
5

 University of Oxford visual identity guidelines

At the heart of our visual identity is the Oxford logo.
It should appear on everything we produce, from
letterheads to leaflets and from online banners to
bookmarks.

The primary quadrangle logo consists of an Oxford blue
(Pantone 282) square with the words UNIVERSITY OF
OXFORD at the foot and the belted crest in the top
right-hand corner reversed out in white.

The word OXFORD is a specially drawn typeface while all
other text elements use the typeface Foundry Sterling.

The secondary version of the Oxford logo, the horizontal
rectangle logo, is only to be used where height (vertical
space) is restricted.

These standard versions of the Oxford logo are intended
for use on white or light-coloured backgrounds, including
light uncomplicated photographic backgrounds.

Examples of how these logos should be used for various
applications appear in the following pages.

NOTE
The minimum size for the quadrangle logo and the
rectangle logo is 24mm wide. Smaller versions with
bolder elements are available for use down to 15mm
wide. See page 7.

The Oxford logo
Quadrangle Logo

Rectangle Logo

This is the square
logo of first
choice or primary
Oxford logo.

The rectangular
secondary Oxford
logo is for use only
where height is
restricted.

Lecture 2: Bayesian Modeling (Part 1)

Advanced Topics in Machine Learning

Dr. Tom Rainforth

January 24nd, 2020

rainforth@stats.ox.ac.uk

Last Lecture Recap: The Bayesian Pipeline

Bridging the Gap Between the Bayesian Ideal and Common Practice
Tom Rainforth

The Bayesian Pipeline

Inference
Method

}Prior

p(✓)
}Likelihood

p(D|✓)
Data
}D

Posterior

}p(✓|D) / p(D|✓)p(✓)

1

Lecture 2 Outline

• What is a Bayesian model?

• Bayesian modeling through the eyes of multiple hypotheses

• Worked example: Bayesian linear regression

• What makes a good model and how do we compare between

models?

• Bayesian model averaging

2

What is a Bayesian
Model?

2

What is a Model?

• Models are mechanisms for reasoning about the world

• Examples: Newtonian mechanics, simulators, internal models

our brain constructs

• Good models balance fidelity, predictive power and
tractability

• Quantum mechanics is a more accurate model than Newtonian

mechanics, but it is actually less useful for everyday tasks

3

Example Model: Poker Players Reasoning about Each Other
Bridging the Gap Between the Bayesian Ideal and Common Practice
Tom Rainforth

Nested Inference: Reasoning about Reasoning

[Rainforth. Nesting Probabilistic Programs. ArXiv Preprint. 2018]

[Rainforth, Cornish, Yang, Warrington, and Wood. On the Opportunities and
Pitfalls of Nesting Monte Carlo Estimators. ArXiv Preprint. 2017]

 20

Cards are ok, but if
he bets I’ll fold

Bad cards, should
probably fold

Can I bluff him
though? I doubt he

has good cards
He might be
bluffing though…

4

Example Model: Computer Simulations

5

What is Bayesian Model?

• A Bayesian model is a probabilistic generative model

p(θ,D) over latents θ and data D
• It forms a probabilistic “simulator” for generating data that

we might have seen

• Pretty much any stochastic simulator can be used as a

Bayesian model (we will return to this idea in more detail

when we cover probabilistic programming)

6

Example Bayesian Model: Captcha Simulator
Bridging the Gap Between the Bayesian Ideal and Common Practice
Tom Rainforth

[Le, Baydin, and Wood. Inference Compilation and Universal
Probabilistic Programming. AISTATS 2017]

