

≤
∫ (

p(θ|D)f(θ)
q(θ)

)2

q(θ)dθ − I2 = Varq(θ)
[
p(θ|D)
q(θ) f(θ)

]
. (6.21)

3Note that this unbiasedness result does not pass over to the self-normalized variant given in Section 6.4.2.1.

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 88

Here we have shown that the variance for q∗(θ) is less than or equal to the variance using

an arbitrary q(θ). It must, therefore, be the optimal proposal. A further point of note, is

that if f(θ) ≥ 0 ∀θ (or f(θ) ≤ 0 ∀θ), then (6.20) will equal zero giving a zero variance

estimator: each importance weight will be equal to the I/f(θ) and thus I can be calculated

by evaluating a single point.

Though it will typically be impossible to find q∗(θ) in practice, it still provides a guide as

to what constitutes a good proposal: we want p(θ|D) |f(θ)| /q(θ) to be as close to constant as

possible. In particular, we need to be careful to avoid scenarios where p(θ|D)|f(θ)|∫
p(θ|D)|f(θ)|dθ � q(θ)

as this will cause the ratio to explode, leading to high variances. A consequence of this is that

we want q(θ) to have light tails compared to p(θ|D) |f(θ)| to ensure that the ratio does not

systematically increase as θ moves away from the modes of q(θ).

Aside from the clear practical issues, if this requirement does not hold, then it can easily be

the case that σθ =∞ and thus that the estimator has infinite variance. Consider, for example, the

case where p(θ|D) = N (θ; 0, 1), f(θ) = θ, and q(θ) = N (θ; 0, s2) (Example 9.1 from Owen

[2013]). Noting that the mean, I , is zero by symmetry and defining ν = 1
2s2 − 1, we have that

σ2
θ =

∫ ∞
−∞

θ2

(
exp (−θ2/2) /

√
2π
)2

exp (−θ2/ (2s2)) /
√

2πs2
dθ − I2 = s√

2π

∫ ∞
−∞

θ2 exp
(
θ2ν

)
dθ.

Now this integral is clearly only finite for ν < 0 (as otherwise the integrand is +∞ and

θ = ±∞ and finite elsewhere). Therefore, σθ is only finite when s2 > 1/2. In other words,

we only get a finite estimator in this case if the proposal variance is at least half that of the

target distribution p(θ|D). This highlights the pitfalls of having insufficiently heavy tails on

our proposal. Overcoming these will typically require careful setup of the proposal on a case-

by-case basis, for example, choosing a distribution type for the proposal that is known to

have heavier tails than p(θ|D).

6.4.2.1 Self-Normalized Importance Sampling

In the previous section, we presumed that we have access to a normalized version of the posterior

p(θ|D). Typically this will not be the case and we will only have access to an unnormalized

target, namely the joint p(θ,D) = p(θ|D)p(D). We now show how one can still use importance

sampling in these scenarios, by self-normalizing the importance weights.

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 89

The key idea for self-normalized importance sampling (SNIS) is that the weights provide

an unbiased and consistent estimator of the marginal likelihood

ZN := 1
N

N∑
n=1

wn, (6.22)

E[ZN ] = 1
N

N∑
n=1

E[wn] = Eq(θ̂1)

p(θ̂1,D)
q(θ̂1)

 = p(D). (6.23)

Now as Eq(θ)
[
p(θ,D)
q(θ) f(θ)

]
= Eq(θ)

[
p(θ|D)
q(θ) p(D)f(θ)

]
= p(D) Ep(θ|D) [f(θ)], we can use our

samples to construct Monte Carlo estimators for both p(D) and p(D) Ep(θ|D) [f(θ)] and use the

ratio of our estimates to get an estimate for Ep(θ|D) [f(θ)] as follows

Ep(θ|D) [f(θ)] ≈
1
N

∑N
n=1wnf(θ̂n)

1
N

∑N
n=1wn

where θ̂n ∼ q(θ), wn = p(θ̂n,D)
q(θ̂n)

. (6.24)

This can alternatively be expressed as Ep(θ|D) [f(θ)] ≈ ∑N
n=1 w̄nf(θ̂n) where w̄n = wn∑

n
wn

are

the normalized importance weights such that
∑N
n=1 w̄n = 1.

The consistency of (6.24) follows from the individual consistency of both the numerator and

the denominator to p(D) Ep(θ|D) [f(θ)] and p(D) respectively. However, unlike (6.16), (6.24)

is a biased estimator for finite N . This is because a) the numerator and denominator are

correlated and b) even though ZN is an unbiased estimator of p(D), 1/ZN is not an unbiased

estimator of 1/p(D). The latter follows directly from Jensen’s inequality noting that inversion

is a convex function for strictly positive inputs,

E
[

1
1
N

∑N
n=1wn

]
≥ 1

E
[

1
N

∑N
n=1wn

] = 1
p(D) , (6.25)

where equality holds if and only if ZN is a zero variance estimator for p(D) (which typically

happens only in the limit N →∞). However, it can be shown that the bias decreases at a rate

O(1/N) (see e.g. Doucet and Johansen [2009]), whereas the standard deviation of the estimate

decreases at a rate O(1/
√
N). Thus the bias becomes dominated as N → ∞.

Note that the optimal proposal in the SNIS case varies slightly from the q∗(θ) derived earlier

in the Section and is instead [Hesterberg, 1988]

q∗SNIS(θ) = p(θ|D) |f(θ)− I|∫
p(θ|D) |f(θ)− I| dθ . (6.26)

As a consequence, there is a minimum variance for the SNIS estimator, unlike in the pre-

normalized case where q∗(θ) was a zero variance estimator if f(θ) ≥ 0 ∀θ.

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 90

6.4.2.2 Importance Sampling for Approximating the Posterior

So far we have assumed that we are using importance sampling to calculate an expectation of

a known function. In practice, there will be many scenarios, where there is no explicit f(θ)

or it is not known ahead of time, such that we instead just desire to generate samples from a

posterior, potentially using these to calculate expectations at a later data.

When no f(θ) is specified, we can carry out importance sampling in the same fashion,

sampling from q(θ) and returning a set of weighted samples {θ̂n, wn}n=1:N where the weights are

equal to p(θ̂n,D)/q(θ̂n) as before. Here we can think of importance sampling as approximating

the posterior with a series of deltas functions, namely

p(θ|D) ≈ p̂(θ|D) :=
N∑
n=1

w̄nδθ̂n
(θ) (6.27)

where δθ̂n
(θ) are delta functions centered at θ̂n. This is known as an empirical measure and as

N → ∞ it becomes an “exact” approximation of the distribution in the sense that the Monte

Carlo estimates formed using it converge to the target expectation.

Importance weights are multiplicative when doing conditional sampling: if we sample

θ̂n ∼ q1(θ) then φ̂n|θ̂n ∼ q2(φ|θ̂n) when targeting p(θ|D)p(φ|θ,D) then the importance weight is

p(θ̂n|D)p(φ̂n|θ̂n,D)
q1(θ̂n)q2(φ̂n|θ̂n)

= p(θ̂n|D)
q1(θ̂n)

× p(φ̂n|θ̂n, D)
q2(φ̂n|θ̂n)

= wn,1 × wn,2. (6.28)

This is known as sequential importance sampling and means that we can propagate importance

weighted samples through a computational system and retain a valid importance sampler with the

standard properties such as unbiasedness (presuming the weights are not self-normalized) and

consistency. In other words, correctly weighted Monte Carlo samples share the key desirable

theoretical properties of standard Monte Carlo samples.

