
5

 University of Oxford visual identity guidelines

At the heart of our visual identity is the Oxford logo.
It should appear on everything we produce, from
letterheads to leaflets and from online banners to
bookmarks.

The primary quadrangle logo consists of an Oxford blue
(Pantone 282) square with the words UNIVERSITY OF
OXFORD at the foot and the belted crest in the top
right-hand corner reversed out in white.

The word OXFORD is a specially drawn typeface while all
other text elements use the typeface Foundry Sterling.

The secondary version of the Oxford logo, the horizontal
rectangle logo, is only to be used where height (vertical
space) is restricted.

These standard versions of the Oxford logo are intended
for use on white or light-coloured backgrounds, including
light uncomplicated photographic backgrounds.

Examples of how these logos should be used for various
applications appear in the following pages.

NOTE
The minimum size for the quadrangle logo and the
rectangle logo is 24mm wide. Smaller versions with
bolder elements are available for use down to 15mm
wide. See page 7.

The Oxford logo
Quadrangle Logo

Rectangle Logo

This is the square
logo of first
choice or primary
Oxford logo.

The rectangular
secondary Oxford
logo is for use only
where height is
restricted.

Lecture 1: Machine Learning Paradigms

Advanced Topics in Machine Learning

Dr. Tom Rainforth

January 22nd, 2020

rainforth@stats.ox.ac.uk

Course Outline

• Slightly unusual course covering different topics in machine

learning

• Aim is to get you interacting with actual research

• Fully assessed by coursework

• There are no examples sheets: you are instead expected to

take the initiative to investigate areas you find interesting and

familiarize yourself will software tools (we will suggest

resources and the practicals are there to help with software

familiarity)

1

Course Structure

• 6 lectures on Bayesian Machine Learning from me

• 8 lectures on Natural Language Processing from Dr Alejo

Nevado-Holgado

• A few guest lectures at the end

• Many of the lectures we be delivered back-to-back (e.g. I will

effectively give 2x1 hour lectures and 2x2 hour lectures)

2

Course Assessment

• Team project working in groups of 4

• Based on reproducing a research paper

• Each team has a different paper

• Produce a group report + statement of individual

contributions + poster

• Individual oral vivas

• Groups will be assigned by department, details are still being

sorted

• Check online materials—may end up being some tweaks

before you start

3

Bayesian Machine Learning—Course Outline

Lectures
• Machine Learning Paradigms (1 hour)

• Bayesian Modeling (2 hours)

• Foundations of Bayesian Inference (1 hour)

• Advanced Inference Methods (1 hour)

• Variational Auto-Encoders (1 hour)—key lecture for

assessments!

I will upload notes after each lecture. These will not perfectly

overlap with the lectures/slides so you will need to separately

digest each

4

What is Machine Learning?

Arthur Samuel, 1959

Field of study that gives computers the ability to learn without

being explicitly programmed.

Tom Mitchell, 1997

Any computer program that improves its performance at some task

through experience.

Kevin Murphy, 2012

To develop methods that can automatically detect patterns in

data, and then to use the uncovered patterns to predict future

data or other outcomes of interest.

5

Motivation: Why Should we Take a Bayesian Approach?

Bayesian Reasoning is the Language of Uncertainty

• Bayesian reasoning is the basis

for how to make decisions with

incomplete information

• Bayesian methods allow us to

construct models that return

principled uncertainty

estimates rather than just

point estimates

• Bayesian models are often

interpretable, such that they

can be easily queried, criticized,

and built on by humans

Example: Medical Diagnostics

Diabetes Retinopathy Diagnostics

I Traditionally:
physician relies on expert confidence in
analysing medical record ! advises patient
to start treatment

I Deep learning:
when medical record is unlike prev seen !
deep system guesses at random, biases expert

I Uncertainty in deep learning:
expert is informed if system is essentially
“guessing at random”

10 of 39

6

Motivation: Why Should we Take a Bayesian Approach?

Bayesian Modeling Lets us Utilize Domain Expertise

• Bayesian modeling allows us to

combine information from data

with that from prior expertise

• This means we can exploit

existing knowledge, rather than

purely relying on black-box

processing of data

• Models make clear assumptions

and are explainable

• We can easily update our

beliefs as new information

becomes available
7

Motivation: Why Should we Take a Bayesian Approach?