In
fe
re
nc

e

G
en

er
at
io
n

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters
3: Ÿ ≥ p(Ÿ) Û sample kerning value
4: Generate letters:
5: � Ω {}
6: for i = 1, . . . , ‹ do
7: ⁄ ≥ p(⁄) Û sample letter ID
8: � Ω append(�, ⁄)
9: Render:
10: “ Ω render(�, Ÿ)
11: fi ≥ p(fi) Û sample noise parameters
12: “ Ω noise(“, fi)

return “

a1 = “L” a2 = “Ÿ” a3 = “⁄” a4 = “⁄”
i1 = 1 i2 = 1 i3 = 1 i4 = 2
x1 = 7 x2 = ≠1 x3 = 6 x4 = 23

a5 = “⁄” a6 = “⁄” a7 = “⁄” a8 = “⁄”
i5 = 3 i6 = 4 i7 = 5 i8 = 6
x5 = 18 x6 = 53 x7 = 17 x8 = 43

a9 = “⁄” Noise: Noise: Noise:
i9 = 7 displacement stroke ellipse
x9 = 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄1:t≠1) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (at, it) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters
3: Ÿ ≥ p(Ÿ) Û sample kerning value
4: Generate letters:
5: � Ω {}
6: for i = 1, . . . , ‹ do
7: ⁄ ≥ p(⁄) Û sample letter ID
8: � Ω append(�, ⁄)
9: Render:
10: “ Ω render(�, Ÿ)
11: fi ≥ p(fi) Û sample noise parameters
12: “ Ω noise(“, fi)

return “

a1 = “L” a2 = “Ÿ” a3 = “⁄” a4 = “⁄”
i1 = 1 i2 = 1 i3 = 1 i4 = 2
x1 = 7 x2 = ≠1 x3 = 6 x4 = 23

a5 = “⁄” a6 = “⁄” a7 = “⁄” a8 = “⁄”
i5 = 3 i6 = 4 i7 = 5 i8 = 6
x5 = 18 x6 = 53 x7 = 17 x8 = 43

a9 = “⁄” Noise: Noise: Noise:
i9 = 7 displacement stroke ellipse
x9 = 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄1:t≠1) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (at, it) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

3

gxs2rRj

7

Example Bayesian Model: Neuron Growth

8

Example Bayesian Model: Gaussian Mixture Model

9

Example Bayesian Model: Gaussian Mixture Model

Fixed parameters:

π = [0.5, 0.5]

µ1 = [−3,−3] µ2 = [3, 3]

Σ1 =

[
1 −0.7

−0.7 1

]
, Σ2 =

[
1 0

0 1

]

Generative model:

θ ∼ Categorical(π)

x ∼ N (µθ,Σθ)

Generative model (full dataset):

p(θ,D) =
N∏

n=1

p(θn, xn)

10

A Fundamental Assumption

• An assumption made by virtually all Bayesian models is that

datapoints are conditionally independent given the parameter

values.

• In other words, if our data is given by D = {xn}Nn=1, we

assume that the likelihood factorizes as follows

p(D|θ) =
N∏

n=1

p(xn|θ). (1)

• This effectively equates to assuming that our model captures

all information relevant to prediction

• For more details, see the notes

11

All models are wrong,

but some are useful

—George Box

11

What is the Purpose of a Model?

• The purpose of a model is to help provide insights into a

target problem or data and sometimes to further use these

insights to make predictions

• Its purpose is not to try and fully encapsulate the “true”

generative process or perfectly describe the data

• There are infinite different ways to generate any given dataset

• Trying to uncover the “true” generative process is not even a

well-defined problem

• In any real–world scenario, no Bayesian model can be
“correct”

• The posterior is inherently subjective

• It is still important to criticize—models can be very wrong!

• E.g. we can use frequentist methods to falsify the likelihood

12

Some Models are Much Better than Others

13

Some Models are Much Better than Others

13

Some Models are Much Better than Others

13

Bayesian Modeling
Through the Eyes of
Multiple Hypotheses

13

Bayesian Modeling as Multiple Hypotheses

Bayesian models are rooted in hypotheses:

• Each instance of our parameters θ is a hypothesis. Given a θ,

we can simulate data using the likelihood model p(D|θ)