Again a natural question in this “unknown f” setting is what is the optimal proposal q∗(θ)?

Though answering this question in a theoretically rigorous manner is beyond the scope of this

course, for most purposes one can assume that the optimal proposal is simply the posterior,

that is q∗(θ) = p(θ|D)

6.4.2.3 Effective Sample Size [Advanced Topic]

In this section, we consider an important diagnostic for the performance of importance sampling

based schemes, the effective sample size (ESS). The ESS informally provides an estimated

measure for the amount of information stored in our weighted sample set. The more information

stored in the samples, the better our approximation of the posterior, and, at a high level, the

more evenly balanced our weights, the more information they encode. Therefore, the ESS is a

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 91

measure of how many unweighted samples would be required to convey the same information

about the posterior as the weighted sample set.

The weighted average of Ne independent evaluations {fn}Nn=1, where fn = f(θ̂n), of some

arbitrary function f(θ), each with individual variance σ2, has variance σ2/Ne as we showed

in (6.11). Therefore, we can calculate the ESS of a set of weighted samples by comparing

the variance of our weighted estimate to the variance of an estimate using a set of unweighted

evaluations. More specifically, the ESS will be the number of unweighted evaluations Ne that

gives an equivalent variance to our weighted estimate as follows, where we will make use of

the assumption that the fn are independent

σ2

Ne

= Var
[∑N

n=1wnfn∑N
n=1wn

∣∣∣∣∣{wn}Nn=1

]
=

N∑
n=1

(
wn∑N
n=1wn

)2

Var[fn] = σ2∑N
n=1w

2
n(∑N

n=1wn
)2 . (6.29)

Now rearranging for Ne we get

Ne =

(∑N
n=1wn

)2

∑N
n=1w

2
n

= 1∑N
n=1 w̄

2
n

(6.30)

which completes our definition for the effective sample size. It transpires that Ne is independent

of f(θ), so we can still use the ESS as a diagnostic when f is unknown. It is straightforward

to show using Jensen’s inequality we have that Ne ≤ N with equality holding if and only

if all the weights are equal. On the other hand, if all but one of the weights is zero, then

Ne = 1. These two extremes respectively occur when the proposal is equal to the target,

q(θ) = p(θ|D), and when the proposal provides a very poor representation of the target. The

ESS is often therefore used for proposal adaptation [Bugallo et al., 2017], as a larger value

of the ESS generally indicates a better proposal.

However, the ESS is far from a perfect measure of sample quality. For example, if the proposal

perfectly matches one of the modes of the target but completely misses another larger mode,

the ESS will usually be very high, even though the samples provide a very poor representation

of the target. It is not uncommon in practice to see the ESS drop drastically as more samples

are added, due to the addition of a new dominating sample, typically indicating a region of

significant target probability mass that had previously been missed. Nonetheless, the ESS is still

a very useful performance metric and is usually a reliable indicator for whether our importance

sampling is struggling. In particular, though the possibility of missing modes means that it is

possible for the ESS to be high even when the approximation of the posterior is poor, if the

ESS is low then the approximation of the posterior will always be poor and any subsequent

estimates will usually be high variance.

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 92

6.4.2.4 Resampling [Advanced Topic]

A useful feature of SNIS is that it can be used to produce unweighted samples by sampling

with replacement from the set of produced samples in proportion to the sample weights. This

procedure is typically known as resampling, because we are resampling samples from the

empirical distribution of our original samples. Resampling allows us to generate unweighted

samples with importance sampling which are approximately distributed according to p(θ|D),

with this approximation becoming exact in the limit N → ∞. Resampling on its own always

leads to a higher variance estimator than using (6.24) directly. However, there are many scenarios

where unweighted samples are required or more convenient.

Mathematically, we can express resampling as producing a set of unweighted resampled

samples
{
θ̃n
}N
n=1

using

θ̃n = θ̂an where an ∼ DISCRETE
(
{w̄n}Nn=1

)
. (6.31)

Here {an}Nn=1 are known as ancestor indices as they indicate which ancestor in the original sample

set each unweighted sample originated from. Note that the an need not be drawn independently

and typically are not; (6.31) instead conveys the required marginal distribution for each an.

Considering the approximation of the posterior provided by importance sampling given

in (6.27), we can view resampling as producing the approximation

p̃(θ|D) :=
N∑
n=1

kn
N
δθ̂n

(θ) (6.32)

where kn is the number times the sample θ̂n appears in the resampled sample set
{
θ̃n
}N
n=1

.

Provided that E[kn|{wn}Nn=1] = Nkn, then it directly follows that p̃(θ|D) is an unbiased estimator

for p(θ|D). Consequently, the convergence of SNIS with resampling follows directly from

the convergence of SNIS.

There are a number of different methods one can use for generating the an in resampling [Douc

and Cappé, 2005]. They all share in common the requirements above but vary in correlations

between the an. The simplest method, multinomial resampling, simply involves sampling

each an independently, such that the kn have a multinomial distribution. Though simple, this

method is generally inadvisable as it adds unnecessary variation to the resampling compared to

methods using randomized quasi-Monte Carlo [L’Ecuyer and Lemieux, 2005], such as systematic

resampling [Carpenter et al., 1999; Whitley, 1994],4 or other variance reduction techniques, such

4Note that systematic resampling, as it is now known, is somewhat confusingly referred to as stratified resampling
in the former of these papers and universal sampling in the latter.

©Tom Rainforth 2020



6. Foundations of Bayesian Inference and Monte Carlo Methods 93

as stratified resampling [Kitagawa, 1996] and residual resampling [Whitley, 1994]. Though

residual resampling is a little more complicated (see Douc and Cappé [2005]), stratified and

systematic resampling only require small changes on the underlying random number draws made

in multinomial resampling. See [Douc and Cappé, 2005] for more details.

6.5 Further Reading
• Chapters 1, 2, 7, and 9 of Art Owen’s online book on Monte Carlo: https://statweb.

stanford.edu/~owen/mc/

• Chapter 23 of K. P. Murphy. Machine learning: a probabilistic perspective. MIT press,

2012

• M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Miguez, and P. M. Djuric. Adaptive

importance sampling: the past, the present, and the future. IEEE Signal Processing

Magazine, 34(4):60–79, 2017

• David MacKay on Monte Carlo methods http://videolectures.net/mackay_

course_12/

©Tom Rainforth 2020

https://statweb.stanford.edu/~owen/mc/
https://statweb.stanford.edu/~owen/mc/
http://videolectures.net/mackay_course_12/
http://videolectures.net/mackay_course_12/


7
Advanced Inference Methods

In the last chapter we outlined the problem posed by Bayesian inference and outlined some of

the fundamental building blocks and algorithms we can use to perform it. In this chapter, we

show how the curse of dimensionality means that these simple approaches typically become

ineffective in higher dimensions (they typically cannot be performed successfully above around

10 dimensions). We then show how the curse of dimensionality can be overcome (or at least

mitigated) through two of the most common Bayesian inference approaches used in practice:

Markov chain Monte Carlo (MCMC) and variational inference.

7.1 The Curse of Dimensionality
In this section, we digress from introducing specific inference methods themselves to talk about a

common problem faced by most inference methods, the curse of dimensionality [Bellman, 1961].