Bayesian Modeling is Powerful

• Bayesian models are

state-of-the-art for a huge

variety of prediction and

decision making tasks

• They make use of all the data

and can still be highly effective

when data is scarce

• By averaging over possible

parameters, they can form rich

model classes for explaining

how data is generated.
Image Credit: PyMC3 Documentation

8

Learning From Data

8

Learning from Data

• Machine learning is all about learning from data

• There is generally a focus on making predictions at unseen

datapoints

• Starting point is typically a dataset—we can delineate

approaches depending on type of dataset

9

Supervised Learning

• We have access to a labeled dataset of input–output pairs:

D = {xn, yn}Nn=1.

• Aim is to learn a predictive model f that takes an input

x ∈ X and aims to predict its corresponding output y ∈ Y.

• The hope is that these example pairs can be used to “teach”

f how to accurately make predictions.

10

Supervised Learning—ClassificationClassification

CatCatClassification

CatDogClassification

Cat
Flying

Spaghetti

Monster

Input x Predictor f (x) Class label y

11

Supervised Learning—Regression

12

Supervised LearningSupervised Learning

7

Datapoint
Index x1 x2 x3 … xM

1 0.24 0.12 -0.34 … 0.98
2 0.56 1.22 0.20 … 1.03
3 -3.20 -0.01 0.21 … 0.93

… … … … … …
N 2.24 1.76 -0.47 … 1.16

y

3
2
1

…
2

Tr
ai

ni
ng

 D
at

a
Input Features} }Outputs

• Use this data to learn a predictive model fθ : X → Y (e.g. by

optimizing θ)

• Once learned, we can use this to predict outputs for new input

points, e.g. fθ([0.48 1.18 0.34 . . . 1.13]) = 2

13

Unsupervised Learning

• In unsupervised Learning we have no clear output variable

that we are attempting to predict: D = {xn}Nn=1

• This is sometimes referred to as unlabeled data

• Aim is to exact some salient features for the dataset, such as

underlying structure, patterns, or characteristics

• Examples: clustering, feature extraction, density estimation,

representation learning, data visualization, data compression

14

Unsupervised Learning—Clustering

Classification

Cat

Unlabeled Data Group into Clusters

15

Unsupervised Learning—Deep Generative Models

Learn powerful models for generating new datapoints

Glow: Generative Flow
with Invertible 1⇥1 Convolutions

Diederik P. Kingma*†, Prafulla Dhariwal⇤
*OpenAI

†Google AI

Abstract

Flow-based generative models (Dinh et al., 2014) are conceptually attractive due to
tractability of the exact log-likelihood, tractability of exact latent-variable inference,
and parallelizability of both training and synthesis. In this paper we propose Glow,
a simple type of generative flow using an invertible 1⇥ 1 convolution. Using our
method we demonstrate a significant improvement in log-likelihood on standard
benchmarks. Perhaps most strikingly, we demonstrate that a flow-based generative
model optimized towards the plain log-likelihood objective is capable of efficient
realistic-looking synthesis and manipulation of large images. The code for our
model is available at https://github.com/openai/glow.

1 Introduction

Two major unsolved problems in the field of machine learning are (1) data-efficiency: the ability to
learn from few datapoints, like humans; and (2) generalization: robustness to changes of the task or
its context. AI systems, for example, often do not work at all when given inputs that are different

⇤Equal contribution.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method,
and Section 5 for more results.

These are not real faces: they are samples from a learned model!

1D P Kingma and P Dhariwal. “Glow: Generative flow with invertible 1x1 convolutions”. In: NeurIPS. 2018. 16

Discriminative vs
Generative Machine

Learning

16

Discriminative vs Generative Machine Learning

• Discriminative methods try to directly predict outputs (they

are primary used for supervised tasks)

• Generative methods try to explain how the data was

generated

Image credit: Jason Martuscello, medium.com
17

Discriminative Machine Learning

• Given data D = {xn, yn}Nn=1, discriminative methods directly

learn a mapping fθ from inputs x to outputs y

• Training uses D to estimate optimal values of the parameters

θ∗. This is typically done by minimizing an empirical risk over

the training data:

θ∗ = arg min
θ

1

N

N∑
n=1

L(yi , fθ(xi)) (1)

where L(y , ŷ) is a loss function for prediction ŷ and truth y .