• Bayesian inference allows us to reason about these

hypothesis, giving the probability that each is true given the

actual data we observe

• The posterior predictive is a weighted sum of the predictions

from all possible hypotheses, where these weights are how

likely that hypothesis is to be true

14

Example: Density Estimation

Presume that we decide

to use an isotropic Gaus-

sian likelihood with un-

known mean θ to model the

data on the right:

p(D|θ) =
N∏

n=1

N (xn; θ, I)

where I is a two-dimensional

identity matrix

15

Example: Density Estimation

Hypothesis 1: θ = [−2, 0]

p(D|θ = [−2, 0])

= 0.00059× 10−5

Hypothesis 2: θ = [0, 0]

p(D|θ = [0, 0])

= 0.99× 10−5

Hypothesis 3: θ = [2, 0]

p(D|θ = [2, 0])

= 0.021× 10−5

15

Example: Density Estimation

Hypothesis 1: θ = [−2, 0]

p(D|θ = [−2, 0])

= 0.00059× 10−5

Hypothesis 2: θ = [0, 0]

p(D|θ = [0, 0])

= 0.99× 10−5

Hypothesis 3: θ = [2, 0]

p(D|θ = [2, 0])

= 0.021× 10−5

15

Example: Density Estimation

Hypothesis 1: θ = [−2, 0]

p(D|θ = [−2, 0])

= 0.00059× 10−5

Hypothesis 2: θ = [0, 0]

p(D|θ = [0, 0])

= 0.99× 10−5

Hypothesis 3: θ = [2, 0]

p(D|θ = [2, 0])

= 0.021× 10−5

15

Example: Density Estimation (2)

Clearly θ = [0, 0] is the best of these three hypotheses.

More generally, the likelihood model is telling us how likely each

hypothesis is to be correct given the data we observe.

16

Bayesian Modeling Allows us To Express our Prior Beliefs

• In the above

example we only

considered the

likelihood of each

hypothesis

• We may though

have unequal prior

beliefs about each

hypothesis

https://xkcd.com/1132/

17

https://xkcd.com/1132/

The Posterior Predictive Averages over Hypotheses

The posterior predictive distribution allows us to average over each

of our hypotheses, weighting each by their posterior probability.

For example, in our density estimation example, lets introduce (the

rather unusual but demonstrative) prior,

p(θ) =


0.05 if θ = [−2, 0]

0.05 if θ = [0, 0]

0.9 if θ = [2, 0]

0 otherwise

(2)

18

The Posterior Predictive Averages over Hypotheses (2)

Then we have (note dθ is a counting measure below)

p(x |D) =

∫
p(x |θ)p(θ|D)dθ

=
1

p(D)

∫
p(x |θ)p(θ,D)dθ

=
1

p(D)

(
N (x ; [−2, 0], I)× 0.05× p(D|θ = [−2, 0])

+N (x ; [0, 0], I)× 0.05× p(D|θ = [0, 0])

+N (x ; [2, 0], I)× 0.9× p(D|θ = [2, 0])

)

19

The Posterior Predictive Averages over Hypotheses (3)

Inserting our likelihoods from earlier and trawling through the

algebra now gives

p(x |D) =0.0004×N (x ; [−2, 0], I)

+0.716×N (x ; [0, 0], I)

+0.283×N (x ; [2, 0], I)

We thus have that the posterior predictive is a weighted sum of

the three possible predictive distributions

20

The Posterior Predictive Averages over Hypotheses (4)

21

An Important Subtlety

• Even though we average over θ, a Bayesian model is still
implicitly assuming that there is still a single true θ
• The averaging over hypotheses is from our own uncertainty as

the which one is correct

• This can be problematic with lots of data given our model is

an approximation

• In the limit of large data, the posterior is guaranteed to

collapse to a point estimate:

p(θ|x1:N)→ δ(θ = θ̂) as N →∞ (3)

• The value of θ̂ and the exact nature of this convergence is

dictated by the Bernstein–von Mises Theorem (see the notes)
• Note that, subject to mild assumptions, θ̂ is independent of

the prior
• With enough data, the likelihood always dominates the prior

22

Worked Example:
Bayesian Linear Regression

22

Linear Regression

House size is a good linear predictor for price (ignore the colors)

Linear regression

Roughly linear relationship

The size of a house is a good predictor of its price.