At a high-level, the curse of dimensionality is a tendency of modeling and numerical procedures

to get substantially harder as the dimensionality increases, often at an exponential rate. If not

managed properly, it can cripple the performance of inference methods and it is the main reason

the two procedures discussed so far, rejection sampling and importance sampling, are in practice

only used for very low dimensional problems. At its core, it stems from an increase of the size

(in an informal sense) of a problem as the dimensionality increases. This is easiest to see for

discrete problems. Imagine we are calculating an expectation over a discrete distribution of

dimension D, where each dimension has K possible values. The cost of enumerating all the

possible combinations scales as KD and thus increases exponentially with D; even for modest

values for K and D this will be prohibitively large.

However, the curse of dimensionality extends far beyond problems of enumeration. It will

be felt, to some degree or another, by almost all approaches for inference and modeling more

generally, but its effect will be most pronounced for methods that try to explicitly model the

target space. As a geometrical demonstration of this, we consider a rejection sampling example.

For simplicity, we will presume that the target shape is a hypersphere and that the bounding

shape is the smallest hypercube that encloses that hypersphere. Our acceptance rate, and thus

the efficiency of the algorithm, will be equal to the ratio of the two hyper-volumes. For an even



7. Advanced Inference Methods 95

number of dimensions, the hyper-volume of the D-dimensional hypersphere with radius r is

Vs = πD/2rD

(D/2)! and the hyper-volume of the enclosing hypercube is Vc = (2r)D, giving a ratio of
Vs

Vc
= πD/2

(D/2)!2D =
(√

π
2

)D 1
(D/2)! . The first of these terms decreases exponentially and second super-

exponentially with D (noting that (D/2)! > (D/6)(D/2)). For example, D = 10, 20, and 100

respectively gives ratios of approximately 2.5×10−3, 2.5×10−8, and 1.9×10−70. Consequently,

our acceptance rate will diminish super-exponentially with the number of dimensions and our

approach will quickly become infeasible in higher dimensions.

An immediate possible criticism of this analysis would be to suggest that the approximation of

the target shape provided by our bounding shape is simply increasingly poor as the dimensionality

increases and that we should choose a better approximation. Although this is true, the key

realization is that achieving a good approximation is increasingly difficult in high dimensions,

typically exponentially so. To demonstrate this, imagine we instead use an arbitrary bounding

shape defined in polar co-ordinates, such that the proportional difference in the radius at the

any given point is at most ε (i.e. the radius of our bounding shape is between r and r(1 + ε) at

all points). The hyper-volume in which our approximation might live for an even number

of dimensions is given by

Vε = πD/2rD(1 + ε)D
(D/2)! − πD/2rD

(D/2)! = Vs
(
(1 + ε)D − 1

)
. (7.1)

Consequently, we have that the ratio Vε

Vs
increases exponentially with D and that for sufficiently

large D and a fixed ε the amount of space in our tolerance region will become substantially larger

than the target hyper-volume, again leading to very low acceptance rates.

Flipping this on its head, we can ask the question how does ε need to vary to ensure that

Vε/Vs remains constant? A quick manipulation shows that ε =
((

Vε

Vs
+ 1

)1/D − 1
)

and therefore

that
log(Vε

Vs
+1)

D
≥ log(1 + ε) ≈ ε for small values of ε. Thus we only need to decrease ε roughly

in proportion to 1
D

to achieve a fixed ratio. Initially, this would not seem so bad. For example,

if D = 1000 we roughly need ε ≤ 6.9× 10−4 to get Vε/Vs ≤ 1. However, this misses the key

difficulty caused by (7.1): the higher D is, the more difficult it is to accurately model the target

shape and keep ε small. It follows from (7.1) that as D increases, the more the hyper-volume of

the sphere is concentrated at the surface. This generalizes to non-spherical targets and means

that accurate modeling the surface of our target is essential in high dimensions. Unfortunately,

this task becomes rapidly more difficult with increasing dimensionality.

Consider, for example, regressing the surface of the target by using a number of inducing

points spread over the surface. As the dimensionality increases, these become increasingly far

©Tom Rainforth 2020



7. Advanced Inference Methods 96

apart from one another and so the more points we need to accurately model the surface. For

example, the probability of two points uniformly distributed on the surface of a sphere being

within some target distance of one another decreases exponentially with the dimensionality of the

sphere. This can be seen by noting that a necessary condition for two points to be within d of each

other, is that the discrepancy of each individual dimension must be less than d. In other words, if

we denote the overall distance as δ and the distance in each dimension as δi then we have

P (δ ≤ d) ≤ P (δ1 ≤ d)P (δ2 ≤ d) . . . P (δD ≤ d)

and so P (δ ≤ d) must decrease exponentially with D. If the correlation between points is

proportional to their euclidean distance, then we will subsequently need an exponentially large

number of points in the dimension to model the surface to a given accuracy. Consequently, we

see that not only are we increasingly punished for any discrepancies between our approxima-

tion and the target as the dimensionality increases, it rapidly becomes harder to avoid these

discrepancies in the first place.

One can informally think of the proposals we have introduced thus-far as being approx-

imations to the target distribution: complications with tail behavior aside, it will generally

be the case that the better the proposal approximates the target, the better the inference will

perform. This typically leads to catastrophically bad performance for importance sampling and

rejection sampling in high dimensions, for which this approximation breaks down for the reasons

we have just outlined. To give a simple example, imagine that our target is an isotropic unit

Gaussian and we use an independent student-t distribution with ν = 2 in each dimension as

the proposal. We have that the weights are as follows

w(θ) = π(θ)
q(θ) =

D∏
i=1

exp(−θ2
d/2)/

√
2π

Γ(1.5)√
2π (1 + θ2

d/2)−3/2 =
D∏
i=1

2 exp(−θ2
d/2) (1 + θ2

d/2)3/2

√
π

. (7.2)

It follows that the variance of the weights under the proposal increases exponentially with D as

Varq(θ) [w(θ)] =
∫
w2(θ)q(θ)dθ −

(∫
w(θ)q(θ)dθ

)2
= −1 +

D∏
i=1

∫ ∞
−∞

w2(θd)q(θd)dθd

= −1 +
D∏
i=1

∫ ∞
−∞

√
2 exp(−θ2

d) (1 + θ2
d/2)(3/2)

π
dθd ≈ 1.1455D − 1 (7.3)

where we have used the fact that the integral has a closed form solution. We thus see that

our effective sample size will drop exponentially quickly with D and that our inference will

break down if the dimensionality is too high.

It is now natural to ask whether we can overcome the curse of dimensionality. Thankfully, the

answer in many scenarios is that we can. In many high-dimensional scenarios, the target

©Tom Rainforth 2020



7. Advanced Inference Methods 97

distribution will only have significant mass in a small proportion of the total area, often

concentrated around a lower dimensional manifold of the larger space. This means that if

we use inference methods that in some way exploit the structure of the target distribution and

only search the small subset of the space with significant mass, then effective inference can

still be performed. When this is not the case, practical inference will typically be futile in high

dimensions anyway and so many inference algorithms are geared towards exploiting a particular

type of structure. As we will show in the next section, the effectiveness of MCMC methods

is mostly based on exploiting single modality in the target by making local moves that cause

the algorithm to have a hill-climbing style behaviour away from the mode and then sticking

close to the mode once it is found. Sequential Monte Carlo methods [Doucet and Johansen,

2009] rely on using the structure of the target more explicitly, by using a series of stepping-stone

distributions and adaptively allocating resources. Variational methods often make assumptions

or approximations about the structure of the model to break the inference problem down into a

number of small problems that can then be combined into an overall estimate. Arguably the key

to all advanced inference methods is how well they can exploit structure in higher dimensions,

while the relative performance of different methods tends to come down to how suited the target

is to their particular form of structure exploitation.

