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Course QOutline

e Slightly unusual course covering different topics in machine
learning

e Aim is to get you interacting with actual research

e Fully assessed by coursework

e There are no examples sheets: you are instead expected to
take the initiative to investigate areas you find interesting and
familiarize yourself will software tools (we will suggest
resources and the practicals are there to help with software

familiarity)



Course Structure

6 lectures on Bayesian Machine Learning from me

8 lectures on Natural Language Processing from Dr Alejo
Nevado-Holgado

A few guest lectures at the end

Many of the lectures we be delivered back-to-back (e.g. | will
effectively give 2x1 hour lectures and 2x2 hour lectures)



Course Assessment

e Team project working in groups of 4
e Based on reproducing a research paper
e Each team has a different paper

e Produce a group report + statement of individual
contributions + poster

e |ndividual oral vivas

e Groups will be assigned by department, details are still being
sorted

e Check online materials—may end up being some tweaks
before you start



Bayesian Machine Learning—Course Outline

Lectures
e Machine Learning Paradigms (1 hour)

Bayesian Modeling (2 hours)

Foundations of Bayesian Inference (1 hour)

Advanced Inference Methods (1 hour)

Variational Auto-Encoders (1 hour)—key lecture for
assessments!

| will upload notes after each lecture. These will not perfectly
overlap with the lectures/slides so you will need to separately
digest each



What is Machine Learning?

Arthur Samuel, 1959
Field of study that gives computers the ability to learn without

being explicitly programmed.

Tom Mitchell, 1997
Any computer program that improves its performance at some task

through experience.

Kevin Murphy, 2012
To develop methods that can automatically detect patterns in
data, and then to use the uncovered patterns to predict future

data or other outcomes of interest.



Motivation: Why Should we Take a Bayesian Approach?

Bayesian Reasoning is the Language of Uncertainty

e Bayesian reasoning is the basis
for how to make decisions with
incomplete information

e Bayesian methods allow us to
construct models that return
principled uncertainty
estimates rather than just
point estimates

e Bayesian models are often

interpretable, such that they
can be easily queried, criticized,

and built on by humans



Motivation: Why Should we Take a Bayesian Approach?

Bayesian Modeling Lets us Utilize Domain Expertise

e Bayesian modeling allows us to
combine information from data Hydrogen Wave Funcion

with that from prior expertise

e This means we can exploit
existing knowledge, rather than
purely relying on black-box
processing of data
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e Models make clear assumptions
and are explainable

e We can easily update our
beliefs as new information

becomes available



Motivation: Why Should we Take a Bayesian Approach?

Bayesian Modeling is Powerful

e Bayesian models are
state-of-the-art for a huge
variety of prediction and
decision making tasks

e They make use of all the data
and can still be highly effective
when data is scarce

e By averaging over possible
parameters, they can form rich
model classes for explaining

how data is generated.

Image Credit: PyMC3 Documentation



Learning From Data



Learning from Data

e Machine learning is all about learning from data
e There is generally a focus on making predictions at unseen
datapoints

e Starting point is typically a dataset—we can delineate
approaches depending on type of dataset



Supervised Learning

e We have access to a labeled dataset of input—output pairs:
D= {X,,,y,,},’yzl.

e Aim is to learn a predictive model f that takes an input
x € X and aims to predict its corresponding output y € ).

e The hope is that these example pairs can be used to “teach”
f how to accurately make predictions.
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Supervised Learning—Classification

Cat

Dog

Flying
Spaghetti
Monster

Predictor f(x) Class label y
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Supervised Learning—Regression
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Supervised Learning

( Input Features Outputs \
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Datapoint
Index

Training Data

L

e Use this data to learn a predictive model fy : X — ) (e.g. by

optimizing 0)
e Once learned, we can use this to predict outputs for new input
points, e.g. f([0.48 1.18 0.34 ... 1.13]) = 2
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Unsupervised Learning

e In unsupervised Learning we have no clear output variable
that we are attempting to predict: D = {x,}N_,

e This is sometimes referred to as unlabeled data

e Aim is to exact some salient features for the dataset, such as

underlying structure, patterns, or characteristics

e Examples: clustering, feature extraction, density estimation,
representation learning, data visualization, data compression
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Unsupervised Learning—Clustering
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Unsupervised Learning—Deep Generative Models

Learn powerful models for generating new datapoints

These are not real faces: they are samples from a learned model!
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Discriminative vs
Generative Machine
Learning



Discriminative vs Generative Machine Learning

e Discriminative methods try to directly predict outputs (they
are primary used for supervised tasks)
e Generative methods try to explain how the data was

generated
Discriminative Model Generative Model
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Image credit: Jason Martuscello, medium.com