Sale price ¥ price_per_sqft ◊ square_footage + fixed_expense
Image credit: Pier Palamara 23

Linear Regression (2)

Here we have:

• Inputs x ∈ RD (where D = 1 for this particular problem)

• Outputs y ∈ R
• Data D comprising of N input–output pairs: D = {xn, yn}Nn=1

• A regression model y ≈ xTw + b where w ∈ RD and b ∈ R
• We can simplify this notation by redefining x ← [1, xT]T and

w ← [b,wT]T , such that we now have y ≈ xTw

Classical least squares linear regression is a discriminative method

where we aim to minimize the empirical mean squared error

R =
1

N

N∑
n=1

(yn − xTn w)2.

24

Linear Regression (3)

Image credit: Pier Palamara

25

Bayesian Linear Regression

• Defining x = [x1, . . . , xN]T and y = [y1, . . . , yN]T , the least

square solution is analytically given by (see last term’s

machine learning module for a derivation)

w∗ =
(

xTx
)−1

xTy (4)

• This only provides a point estimate for w

• We have no uncertainty estimate

• We can introduce uncertainty by building a probabilistic

generic model based around linear regression and then being

Bayesian about the weights

26

Bayesian Linear Regression: Prior

The first step to do this is to define a prior over the weights. We

will use a zero-mean Gaussian with a fixed covariance matrix C :

p(w) = N (w ; 0,C) (5)

Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations for
how the data were generated.

It makes predictions using all possible regression weights, weighted by
their posterior probability.

Prior distribution: w ⇠ N (0,S)

Likelihood: t | x,w ⇠ N (w> (x), �2)

Assuming fixed/known S and �2 is a big assumption. More on this
later.

UofT CSC 411: 19-Bayesian Linear Regression 8 / 36

Image credit: Roger Grosse

27

Bayesian Linear Regression: Likelihood

We next need to introduce a likelihood model based on these

weights. We will make the standard assumption that the

datapoints are independent of each other given the weights and

again use a Gaussian to give

p(y|x,w) =
N∏

n=1

p(yn|xn,w) =
N∏

n=1

N (yn; xTn w , σ2), (6)

where σ is a (fixed) standard deviation.

It is interesting to note that this likelihood is maximized by the

least squares solution; this is a generalization of standard linear

regression

28

Bayesian Linear Regression: Posterior

We can now combine these to give the posterior using Bayes’ rule:

p(w |x, y) ∝ p(w)p(y|x,w) (7)

= N (w ; 0,C)
N∏

n=1

N (yn; xTn w , σ2) (8)

We omit the necessary algebra (see C M Bishop. Pattern

recognition and machine learning. 2006, Chapter 3), but it is

reasonably straightforward to show that

p(w |x, y) = N (w ;m, S) (9)

where m = S−1xTy/σ2 and S =

(
C−1 +

xTx

σ2

)−1

.

29

Bayesian Linear Regression: Posterior (2)

Note here that the fact the prior and posterior share the same form

is highly special case. This is known as a conjugate distribution and

it is why we were able to find an analytic solution for the posterior.

Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations for
how the data were generated.

It makes predictions using all possible regression weights, weighted by
their posterior probability.

Prior distribution: w ⇠ N (0,S)

Likelihood: t | x,w ⇠ N (w> (x), �2)

Assuming fixed/known S and �2 is a big assumption. More on this
later.

UofT CSC 411: 19-Bayesian Linear Regression 8 / 36

Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations for
how the data were generated.

It makes predictions using all possible regression weights, weighted by
their posterior probability.

Prior distribution: w ⇠ N (0,S)

Likelihood: t | x,w ⇠ N (w> (x), �2)

Assuming fixed/known S and �2 is a big assumption. More on this
later.