7.2 Markov Chain Monte Carlo
Markov chain Monte Carlo (MCMC) methods [Metropolis et al., 1953; Hastings, 1970; Gilks

et al., 1995] form one of the key approaches to circumventing the curse of dimensionality and

are perhaps the most widely used class of algorithms for Bayesian inference, though they are

also used extensively outside the Bayesian inference setting. The key idea is to construct a

valid Markov chain that has the target distribution as its equilibrium distribution. They are

suitable for Bayesian inference because this can still be done when the target distribution is

only known up to a normalization constant.

The reason that they are often able to overcome, or at least alleviate, the curse of dimen-

sionality, is that rather than trying to independently sample from the target distribution at each

iteration, they instead make local moves from their current position. As with rejection sampling

and importance sampling, they use a proposal distribution, but unlike these alternatives, the

proposal is defined conditionally on the current location, namely, they propose according to

θ′ ∼ q(θ′|θ) where θ is the current state and θ′ is the new sampled state. The underlying intuition

behind this is that in high dimensions the proportion of the space with significant probability

©Tom Rainforth 2020



7. Advanced Inference Methods 98

mass is typically very small. Therefore, if the target is single modal (or we have a proposal that is

carefully designed to jump between modes), then once we have a sample in the mode, all the other

points with significant mass should be close to that point. Therefore we can explore the mode by

restricting ourselves to local moves, overcoming the curse of dimensionality by predominantly

ignoring the majority of the space which has insignificant probability mass. As the dimensionality

increases, the proportion of the space with significant mass decreases, counteracting many of

the other complications that arise from the increasing dimension. When away from a mode,

MCMC methods often behave like hill-climbing algorithms, emphasizing their close links with

simulated annealing methods for optimization [Aarts and Korst, 1988]. Therefore, they can be

highly effective for both finding the mode of a posterior and then sticking to that mode.

7.2.1 Markov Chains

We first introduced the concept of the Markov property in Section 4.4.2 in the concept of a

hidden Markov model, where we explained how in a Markovian system each state is independent

of all the previous states given the last state, i.e.

p(Θn = θn|Θ1 = θ1, . . . ,Θn−1 = θn−1) = p(Θn = θn|Θn−1 = θn−1). (7.4)

In other words, the system transitions based only on its current state. Here the series Θ1, . . . ,Θn, . . .

is known as a Markov chain. We see that a probability of a Markov chain is fully defined by the

probability of its initial state p(Θ1 = θ1) and the probability of its transitions p(Θn = θn|Θn−1 =

θn−1). If each transition has the same distribution, i.e.

p(Θn+1 = θ′|Θn = θ) = p(Θn = θ′|Θn−1 = θ), (7.5)

then the Markov chain is known as homogeneous. Most MCMC methods are based on

homogeneous Markov chains and so we will assume that (7.5) holds from now on. In such

situations, p(Θn+1 = θn+1|Θn = θn) is typically known as a transition kernel T (θn+1 ← θn).

For a Markov chain to converge to a target distribution p(θ|D), we will need that lim
n→∞

p(Θn =

θ) = p(θ|D) for any possible starting position θ1, i.e. that the chain converges in distribution

to the target for all possible starting positions. For this to happen we need two things: p(θ|D)

must be a stationary distribution of the Markov chain, such that if p(Θn = θ) = p(θ|D) then

p(Θn+1 = θ) = p(θ|D), and all possible starting points θ1 must converge to this distribution.

The former of these will be satisfied if∫
T (θ′ ← θ)p(θ|D)dθ = p(θ′|D) (7.6)

©Tom Rainforth 2020



7. Advanced Inference Methods 99

where we see that the target distribution is invariant under the application of the transition kernel.

Thus if p(θn) = p(θ|D) for some n, all subsequent points will have the desired distribution.

The requirement that all starting points converge to the desired target distribution is known as

ergodicity, which guarantees both the uniqueness of the stationary distribution and that all points

converge to this distribution. Ergodicity requires that the Markov chain is irreducible, i.e. all

points with non-zero probability can be reached in a finite number of steps, and aperiodic, i.e.

that no states can only be reached at certain periods of time. We will not delve into the specifics

of ergodicity in depth, but note only that homogeneous Markov chains that satisfy (7.6) can be

shown to be ergodic under very weak conditions, see for example Neal [1993]; Tierney [1994].

7.2.2 Detailed Balance

A common sufficient (but not necessary) condition used for constructing valid Markov chains is

to ensure that the chain satisfies the condition of detailed balance. Chains that satisfy detailed

balance are known as reversible. For a target p(θ|D), detailed balanced is defined as

p(θ|D)T (θ′ ← θ) = p(θ′|D)T (θ ← θ′). (7.7)

It is straightforward to see that Markov chains satisfying detailed balance will admit p(θ|D)

as a stationary distribution by noting that∫
T (θ′ ← θ)p(θ|D)dθ =

∫
T (θ ← θ′)p(θ′|D)dθ = p(θ′|D). (7.8)

Thus any ergodic Markov chain we construct that satisfies (7.7) will converge to the target

distribution. From an inference perspective, this means that we can eventually generate samples

according to our desired target by choosing an arbitrary start point Θ1 and then repeatedly

sampling from our transition kernel T (Θn ← Θn−1).

7.2.3 Metropolis Hastings

One of the simplest and most widely used MCMC methods is Metropolis Hastings (MH) [Hast-

ings, 1970]. Given an unnormalized target p(θ,D), then at each iteration of the MH algorithm,

one samples a new point θ′ according to the a proposal θ′ ∼ q(θ′|θn) conditioned on the current

point θn and then accepts the new sample with probability

P (Accept) = min
(

1, p(θ
′,D)q(θn|θ′)

p(θn,D)q(θ′|θn)

)
. (7.9)

At iteration n then we set θn+1 ← θ′ if the sample is accepted and otherwise set θn+1 ← θn.

Critically this process does not require access to the normalized posterior p(θ|D). We can show

©Tom Rainforth 2020



7. Advanced Inference Methods 100

that (7.9) satisfies detailed balance and therefore produces a valid Markov chain as follows

p(θn|D)T (θn+1 ← θn) = min
(

1, p(θn+1,D)q(θn|θn+1)
p(θn,D)q(θn+1|θn)

)
p(θn|D)q(θn+1|θn)

= min (p(θn,D)q(θn+1|θn), p(θn+1,D)q(θn|θn+1)) /p(D)

= min
(
p(θn,D)q(θn+1|θn)
p(θn+1,D)q(θn|θn+1) , 1

)
p(θn+1|D)q(θn|θn+1)

= p(θn+1|D)T (θn ← θn+1).

Though MH is valid for any reasonable choice of the proposal distribution [Tierney, 1994], the

practical performance will depend heavily on this choice. For example, if q(θ′|θ) is independent

of θ then no information is passed from one iteration to the next and one gets an algorithm (known

as the Metropolis algorithm, i.e. the Hasting term in MH relates to the use of local moves) that is

strictly worse than importance sampling: samples are independently generated in the same way,

but information is lost in the accept-reject step. Instead, one will generally want to propose points

close to the current point so the advantages of local moves can be exploited, namely through the

hill climbing behavior we previously discussed. However, this has complications as explained in

Section 7.2.5, while choosing a proposal with the right characteristics is still rather challenging.

For example, if the variance of our proposal is too high then we will rarely propose good points

and so the acceptance rate will become very low, giving few distinct samples. If the variance

is too low, the Markov chain will move very slowly as it can only take small steps. This will

increase correlation between all our samples and reduce the fidelity of our estimates. Chains

that quickly cover the full probability space are said to mix quickly.