• Prediction at a new input x involves simply applying fθ̂(x),

where θ̂ is our estimate of θ∗

• Note we often do not predict y directly, e.g. in a classification

task we might predict the class probabilities instead

• For non-parametric approaches, the dimensionality of θ

increases with the dataset size 18

Discriminative Machine Learning

Common approaches: neural networks, support vector machines,

random forests, linear/logistic regression

Pros

• Simpler to directly solve prediction problem than model the

whole data generation process

• Few assumptions

• Often very effective for large datasets

• Some methods can be used effectively in a black-box manner

Cons

• Can be difficult to impart prior information

• Typically lack interpretability

• Do not usually provide natural uncertainty estimates

19

Generative Machine Learning

• Generative approaches construct a probabilistic model to

explain how the data is generated

• For example, with labeled data D = {xn, yn}Nn=1, we might

construct a model p(x , y ; θ) of the form xn ∼ p(x ; θ),

yn|xn ∼ p(y |x = xn; θ) where θ are model parameters

• This in turns implies a predictive model

• Can also be generative about the model parameters θ:
e.g. with unsupervised data D = {xn}Nn=1, we can construct a
generative model p(θ, x), such that θ ∼ p(θ), xn|θ ∼ p(x |θ).

• This is the foundation for Bayesian machine learning

20

Generative Machine Learning

Common approaches: Bayesian approaches, deep generative

models, mixture models

Pros

• Allow us to make stronger modeling assumptions and thus

incorporate more problem–specific expertise

• Provide explanation for how data was generated

• More interpretable

• Can provide additional information other than just prediction

• Many methods naturally provide uncertainty estimates

• Allow us to use Bayesian methods

21

Generative Machine Learning

Cons

• Can be difficult to construct—typically require problem

specific expertise

• Can impart unwanted assumptions—often less effective for

huge datasets

• Tackling an inherently more difficult problem than straight

prediction

22

The Bayesian Paradigm

22

Bayesian Probability is All About Belief

Frequentist Probability

The frequentist interpretation of probability is that it is the average

proportion of the time an event will occur if a trial is repeated

infinitely many times.

Bayesian Probability

The Bayesian interpretation of probability is that it is the

subjective belief that an event will occur in the presence of

incomplete information

23

Bayesianism vs Frequentism

https://xkcd.com/1132/ 24

https://xkcd.com/1132/

Bayesianism vs Frequentism

https://xkcd.com/1132/

24

https://xkcd.com/1132/

Bayesianism vs Frequentism

https://xkcd.com/1132/

24

https://xkcd.com/1132/

Bayesianism vs Frequentism

Warning

Bayesiansism has its shortfalls too—see the course notes

24

The Basic Laws of Probability

We can derive most of Bayesian statistics from two rules:

The Product Rule

The probability of two events occurring is the probability of one of

the events occurring times the conditional probability of the other

event happening given the first event happened:

P(A,B) = P(A|B)P(B) = P(B|A)P(A) (2)

The Sum Rule

The probability that either A or B occurs, P(A ∪ B), is given by

P(A ∪ B) = P(A) + P(B)− P(A,B). (3)

25

Bayes’ Rule

p(B |A) = p(A|B)p(B)
p(A)

26

Using Bayes’ Rule

• Encode initial belief about parameters θ using a prior p(θ)

• Characterize how likely different values of θ are to have given

rise to observed data D using a likelihood function p(D|θ)

• Combined these to give posterior, p(θ|D), using Bayes’ rule:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(4)

• This represents our updated belief about θ once the

information from the data has been incorporated

• Finding the posterior is known as Bayesian inference

• p(D) =
∫
p(D|θ)p(θ)dθ is a normalization constant known as

the marginal likelihood or model evidence

• This does not depend on θ so we have

p(θ|D) ∝ p(D|θ)p(θ) (5)
27

Multiple Observations: Using the Posterior as the Prior

• One of the key characteristics of Bayes’ rule is that it is

self-similar under multiple observations

• We can use the posterior after our first observation as the

prior when considering the next:

p(θ|D1,D2) =
p(D2|θ,D1)p(θ|D1)

p(D2|D1)
(6)

=
p(D2|θ,D1)p(D1|θ)p(θ)

p(D2|D1)p(D1)
(7)

=
p(D1,D2|θ)p(θ)

p(D1,D2)
(8)

• We can thinking of this as continuous updating of beliefs as

we receive more information

28

Example: Positive Cancer Test

We have just had a result back from the Doctor for a cancer

screen and it comes back positive. How worried should we be given

the test isn’t perfect?