Discriminative Machine Learning

e Given data D = {xn,yn}nNzl, discriminative methods directly
learn a mapping fy from inputs x to outputs y

e Training uses D to estimate optimal values of the parameters
0*. This is typically done by minimizing an empirical risk over
the training data:

N
1
0" = argmin — L(y;, fo(x; 1
in g 32 L0 (x) 1)

where L(y,y) is a loss function for prediction y and truth y.
e Prediction at a new input x involves simply applying f;(x),
where 6 is our estimate of 6*
e Note we often do not predict y directly, e.g. in a classification
task we might predict the class probabilities instead
e For non-parametric approaches, the dimensionality of 6
increases with the dataset size 18



Discriminative Machine Learning

Common approaches: neural networks, support vector machines,
random forests, linear/logistic regression
Pros
e Simpler to directly solve prediction problem than model the
whole data generation process
e Few assumptions

e Often very effective for large datasets
e Some methods can be used effectively in a black-box manner

Cons
e Can be difficult to impart prior information
e Typically lack interpretability
e Do not usually provide natural uncertainty estimates
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Generative Machine Learning

e Generative approaches construct a probabilistic model to
explain how the data is generated

e For example, with labeled data D = {x,, y,}"_,, we might
construct a model p(x,y;#) of the form x, ~ p(x;6),
Yn|Xn ~ p(y|x = xn; 0) where 0 are model parameters

e This in turns implies a predictive model

e Can also be generative about the model parameters 6:
e.g. with unsupervised data D = {x,,}nNzl, we can construct a
generative model p(6, x), such that 6 ~ p(0), x,|0 ~ p(x|0).

e This is the foundation for Bayesian machine learning
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Generative Machine Learning

Common approaches: Bayesian approaches, deep generative
models, mixture models
Pros

o Allow us to make stronger modeling assumptions and thus
incorporate more problem—specific expertise

e Provide explanation for how data was generated
e More interpretable

e Can provide additional information other than just prediction
e Many methods naturally provide uncertainty estimates

e Allow us to use Bayesian methods
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Generative Machine Learning

Cons
e Can be difficult to construct—typically require problem
specific expertise

e Can impart unwanted assumptions—often less effective for
huge datasets

e Tackling an inherently more difficult problem than straight
prediction
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The Bayesian Paradigm



Bayesian Probability is All About Belief

Frequentist Probability

The frequentist interpretation of probability is that it is the average
proportion of the time an event will occur if a trial is repeated
infinitely many times.

Bayesian Probability

The Bayesian interpretation of probability is that it is the
subjective belief that an event will occur in the presence of
incomplete information
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Bayesianism vs Frequentism
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https://xkcd.com/1132/

Bayesianism vs Frequentism
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Bayesianism vs Frequentism
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Bayesianism vs Frequentism

Bayesiansism has its shortfalls too—see the course notes
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The Basic Laws of Probability

We can derive most of Bayesian statistics from two rules:

The Product Rule

The probability of two events occurring is the probability of one of
the events occurring times the conditional probability of the other
event happening given the first event happened:

P(A, B) = P(AIB)P(B) = P(B|A)P(A) (2)

The Sum Rule
The probability that either A or B occurs, P(AU B), is given by

P(AUB) = P(A) + P(B) — P(A, B). (3)

243



_ p(A[B)p(B)

p(B|A)

p(A)



Using Bayes’ Rule

e Encode initial belief about parameters 6 using a prior p(6)

e Characterize how likely different values of € are to have given
rise to observed data D using a likelihood function p(D|0)

e Combined these to give posterior, p(6|D), using Bayes’ rule:

p(DIO)p(0) -
p(D)

e This represents our updated belief about 6 once the

p(0|D) =

information from the data has been incorporated

e Finding the posterior is known as Bayesian inference

e p(D) = [ p(D|#)p(#)db is a normalization constant known as
the marginal likelihood or model evidence

e This does not depend on 6 so we have

p(6|D) o« p(D|0)p(0) (5) .



Multiple Observations: Using the Posterior as the Prior

e One of the key characteristics of Bayes' rule is that it is
self-similar under multiple observations
e We can use the posterior after our first observation as the

prior when considering the next:

D>|0,D1)p(0|D1)

p(
p(0|D1,D2) = (D[ Dy) (6)
_ P(D210,D1)p(D4|0)p(0) )
p(D2|D1)p(D1)
_ p(DL D2’0)p(0) (8)

p(D1,D2)
e We can thinking of this as continuous updating of beliefs as

we receive more information

28



Example: Positive Cancer Test

We have just had a result back from the Doctor for a cancer
screen and it comes back positive. How worried should we be given
the test isn't perfect?