7.2.4 Gibbs Sampling [Advanced Topic]

Gibbs sampling is an important special case of Metropolis-Hastings that looks to update only some

subset of variables in a joint distribution at each iteration. Imagine we have a D distributional

posterior p(θ|D) where θ = {θ1, θ2, . . . , θD}. Gibbs sampling incrementally updates one or more

of the variables θd at each iteration conditioned on the value of the others. Thus it uses proposals

of the form θ′d ∼ p(θ′d|θ\θd,D) with θ\θd kept constant from one iteration to the next. There

are two reasons for wanting to do this. Firstly changing only one of the variables at a time is a

form of local proposal and can be a beneficial way to make updates, particularly if a random

walk proposal is inappropriate. Secondly, if we have access to p(θd|θ\θd,D) exactly, then we

©Tom Rainforth 2020



7. Advanced Inference Methods 101

will actually accept every sample as because, noting that θ′\θ′d = θ\θd, we have

p(θ|D)p(θ′d|θ\θd,D)
p(θ′|D)p(θd|θ′\θ′d,D) = p(θd|θ\θd,D)p(θ\θd|D)p(θ′d|θ\θd,D)

p(θ′d|θ′\θ′d,D)p(θ′\θ′d|D)p(θd|θ′\θ′d,D)

= p(θd|θ\θd,D)p(θ\θd|D)p(θ′d|θ\θd,D)
p(θ′d|θ\θd,D)p(θ\θd|D)p(θd|θ\θd,D) = 1

such that the acceptance probability is always 1. In a number of common models, it will be

possible to sample from θ′d ∼ p(θ′d|θ\θd,D) exactly and thus carry out Gibbs sampling steps

exactly. We can then cycle through each of the θd, either in a random order or in sequence,

and apply the appropriate updates.

The effectiveness of this approach will depend on the level of correlation between the different

variables. The more correlated each variable, the smaller the updates will be for each variable

conditioned on the values of the others and the slower the chain will mix. In extreme cases, this

does impose stricter conditions for convergence for Gibbs samplers than MH [Roberts and Smith,

1994]. For example, consider an exclusive OR style problem where p(θ1, θ2|D) = 1 if 0 ≤ θ1 ≤ 1

and 0 ≤ θ2 ≤ 1 or −1 ≤ θ1 < 0 and −1 ≤ θ2 < 0, and p(θ1, θ2|D) = 0 otherwise. Here there is

no way to move from the [0, 1]2 square to the [−1, 0]2 square by updating only one of the variables

at a time. As such, a Gibbs sampler would end up stuck in either the positive or negative square.

In the more general case—where it is not possible to sample from the conditional distributions

exactly, or if it is only possible for some of the variables—we can instead use a Metropolis-within-

Gibbs approach, also known as component-wise Metropolis-Hastings, where we approximate

one or more p(θ′d|θ\θd,D) with an appropriate MH transition kernel. Namely, we introduce

a proposal for that specific variable, sample from it, and then perform an accept-reject step.

Though the convergence of this approach has been shown by, for example, Jones et al. [2014],

additional assumptions are required compared to the standard Gibbs or MH cases (these are

beyond the scope of this course).

7.2.5 Intuitions, Complications, and Practical Considerations

Though MCMC methods can be exceptionally effective, they are not without their weaknesses.

Most of these weakness stem from the fact that all the generated samples are correlated, leading

to, for example, biased estimates. Correlation reduces the amount of distinct information

conveyed by each sample and this will reduce the accuracy of the estimator. However, it

also causes more fundamental issues.

Most of the convergence results we have presented so far have relied on samples being

generated in a i.i.d. fashion, which is clearly not the case in the MCMC setting. MCMC

©Tom Rainforth 2020



7. Advanced Inference Methods 102

methods therefore require their own unique convergence proofs, based in general on ergodic

theory (see e.g. [Durrett, 2010, Chapter 6]). Furthermore, whereas importance sampling and

rejection sampling lead to unbiased estimates of the marginal likelihood, MCMC produces no

natural estimate and methods that do produce marginal likelihood estimates for MCMC are

often extremely biased [Chib and Jeliazkov, 2001].

The aforementioned convergence results mean that the bias of estimates made using MCMC

samples tends to zero as the number of iterations tends to infinity, but it is often very difficult

to estimate the magnitude of the bias for a finite numbers of iterations. Whereas importance

sampling and rejection sampling had reasonable diagnostics for the performance of the inference,

such as the effective sample size and the acceptance rate respectively, estimating the bias from

MCMC samplers is typically fiendishly difficult and it can often look like an MCMC sampler is

performing well (e.g. in terms of its acceptance rate) when in fact it is doing disastrously.

One of the most common ways this is manifested is in the sampler becoming stuck in a

particular mode of the target. Using localized proposals can make it prohibitively difficult to

move between modes. Though valid MCMC samplers must eventually visit every mode infinitely

often, it can take arbitrarily long to even visit each mode once. Even worse, getting the correct

estimate relies on spending the correct relative proportion of time in each mode, which will

typically take many orders of magnitude more time to get a reasonable estimate for, than it

will just to have the sampler visit each significant mode at least once. The issues associated

with multiple modes provides a demonstration of why it is difficult to estimate the bias of an

MCMC sampler: we do not generally know if we have missed another mode or whether our

sampler has spent an appropriate amount of time in each mode.

Because of these drawbacks, using MCMC on multi-modal problems is dangerous unless

an appropriate mechanism for transitioning between the modes can be found. One also tends

to throw away some of the earlier samples in the Markov chain to allow the chain to burn in,

remembering that samples are only distributed according to the target of interest asymptotically

and so the earlier samples, which have marginal distributions very far away from the distribution

of interest, can add substantial bias to the resultant estimator. Thankfully, there are a surprisingly

wide array of models that actually fit these restrictions, particularly in high dimensions or if

we can find an appropriate parameterization of the model.

Remembering from Section 2.7 that changing the parameterization of a model changes its

probability density function in a non-trivial manner, the performance of MCMC methods is often

critically dependent on their parameterization. Changing the parameterization will change the

©Tom Rainforth 2020



7. Advanced Inference Methods 103

concept of what parameter values are close to which other parameter values. In an ideal world,

we would make moves in the raw sample space where all points are equally probable. Typically

this is not practical, but it is still usually the case that some parameterizations will tend to be more

single-modal and more generally have all points of interest close together in the parameter space.

Note that there is often an equivalence here between a good proposal and a good warping of the

space to one where an isotropic proposal will be effective. One possible way of achieving a good

parameterization is through the use of auxiliary variables [Higdon, 1998; Andrieu et al., 2010],

which can improve mixing by allowing more degrees of freedom in the proposal, decreasing the

chance of getting “stuck”, e.g. in a particular mode. Somewhat counterintuitively, projecting to

higher dimensional spaces can actually substantially improve the mixing of an MCMC sampler.

As a concrete example of this, Hamiltonian Monte Carlo (HMC) [Duane et al., 1987; Neal,

2011] uses derivatives of the density function and an auxiliary variable to make effective long

distance proposals. Given that much of the behavior of MCMC is based on hill-climbing effects,

it would perhaps be intuitive to presume that these gradients are used to hasten the hill-climbing

behavior or try to move between modes. In practice, the intention is exactly the opposite. In

high dimensions, most of the mass of a mode is not at its peak but in a thin strip around that

peak known as a typical set [Betancourt, 2017]. Classical random walk MH methods will both

rarely propose samples in the right direction to stay in this typical set, giving a low acceptance

rate, and be very slow to move around the typical set because the reversibility of the proposals

mean that this only happens slowly through drift. By moving perpendicular to the gradient,

HMC makes proposals that are more likely to stay within the typical set, while also allowing

large moves to be made in a single step. Together these mean that it can explore a particular

mode much faster than random walk MH strategies. See, for example, Neal [2011]; Betancourt

[2017] for a more complete introduction.