UofT CSC 411: 19-Bayesian Linear Regression 8 / 36

Posterior after 1 observation Posterior after 2 observations

30

Bayesian Linear Regression: Posterior (3)
3.3. Bayesian Linear Regression 155

Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
w0 + w1x. A detailed description of this figure is given in the text.

1C M Bishop. Pattern recognition and machine learning. 2006. 31

Bayesian Linear Regression: Posterior (3)

3.3. Bayesian Linear Regression 155

Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
w0 + w1x. A detailed description of this figure is given in the text.

1Bishop, Pattern recognition and machine learning.
31

Bayesian Linear Regression: Posterior Predictive

Given this posterior, we can now calculate the posterior predictive

as follows

p(ỹ |x̃ , x, y) =

∫
p(ỹ |x̃ ,w)p(w |x, y)dw (10)

=

∫
N (ỹ ; x̃Tw , σ2) N (w ;m,S) dw

= N
(
ỹ ; x̃Tm,

(
x̃TS−1x̃ +

1

σ2

)−1
)

(11)

where the result is again a consequence of standard Gaussian

identities and m and S are as before.

32

Bayesian Linear Regression: Posterior Predictive (2)

Image credit:

https://www.dataminingapps.com/2017/09/simple-linear-regression-do-it-the-bayesian-way/ 33

https://www.dataminingapps.com/2017/09/simple-linear-regression-do-it-the-bayesian-way/

Model Comparison: What
Makes a Good Model?

33

Example: Polynomial Regression

Imagine we are trying to fit this data:

Obviously linear regression is not appropriate here

This example is adapted from one by Carl Rasmussen: http://mlg.eng.cam.ac.uk/teaching/4f13/1920/ 34

http://mlg.eng.cam.ac.uk/teaching/4f13/1920/

Example: Polynomial Regression (2)

A slightly more complicated approach would be to perform

polynomial regression.

This is analogous to linear regression except that we now have

(sticking to a one dimensional x for simplicity)

p(yn|xn,w) = N (yn;w0 + w1xn + w2x
2
n + · · ·+ wMxMn , σ

2), (12)

where M is the degree of the polynomial, w = [w1,w2, . . . ,wM],

and we must now define a prior for each element of w.

35

Example Polynomials for Each Degree

Image credit: Carl Rasmussen 36

Least Squares Estimate for Each Degree

Image credit: Carl Rasmussen
37

Perfectly Matching the Data is Not Enough

With a high degree polynomial we can perfectly fit the data (i.e.

achieve zero loss by passing through each point). . .

. . . but the predictive power of this model is poor: we have overfit

We can actually

have an arbitrarily

large error at an

unseen point (e.g.

x = 0.25) while

perfectly matching

the data

Image credit: Carl Rasmussen 38

Perfectly Matching the Data is Not Enough

With a high degree polynomial we can perfectly fit the data (i.e.

achieve zero loss by passing through each point). . .

. . . but the predictive power of this model is poor: we have overfit

We can actually

have an arbitrarily

large error at an

unseen point (e.g.

x = 0.25) while

perfectly matching

the data

Image credit: Carl Rasmussen 38

What Went Wrong?

• We did not put a prior on the weights or regularize them in
any other way

• We implicitly took the following maximum likelihood solution

that was very prone to overfitting:

p(y |x ,D) = p(y |x , θ∗)

where θ∗ = arg max
θ

p(D|θ)
(13)

• We also did not careful consider if a high degree polynomial
was actually a good model: having a good model requires
more than just being able to fit the data

• It also needs to generalize effectively to unseen samples

39

Marginal Likelihoods

• Let’s revisit Bayes’ rule and now condition on the model m:

p(θ|D,m) =
p(D|θ,m)p(θ|m)

p(D|m)
(14)

• The marginal likelihood of a model p(D|m) represents the

probability of the data under the model, averaging over all

possible parameter values.