29



Example: Positive Cancer Test (2)

Before these results came in, the chance of us having this type of
cancer was quite low: 1/1000. Let's say 6 represents us having
cancer so our prior is p(#) = 1/1000.

For people who do have cancer, the test is 99.9% accurate.
Denoting the event of the test returning positive as D = 1, we
thus have p(D = 1|0 = 1) = 999/1000.

For people who do not have cancer, the test is 99% accurate. We
thus have p(D = 1|60 = 0) = 1/100.

Our prospects might seem quite grim at this point given how
accurate the test is.
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Example: Positive Cancer Test (3)

To figure out the chance we have cancer properly though, we now
need to apply Bayes rule:

p(D =16 =1)p(f = 1)
p(D=1)
p(D=1|0 =1)p(0 = 1)
p(D =110 =1)p(0 = 1) + p(D = 1|6 = 0)p(¢ = 0)
B 0.999 x 0.001
~ 0.999 x 0.001 + 0.01 x 0.999
=1/11

p(6 = 1/D = 1) =

So the chances are that we actually don't have cancer!
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Alternative Viewpoint

An alternative (equivalent) viewpoint for Bayesian reasoning is that
we first define a joint model over parameters and data: p(6, D)

We then condition this model on the data taking the observed

value, i.e. we fix D

This produces the posterior p(6|D) by simply normalizing this to
be a valid probability distribution, i.e. the posterior is proportional
to the joint for a fixed D:

p(0|D) o< p(6, D) (9)
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How Might we Write a System to Break Captchas?

Security check

To proceed, please enter the security code
below and click "Submit”.

gﬂm’ Can't read the characters?

Refresh Image

Enter security code

By clicking Submit | acknowledge the Terms and Conditions for use of the connectivity service(s)

Submit >




Simulating Captchas is Much Easier
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The Bayesian Pipeline

Prior Likelihood Data

—= =
p(0) p(DE) D et

p(¢|D) o p(D|0)p(6)
—

Posterior
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Breaking Captchas with Bayesian Models

https://youtu.be/ZTKx4TaqNrQ7t=9

2TA Le, A G Baydin, and F Wood. “Inference Compilation and Universal Probabilistic Programming”. In:
AISTATS. 2017.

36


https://youtu.be/ZTKx4TaqNrQ?t=9

Making Predictions

e Prediction in Bayesian models is done using the posterior
predictive distribution

e This is defined by taking the expectation of a predictive model
for new data, p(D*|0, D), with respect to the posterior:

p(D'[D) = [ p(D" 8ID)ds (10)
~ [ o(@'16.D)p(6ID)d8 (1)
= Ep9p)[p(D*]0, D). (12)

e This often done dependent on an input point, i.e. we actually
calculate p(y|D, x) = Ep(gp)[p(y]0, D, x)]
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Making Predictions (2)

Points of Note

e We usually assume that p(D*|0, D) = p(D*|0), i.e. data is
conditionally independent given 6

e p(D*|0) is equivalent to the likelihood model of the new data:
in almost all cases we just use the likelihood from the original
model

e Calculating the posterior predictive can be computationally
challenging: sometimes we resort to approximations,
e.g. taking a point estimate for 0 (see Lecture 4)

e There are lots of things we might use the posterior for other
than just calculating the posterior predictive, e.g. making
decisions (see course notes) and calculating expectations
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e Supervised learning has access to outputs, unsupervised
learning does not

e Discriminative methods try and directly make predictions,

generative methods try to explain how the data is generated

e Bayesian machine learning is a generative approach that
allows us to incorporate uncertainty and information from
prior expertise

e Bayes' rule: p(0|D) x p(D|0)p(0)
p

e Posterior predictive: p(D*|D) = E,gpy [P(D*|0, D)]

39



Further Reading

e Look at the course notes! For this lecture there are discussion
of Bayesian vs frequentist approaches, and a worked example
of Bayesian modeling for a biased coin.

e Chapter 1 of K P Murphy. Machine learning: a probabilistic
perspective. 2012. https://www.cs.ubc.ca/~murphyk/MLbook/pml-intro-22may12.pdf.

e L Breiman. “Statistical modeling: The two cultures”. In:
Statistical science (2001)

e Chapter 1 of C Robert. The Bayesian choice: from
decision-theoretic foundations to computational
imp/ementation. 2007. https://www.researchgate.net/publication/41222434_The_
Bayesian_Choice_From_Decision_Theoretic_Foundations_to_Computational_Implementation.

e Michael | Jordan. Are you a Bayesian or a frequentist? Video
lecture, 2009. nttp://videolectures. net/mlss08uk_jordan_bway/
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