7.3 Variational Inference
Though our focus in these notes has mostly been on Monte Carlo inference methods, we finish

by noting that these are far from the only viable approaches. Two key advantages of Monte

Carlo methods are their ubiquitous nature, i.e. many can almost always be applied, and that most

commonly used Monte Carlo methods are asymptotically exact, such that given enough time,

we can always achieve a required level of accuracy. However, in some scenarios, Monte Carlo

methods can be problematically slow to converge and so alternative, asymptotically approximate,

©Tom Rainforth 2020



7. Advanced Inference Methods 104

methods can be preferable such as variational inference [Blei et al., 2016] and messaging

passing methods [Lauritzen and Spiegelhalter, 1988].

Of these, variational inference has become an increasingly popular approach. Its key idea is to

reformulate the inference problem to an optimization, by learning parameters of an approximation

to the posterior. Typically this involves defining some family of distributions within which the

posterior approximation can live, e.g. an exponential distribution family, and then optimizing

an evidence lower bound (ELBO) with respect to the parameters of this approximation. Doing

this implicitly minimizes the Kullback-Leiber divergence between the approximation the target.

Variational inference often forms a highly efficient means of calculating a posterior approximation,

but, in addition to the obvious bias from using a particular family of distributions for the

approximation, it typically requires strong structural assumptions to be made about the form

of the posterior. Namely most methods make a so-called mean-field assumption that presumes

that the posterior factorizes over all latent variables. Its effectiveness is thus critically dependent

on the reasonableness of these assumptions.

We will not cover variational inference further, or our subsequent topic of variational auto-

encoders [Kingma and Welling, 2014; Rezende et al., 2014], in these notes. You are instead

referred to the lecture slides and suggested further reading. Note that the slides now available

online are more comprehensive than those used in the lectures themselves.

7.4 Further Reading
• Iain Murray on MCMC: https://www.youtube.com/watch?v=_v4Eb09qp7Q

• Demo of various MCMC methods: https://chi-feng.github.io/mcmc-demo/

app.html?algorithm=RandomWalkMH&target=banana

• Chapters 21, 22, and 23 of K. P. Murphy. Machine learning: a probabilistic perspective.

MIT press, 2012

• D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for

statisticians. arXiv preprint arXiv:1601.00670, 2016

• NeurIPS tutorial on variational inference that accompanies the previous paper: https:

//www.youtube.com/watch?v=ogdv_6dbvVQ

• Training VAEs in Pyro: https://pyro.ai/examples/vae.html and https:

//www.youtube.com/watch?v=vgFWeEyen6Y&t=1058s

©Tom Rainforth 2020

https://www.youtube.com/watch?v=_v4Eb09qp7Q
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=banana
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=banana
https://www.youtube.com/watch?v=ogdv_6dbvVQ
https://www.youtube.com/watch?v=ogdv_6dbvVQ
https://pyro.ai/examples/vae.html
https://www.youtube.com/watch?v=vgFWeEyen6Y&t=1058s
https://www.youtube.com/watch?v=vgFWeEyen6Y&t=1058s


7. Advanced Inference Methods 105

• Tutorial paper on VAEs: C. Doersch. Tutorial on variational autoencoders. arXiv preprint

arXiv:1606.05908, 2016

• Video tutorial on deep generative models by Shakir Mohamed and Danilo Rezende https:

//www.youtube.com/watch?v=JrO5fSskISY

• GANs, one of the main alternatives to VAEs: I. Goodfellow, J. Pouget-Abadie, M. Mirza,

B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680, 2014

©Tom Rainforth 2020

https://www.youtube.com/watch?v=JrO5fSskISY
https://www.youtube.com/watch?v=JrO5fSskISY


Bibliography
E. Aarts and J. Korst. Simulated annealing and Boltzmann machines. 1988.

M. Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems.

arXiv preprint arXiv:1603.04467, 2016.

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann machines.

Cognitive science, 9(1):147–169, 1985.

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 2010.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical

society, pages 337–404, 1950.

R. Baillargeon. The acquisition of physical knowledge in infancy: A summary in eight lessons.

Blackwell handbook of childhood cognitive development, 1(46-83):1, 2002.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in

machine learning: a survey. arXiv preprint arXiv:1502.05767, 2015.

R. E. Bellman. Adaptive control processes: a guided tour. Princeton university press, 1961.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-

Farley, and Y. Bengio. Theano: A CPU and GPU math compiler in Python. In Proc. 9th Python

in Science Conf, pages 1–7, 2010.

M. Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint

arXiv:1701.02434, 2017.

Bingham, J. P. Eli, Chen, M. Jankowiak, T. Karaletsos, F. Obermeyer, N. Pradhan, R. Singh,

P. Szerlip, and N. Goodman. Pyro, 2017. URL https://github.com/uber/pyro.

C. M. Bishop. Neural networks for pattern recognition. Oxford university press, 1995.

C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.

arXiv preprint arXiv:1601.00670, 2016.

B. Bloem-Reddy, E. Mathieu, A. Foster, T. Rainforth, H. Ge, M. Lomelí, Z. Ghahramani, and

Y. W. Teh. Sampling and inference for discrete random probability measures in probabilistic

programs. NIPS Workshop on Advances in Approximate Bayesian Inference, 2017.

https://github.com/uber/pyro


Bibliography 107

G. E. Box. Robustness in the strategy of scientific model building. Robustness in statistics, 1:

201–236, 1979.

G. E. Box, W. G. Hunter, and J. S. Hunter. Statistics for experimenters: an introduction to design,

data analysis, and model building, volume 1. John Wiley and Sons, 1979.

L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

L. Breiman et al. Statistical modeling: The two cultures (with comments and a rejoinder by the

author). Statistical science, 16(3):199–231, 2001.

M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Miguez, and P. M. Djuric. Adaptive importance

sampling: the past, the present, and the future. IEEE Signal Processing Magazine, 34(4):60–79,

2017.

R. Burbidge, M. Trotter, B. Buxton, and S. Holden. Drug design by machine learning: support

vector machines for pharmaceutical data analysis. Computers & chemistry, 26(1):5–14, 2001.

B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A. Brubaker,

J. Guo, P. Li, and A. Riddell. Stan: a probabilistic programming language. Journal of Statistical

Software, 2015.

J. Carpenter, P. Clifford, and P. Fearnhead. Improved particle filter for nonlinear problems. IEE

Proceedings-Radar, Sonar and Navigation, 146(1):2–7, 1999.

S. Chib and I. Jeliazkov. Marginal likelihood from the Metropolis–Hastings output. Journal of

the American Statistical Association, 96(453):270–281, 2001.

G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief

networks. Artificial intelligence, 42(2-3):393–405, 1990.

C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief networks is

NP-hard. Artificial intelligence, 60(1):141–153, 1993.

B. De Finetti. La prévision: ses lois logiques, ses sources subjectives. In Annales de l’institut

Henri Poincaré, volume 7, pages 1–68, 1937.