• It is crucial to deciding between models in Bayesian settings

• A high marginal likelihood indicates a good model

• For this reason, it also known as the model evidence

• The ratio of two marginal likelihoods, e.g. p(D|m1)/p(D|m2),

is known as a Bayes factor and is used to compare models

40

Marginal Likelihoods (2)

Why should we use the model evidence to compare models?

Apply Bayes rule to the models themselves:

p(m|D) =
p(D|m)p(m)

p(D)
(15)

This give us a direct relationship between the model evidence and

the posterior probability of that model

If we a priori have no preference between models such that p(m) is

uniform, we even get that p(m|D) ∝ p(D|m)

41

Marginal Likelihoods for Polynomial Regression

Returning to our polynomial regression problem and now taking a

Bayesian approach with a Gaussian prior on the weights, we see

that the model evidence prefers a degree of M = 3

This is a“sweet-spot”: complex enough to accurately match the

data, simple enough to retain strong predictive power

Image credit: Carl Rasmussen

42

Bayesian Occam’s Razor

• Occam’s Razor states that if two explanations are able to

explain a set of observations, the simpler one should be

preferred.

• We can apply this in a Bayesian context by noting that the

marginal likelihood is the probability that randomly selected

parameters from the prior would generate D
• Models that are too simple are unlikely to generate the

observed dataset.

• Models that are too complex can generate many possible

datasets, so again, they are unlikely to generate that particular

dataset at random.

43

Bayesian Occam’s Razor (2)

Imagine a hypothetical order on datasets where they get more

complicated as we move away from the origin.

The model with highest evidence is the one that is powerful

enough to explain that data but not anything more complicated.

Image credit: Maneesh Sahani

44

Bayesian Occam’s Razor (3)

We can visually see this effect by returning to our polynomial

regression example (with different data this time):

Image credit: Maneesh Sahani 45

Bayesian Model Averaging

45

Bayesian Model Averaging

Sometimes it is actually viable to avoid choosing between a set of

models entirely by instead performing Bayesian model averaging

This involves being Bayesian about models themselves, namely

marginalizing over them in the posterior predictive:

p(D∗|D) =

∫∫
p(D∗|θ,m)p(θ|D,m)p(m|D)dθdm (16)

=

∫∫
p(D∗|θ,m)

p(D|θ,m)p(θ|m)

p(D|m)

p(D|m)p(m)

p(D)
dθdm (17)

=

∫∫
p(D∗|θ,m)

p(D|θ,m)p(θ|m)p(m)

p(D)
dθdm (18)

=

∫∫
p(D∗|θ,m)p(θ,m|D)dθdm (19)

where p(m) is a prior on models and we see this is effectively

equivalent to the standard posterior predictive for both {θ,m} 46

Bayesian Model Averaging is not Model Combination

• It is important to note that Bayesian model averaging does

not enrich the class of models themselves.

• Analogously to standard Bayesian inference, we are implicitly

assuming one of the models has lead to the data: the

averaging is over our own uncertainty, not a way of creating a

more complex compound model

• Example: Bayesian decision trees are inherently less powerful

than random forests. Given enough data the posterior

collapses to a single tree that is itself usually a poor model

47

Further Reading

• Information on non-parametric models and Gaussian processes will

be provided in the notes

• Bishop, Pattern recognition and machine learning, Chapters 1-3

• K P Murphy. Machine learning: a probabilistic perspective. 2012,

Chapter 5

• D Barber. Bayesian reasoning and machine learning. 2012,

Chapter 12

• T P Minka. “Bayesian model averaging is not model combination”.

In: (2000)

• Zoubin Ghahramani on Bayesian machine learning (there are various

alternative variations of this talk):

https://www.youtube.com/watch?v=y0FgHOQhG4w

• Iain Murray on Probabilistic Modeling

https://www.youtube.com/watch?v=pOtvyVYAuW4
48

https://www.youtube.com/watch?v=y0FgHOQhG4w
https://www.youtube.com/watch?v=pOtvyVYAuW4