29

Example: Positive Cancer Test (2)

Before these results came in, the chance of us having this type of

cancer was quite low: 1/1000. Let’s say θ represents us having

cancer so our prior is p(θ) = 1/1000.

For people who do have cancer, the test is 99.9% accurate.

Denoting the event of the test returning positive as D = 1, we

thus have p(D = 1|θ = 1) = 999/1000.

For people who do not have cancer, the test is 99% accurate. We

thus have p(D = 1|θ = 0) = 1/100.

Our prospects might seem quite grim at this point given how

accurate the test is.

30

Example: Positive Cancer Test (3)

To figure out the chance we have cancer properly though, we now

need to apply Bayes rule:

p(θ = 1|D = 1) =
p(D = 1|θ = 1)p(θ = 1)

p(D = 1)

=
p(D = 1|θ = 1)p(θ = 1)

p(D = 1|θ = 1)p(θ = 1) + p(D = 1|θ = 0)p(θ = 0)

=
0.999× 0.001

0.999× 0.001 + 0.01× 0.999

= 1/11

So the chances are that we actually don’t have cancer!

31

Alternative Viewpoint

An alternative (equivalent) viewpoint for Bayesian reasoning is that

we first define a joint model over parameters and data: p(θ,D)

We then condition this model on the data taking the observed

value, i.e. we fix D
This produces the posterior p(θ|D) by simply normalizing this to

be a valid probability distribution, i.e. the posterior is proportional

to the joint for a fixed D:

p(θ|D) ∝ p(θ,D) (9)

32

How Might we Write a System to Break Captchas?Bridging the Gap Between the Bayesian Ideal and Common Practice
Tom Rainforth

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters
3: Ÿ ≥ p(Ÿ) Û sample kerning value
4: Generate letters:
5: � Ω {}
6: for i = 1, . . . , ‹ do
7: ⁄ ≥ p(⁄) Û sample letter ID
8: � Ω append(�, ⁄)
9: Render:
10: “ Ω render(�, Ÿ)
11: fi ≥ p(fi) Û sample noise parameters
12: “ Ω noise(“, fi)

return “

a1 = “L” a2 = “Ÿ” a3 = “⁄” a4 = “⁄”
i1 = 1 i2 = 1 i3 = 1 i4 = 2
x1 = 7 x2 = ≠1 x3 = 6 x4 = 23

a5 = “⁄” a6 = “⁄” a7 = “⁄” a8 = “⁄”
i5 = 3 i6 = 4 i7 = 5 i8 = 6
x5 = 18 x6 = 53 x7 = 17 x8 = 43

a9 = “⁄” Noise: Noise: Noise:
i9 = 7 displacement stroke ellipse
x9 = 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄1:t≠1) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (at, it) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

2

33

Simulating Captchas is Much Easier
Bridging the Gap Between the Bayesian Ideal and Common Practice
Tom Rainforth

[Le, Baydin, and Wood. Inference Compilation and Universal
Probabilistic Programming. AISTATS 2017]

In
fe
re
nc

e

G
en

er
at
io
n

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters
3: Ÿ ≥ p(Ÿ) Û sample kerning value
4: Generate letters:
5: � Ω {}
6: for i = 1, . . . , ‹ do
7: ⁄ ≥ p(⁄) Û sample letter ID
8: � Ω append(�, ⁄)
9: Render:
10: “ Ω render(�, Ÿ)
11: fi ≥ p(fi) Û sample noise parameters
12: “ Ω noise(“, fi)

return “

a1 = “L” a2 = “Ÿ” a3 = “⁄” a4 = “⁄”
i1 = 1 i2 = 1 i3 = 1 i4 = 2
x1 = 7 x2 = ≠1 x3 = 6 x4 = 23

a5 = “⁄” a6 = “⁄” a7 = “⁄” a8 = “⁄”
i5 = 3 i6 = 4 i7 = 5 i8 = 6
x5 = 18 x6 = 53 x7 = 17 x8 = 43

a9 = “⁄” Noise: Noise: Noise:
i9 = 7 displacement stroke ellipse
x9 = 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄1:t≠1) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (at, it) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters
3: Ÿ ≥ p(Ÿ) Û sample kerning value
4: Generate letters:
5: � Ω {}
6: for i = 1, . . . , ‹ do
7: ⁄ ≥ p(⁄) Û sample letter ID
8: � Ω append(�, ⁄)
9: Render:
10: “ Ω render(�, Ÿ)
11: fi ≥ p(fi) Û sample noise parameters
12: “ Ω noise(“, fi)