N. Dhir, Y. Perov, M. Wijers, F. Wood, A. Markham, P. Trethowan, B. du Preez, A. Loveridge,

and D. Macdonald. Tracking african lions with nonparametric hierarchical models using

probabilistic programming. In Proceedings of the International Society of Bayesian Analysis

(ISBA) 2016 World Meeting, 2016.

©Tom Rainforth 2020



Bibliography 108

N. Dhir, M. Vákár, M. Wijers, A. Markham, F. Wood, P. Trethowan, B. du Preez, A. Loveridge,

and D. Macdonald. Interpreting lion behaviour with nonparametric probabilistic programs. In

UAI, 2017.

C. Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

J. L. Doob. Application of the theory of Martingales. Le calcul des probabilites et ses applications,

pages 23–27, 1949.

R. Douc and O. Cappé. Comparison of resampling schemes for particle filtering. In Image

and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings of the 4th International

Symposium on, pages 64–69. IEEE, 2005.

A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fifteen years later.

Handbook of Nonlinear Filtering, 12:656–704, 2009.

A. Doucet, N. De Freitas, and N. Gordon. An introduction to sequential Monte Carlo methods.

In Sequential Monte Carlo methods in practice, pages 3–14. Springer, 2001.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics letters

B, 1987.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis: probabilistic

models of proteins and nucleic acids. Cambridge university press, 1998.

R. Durrett. Probability: theory and examples. Cambridge university press, 2010.

D. Duvenaud, J. R. Lloyd, R. Grosse, J. B. Tenenbaum, and Z. Ghahramani. Structure discovery in

nonparametric regression through compositional kernel search. arXiv preprint arXiv:1302.4922,

2013.

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte

Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99, 1994.

T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The annals of statistics,

pages 209–230, 1973.

D. A. Freedman. On the asymptotic behavior of Bayes’ estimates in the discrete case. The Annals

of Mathematical Statistics, pages 1386–1403, 1963.

A. Gelman and C. P. Robert. “Not only defended but also applied”: The perceived absurdity of

Bayesian inference. The American Statistician, 67(1):1–5, 2013.

©Tom Rainforth 2020



Bibliography 109

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian data

analysis, volume 2. CRC press Boca Raton, FL, 2014.

A. Gelman et al. Objections to Bayesian statistics. Bayesian Analysis, 2008.

A. Gelman et al. Induction and deduction in Bayesian data analysis. Rationality, Markets and

Morals, 2(67-78):1999, 2011.

S. J. Gershman and D. M. Blei. A tutorial on Bayesian nonparametric models. Journal of

Mathematical Psychology, 56(1):1–12, 2012.

Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 2015.

W. R. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo in practice. CRC

press, 1995.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and

Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems,

pages 2672–2680, 2014.

N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. Church: a language

for generative models. In UAI, pages 220–229, 2008a.

N. D. Goodman. The principles and practice of probabilistic programming. ACM SIGPLAN

Notices, 48(1):399–402, 2013.

N. D. Goodman and A. Stuhlmüller. The Design and Implementation of Probabilistic Program-

ming Languages. 2014.

N. D. Goodman, V. K. Mansinghka, D. Roy, K. Bonawitz, and J. B. Tenenbaum. Church: a

language for generative models. 2008b.

S. N. Goodman. Toward evidence-based medical statistics. 1: The p value fallacy. Annals of

internal medicine, 130(12):995–1004, 1999.

A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. Probabilistic programming. In

Proceedings of the on Future of Software Engineering. ACM, 2014.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series

in Statistics. Springer New York Inc., 2001.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.

Biometrika, 57(1):97–109, 1970.

©Tom Rainforth 2020



Bibliography 110

T. C. Hesterberg. Advances in importance sampling. PhD thesis, Stanford University, 1988.

C. Heunen, O. Kammar, S. Staton, and H. Yang. A convenient category for higher-order

probability theory. arXiv preprint arXiv:1701.02547, 2017.

R. Hickey. The clojure programming language. In Proceedings of the 2008 symposium on

Dynamic languages, page 1. ACM, 2008.

D. M. Higdon. Auxiliary variable methods for Markov chain Monte Carlo with applications.

Journal of the American Statistical Association, 93(442):585–595, 1998.

M. D. Hoffman and A. Gelman. The No-U-turn sampler: adaptively setting path lengths in

Hamiltonian Monte Carlo. JMLR, 15(1):1593–1623, 2014.

T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning. The annals of

statistics, pages 1171–1220, 2008.

J. P. Ioannidis. Why most published research findings are false. PLoS medicine, 2(8):e124, 2005.

P. Jäckel. Monte Carlo methods in finance. J. Wiley, 2002.

D. Janz, B. Paige, T. Rainforth, J.-W. van de Meent, and F. Wood. Probabilistic structure discovery

in time series data. NIPS Workshop on Artificial Intelligence for Data Science, 2016.

G. L. Jones, G. O. Roberts, and J. S. Rosenthal. Convergence of conditional Metropolis-Hastings

samplers. Advances in Applied Probability, 46(2):422–445, 2014.

G. L. Jones et al. On the Markov chain central limit theorem. Probability surveys, 2004.

M. I. Jordan. Are you a Bayesian or a frequentist? 2009. URL http://videolectures.

net/mlss09uk_jordan_bfway/.

D. Jurafsky and J. H. Martin. Speech and language processing, volume 3. Pearson London, 2014.

H. Kahn and A. W. Marshall. Methods of reducing sample size in Monte Carlo computations.

Journal of the Operations Research Society of America, 1(5):263–278, 1953.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.

G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models.

Journal of computational and graphical statistics, 5(1):1–25, 1996.

B. Kleijn, A. Van der Vaart, et al. The Bernstein-von-Mises theorem under misspecification.

Electronic Journal of Statistics, 6:354–381, 2012.

©Tom Rainforth 2020

http://videolectures.net/mlss09uk_jordan_bfway/
http://videolectures.net/mlss09uk_jordan_bfway/


Bibliography 111

A. Kucukelbir, R. Ranganath, A. Gelman, and D. Blei. Automatic variational inference in Stan.

In NIPS, pages 568–576, 2015.

M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian process

classification. JMLR, 6(Oct):1679–1704, 2005.

D. P. Landau and K. Binder. A guide to Monte Carlo simulations in statistical physics. Cambridge

university press, 2014.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical

structures and their application to expert systems. Journal of the Royal Statistical Society.

Series B (Methodological), pages 157–224, 1988.

N. D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional

data. In NIPS, pages 329–336, 2004.

T. A. Le, A. G. Baydin, and F. Wood. Inference compilation and universal probabilistic

programming. In 20th AISTATS, 2017a.

T. A. Le, A. G. Baydin, R. Zinkov, and F. Wood. Using synthetic data to train neural networks is

model-based reasoning. arXiv preprint arXiv:1703.00868, 2017b.

S. Lefèvre, D. Vasquez, and C. Laugier. A survey on motion prediction and risk assessment for

intelligent vehicles. Robomech Journal, 1(1):1, 2014.

J. S. Liu and R. Chen. Sequential Monte Carlo methods for dynamic systems. Journal of the

American statistical association, 93(443):1032–1044, 1998.

J. R. Lloyd, D. K. Duvenaud, R. B. Grosse, J. B. Tenenbaum, and Z. Ghahramani. Automatic

construction and natural-language description of nonparametric regression models. In AAAI,

pages 1242–1250, 2014.

D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. Winbugs-a Bayesian modelling framework:

concepts, structure, and extensibility. Statistics and computing, 10(4):325–337, 2000.

P. L’Ecuyer and C. Lemieux. Recent advances in randomized quasi-Monte Carlo methods.

Modeling uncertainty, pages 419–474, 2005.

V. Mansinghka, D. Selsam, and Y. Perov. Venture: a higher-order probabilistic programming

platform with programmable inference. arXiv preprint arXiv:1404.0099, 2014.

©Tom Rainforth 2020



Bibliography 112

V. K. Mansinghka, T. D. Kulkarni, Y. N. Perov, and J. Tenenbaum. Approximate Bayesian image

interpretation using generative probabilistic graphics programs. In NIPS, pages 1520–1528,

2013.

G. Marsaglia, W. W. Tsang, et al. The ziggurat method for generating random variables. Journal

of statistical software, 5(8):1–7, 2000.

D. McAllester. A pac-Bayesian tutorial with a dropout bound. arXiv preprint arXiv:1307.2118,

2013.

N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American statistical

association, 44(247):335–341, 1949.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state

calculations by fast computing machines. The journal of chemical physics, 21(6):1087–1092,

1953.

T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer .NET 2.4, Microsoft Research Cambridge,

2010.

T. P. Minka. Bayesian model averaging is not model combination. Available electronically at

http://www. stat. cmu. edu/minka/papers/bma. html, 2000.

K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

L. M. Murray. Bayesian state-space modelling on high-performance hardware using libbi. arXiv

preprint arXiv:1306.3277, 2013.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. 1993.

R. M. Neal. MCMC using Hamiltonian dynamics. Handbook of MCMC, 2, 2011.

A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic

regression and naive bayes. In NIPS, pages 841–848, 2002.

A. B. Owen. Monte Carlo theory, methods and examples. 2013.

B. Paige. Automatic inference for higher-order probabilistic programs. PhD thesis, PhD thesis,

University of Oxford, 2016.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,

and A. Lerer. Automatic differentiation in PyTorch. NIPS Workshop on AutoDiff, 2017.

J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. 2014.

©Tom Rainforth 2020



Bibliography 113

G. Perantoni and D. J. Limebeer. Optimal control for a formula one car with variable parameters.

Vehicle System Dynamics, 52(5):653–678, 2014.

K. B. Petersen, M. S. Pedersen, et al. The matrix cookbook. Technical University of Denmark, 7:

15, 2008.

M. Plummer et al. Jags: A program for analysis of Bayesian graphical models using Gibbs

sampling. In Proceedings of the 3rd international workshop on distributed statistical computing,

2003.

T. Rainforth. Automating inference, learning, and design using probabilistic programming. PhD

thesis, University of Oxford, 2017.

T. Rainforth. Nesting probabilistic programs. Conference on Uncertainty in Artificial Intelligence

(UAI), 2018.

T. Rainforth and F. Wood. Canonical correlation forests. arXiv preprint arXiv:1507.05444, 2015.

T. Rainforth, R. Cornish, H. Yang, A. Warrington, and F. Wood. On Nesting Monte Carlo

Estimators. International Conference on Machine Learning (ICML), 2018.

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate

inference in deep generative models. In International Conference on Machine Learning, pages

1278–1286, 2014.

C. Robert. The Bayesian choice: from decision-theoretic foundations to computational

implementation. Springer Science & Business Media, 2007.

C. P. Robert. Monte Carlo methods. Wiley Online Library, 2004.

G. O. Roberts and A. F. Smith. Simple conditions for the convergence of the Gibbs sampler and

Metropolis-Hastings algorithms. Stochastic processes and their applications, 49(2):207–216,

1994.

R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo method, volume 10. 2016.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating

errors. Nature, 323:533–536, 1986.

J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming in python using pymc3.

PeerJ Computer Science, 2:e55, 2016.

©Tom Rainforth 2020



Bibliography 114

B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization,

optimization, and beyond, 2002.

N. Siddharth, B. Paige, J.-W. van de Meent, A. Desmaison, F. Wood, N. D. Goodman, P. Kohli,

P. H. Torr, et al. Learning disentangled representations with semi-supervised deep generative

models. arXiv preprint arXiv:1706.00400, 2017.

D. Spiegelhalter, A. Thomas, N. Best, and W. Gilks. Bugs 0.5: Bayesian inference using Gibbs

sampling manual (version ii). MRC Biostatistics Unit, Cambridge, 1996.

S. Staton, H. Yang, F. Wood, C. Heunen, and O. Kammar. Semantics for probabilistic

programming: higher-order functions, continuous distributions, and soft constraints. In

Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pages

525–534. ACM, 2016.

J. Steinhardt. Beyond Bayesians and frequentists. 2012.

Y. W. Teh. Dirichlet process. In Encyclopedia of machine learning, pages 280–287. Springer,

2011.

L. Tierney. Markov chains for exploring posterior distributions. The Annals of Statistics, 1994.

A. Todeschini, F. Caron, M. Fuentes, P. Legrand, and P. Del Moral. Biips: software for Bayesian

inference with interacting particle systems. arXiv preprint arXiv:1412.3779, 2014.

D. Tolpin, J.-W. van de Meent, and F. Wood. Probabilistic programming in Anglican. Springer

International Publishing, 2015.

D. Tolpin, J.-W. van de Meent, H. Yang, and F. Wood. Design and implementation of probabilistic

programming language Anglican. In Proceedings of the 28th Symposium on the Implementation

and Application of Functional Programming Languages, page 6. ACM, 2016.

D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, and D. M. Blei. Edward: A library

for probabilistic modeling, inference, and criticism. arXiv preprint arXiv:1610.09787, 2016.

V. N. Vapnik. Statistical learning theory, volume 1. Wiley New York, 1998.

H. K. Versteeg and W. Malalasekera. An introduction to computational fluid dynamics: the finite

volume method. Pearson Education, 2007.

L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum. Recaptcha: Human-based

character recognition via web security measures. Science, 321(5895):1465–1468, 2008.

©Tom Rainforth 2020



Bibliography 115

D. Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.

A. Wilson, E. Gilboa, J. P. Cunningham, and A. Nehorai. Fast kernel learning for multidimen-

sional pattern extrapolation. In NIPS, pages 3626–3634, 2014.

F. Wood, J. W. van de Meent, and V. Mansinghka. A new approach to probabilistic programming

inference. In AISTATS, pages 2–46, 2014.

©Tom Rainforth 2020


	Introduction
	A Note on Advanced Sections

	A Brief Introduction to Probability
	Random Variables, Outcomes, and Events
	Probabilities
	Conditioning and Independence
	The Laws of Probability
	Probability Densities
	Expectations and Variances
	Measures [Advanced Topic]
	Change of Variables

	Machine Learning Paradigms
	Learning From Data
	Discriminative vs Generative Machine Learning
	The Bayesian Paradigm
	Bayesianism vs Frequentism [Advanced Topic]
	Further Reading

	Bayesian Modeling
	A Fundamental Assumption
	The Bernstein-Von Mises Theorem
	Graphical Models
	Example Bayesian Models
	Nonparametric Bayesian Models
	Gaussian Processes
	Further Reading

	Probabilistic Programming
	Inverting Simulators
	Differing Approaches
	Bayesian Models as Program Code [Advanced Topic]
	Further Reading

	Foundations of Bayesian Inference and Monte Carlo Methods
	The Challenge of Bayesian Inference
	Deterministic Approximations
	Monte Carlo
	Foundational Monte Carlo Inference Methods
	Further Reading

	Advanced Inference Methods
	The Curse of Dimensionality
	Markov Chain Monte Carlo
	Variational Inference
	Further Reading

	Bibliography