return “

a1 = “L” a2 = “Ÿ” a3 = “⁄” a4 = “⁄”
i1 = 1 i2 = 1 i3 = 1 i4 = 2
x1 = 7 x2 = ≠1 x3 = 6 x4 = 23

a5 = “⁄” a6 = “⁄” a7 = “⁄” a8 = “⁄”
i5 = 3 i6 = 4 i7 = 5 i8 = 6
x5 = 18 x6 = 53 x7 = 17 x8 = 43

a9 = “⁄” Noise: Noise: Noise:
i9 = 7 displacement stroke ellipse
x9 = 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄1:t≠1) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (at, it) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

3

gxs2rRj

34

The Bayesian Pipeline

Bridging the Gap Between the Bayesian Ideal and Common Practice
Tom Rainforth

The Bayesian Pipeline

Inference
Method

}Prior

p(✓)
}Likelihood

p(D|✓)
Data
}D

Posterior

}p(✓|D) / p(D|✓)p(✓)

35

Breaking Captchas with Bayesian Models

https://youtu.be/ZTKx4TaqNrQ?t=9

2TA Le, A G Baydin, and F Wood. “Inference Compilation and Universal Probabilistic Programming”. In:

AISTATS. 2017.

36

https://youtu.be/ZTKx4TaqNrQ?t=9

Making Predictions

• Prediction in Bayesian models is done using the posterior

predictive distribution

• This is defined by taking the expectation of a predictive model

for new data, p(D∗|θ,D), with respect to the posterior:

p(D∗|D) =

∫
p(D∗, θ|D)dθ (10)

=

∫
p(D∗|θ,D)p(θ|D)dθ (11)

= Ep(θ|D)[p(D∗|θ,D)]. (12)

• This often done dependent on an input point, i.e. we actually

calculate p(y |D, x) = Ep(θ|D)[p(y |θ,D, x)]

37

Making Predictions (2)

Points of Note

• We usually assume that p(D∗|θ,D) = p(D∗|θ), i.e. data is

conditionally independent given θ

• p(D∗|θ) is equivalent to the likelihood model of the new data:

in almost all cases we just use the likelihood from the original

model

• Calculating the posterior predictive can be computationally

challenging: sometimes we resort to approximations,

e.g. taking a point estimate for θ (see Lecture 4)

• There are lots of things we might use the posterior for other

than just calculating the posterior predictive, e.g. making

decisions (see course notes) and calculating expectations

38

Recap

• Supervised learning has access to outputs, unsupervised

learning does not

• Discriminative methods try and directly make predictions,

generative methods try to explain how the data is generated

• Bayesian machine learning is a generative approach that

allows us to incorporate uncertainty and information from

prior expertise

• Bayes’ rule: p(θ|D) ∝ p(D|θ)p(θ)

• Posterior predictive: p(D∗|D) = Ep(θ|D) [p(D∗|θ,D)]

39

Further Reading

• Look at the course notes! For this lecture there are discussion

of Bayesian vs frequentist approaches, and a worked example

of Bayesian modeling for a biased coin.

• Chapter 1 of K P Murphy. Machine learning: a probabilistic

perspective. 2012. https://www.cs.ubc.ca/~murphyk/MLbook/pml-intro-22may12.pdf.

• L Breiman. “Statistical modeling: The two cultures”. In:

Statistical science (2001)

• Chapter 1 of C Robert. The Bayesian choice: from

decision-theoretic foundations to computational

implementation. 2007. https://www.researchgate.net/publication/41222434_The_

Bayesian_Choice_From_Decision_Theoretic_Foundations_to_Computational_Implementation.

• Michael I Jordan. Are you a Bayesian or a frequentist? Video

lecture, 2009. http://videolectures.net/mlss09uk_jordan_bfway/

40

https://www.cs.ubc.ca/~murphyk/MLbook/pml-intro-22may12.pdf
https://www.researchgate.net/publication/41222434_The_Bayesian_Choice_From_Decision_Theoretic_Foundations_to_Computational_Implementation
https://www.researchgate.net/publication/41222434_The_Bayesian_Choice_From_Decision_Theoretic_Foundations_to_Computational_Implementation
http://videolectures. net/mlss09uk_jordan_bfway/

