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Last Lecture Recap: The Bayesian Pipeline
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Lecture 2 Outline

What is a Bayesian model?

Bayesian modeling through the eyes of multiple hypotheses

Worked example: Bayesian linear regression

What makes a good model and how do we compare between
models?

Bayesian model averaging



What is a Bayesian
Model?



What is a Model?

e Models are mechanisms for reasoning about the world

e Examples: Newtonian mechanics, simulators, internal models
our brain constructs
e Good models balance fidelity, predictive power and
tractability
e Quantum mechanics is a more accurate model than Newtonian
mechanics, but it is actually less useful for everyday tasks



Example Model: Poker Players Reasoning about Each Other

¥ Cards are ok, but if
he bets I’ll fold

Bad cards, should
probably fold

Can | bluff him
though? | doubt he
has good cards

He might be
bluffing though...




Example Model: Computer Simulations




What is Bayesian Model?

e A Bayesian model is a probabilistic generative model
p(6,D) over latents 6 and data D

e It forms a probabilistic “simulator” for generating data that
we might have seen

e Pretty much any stochastic simulator can be used as a
Bayesian model (we will return to this idea in more detail
when we cover probabilistic programming)



Example Bayesian Model: Captcha Simulator
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Example Bayesian Model: Neuron Growth
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Example Bayesian Model: Gaussian Mixture Model
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Example Bayesian Model: Gaussian Mixture Model

Fixed parameters:

m=[0.5,0.5] 6
H1 = [_37 _3] H2 = [37 3] 4
e B B I L 5
07 1 o 1|
8 0
Generative model: D)
6 ~ Categorical(n) ”
x ~ N (o, Xp) 6
-5 0 5
Generative model (full dataset): )
N
p(9> D) = H p(enaxn)
n=1
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A Fundamental Assumption

e An assumption made by virtually all Bayesian models is that
datapoints are conditionally independent given the parameter
values.

e In other words, if our data is given by D = {x,}V_;, we

n=1’

assume that the likelihood factorizes as follows
p(DI0) = H P(xnl0)- (1)

e This effectively equates to assuming that our model captures
all information relevant to prediction

e For more details, see the notes
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All models are wrong,
but some are useful
—George Box



What is the Purpose of a Model?

e The purpose of a model is to help provide insights into a
target problem or data and sometimes to further use these
insights to make predictions

e |ts purpose is not to try and fully encapsulate the “true”
generative process or perfectly describe the data

e There are infinite different ways to generate any given dataset

e Trying to uncover the “true” generative process is not even a
well-defined problem

e In any real-world scenario, no Bayesian model can be
“correct”

e The posterior is inherently subjective
e It is still important to criticize—models can be very wrong!

e E.g. we can use frequentist methods to falsify the likelihood
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Some Models are Much Better than Others
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Some Models are Much Better than Others
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Some Models are Much Better than Others
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Bayesian Modeling
Through the Eyes of
Multiple Hypotheses



Bayesian Modeling as Multiple Hypotheses

Bayesian models are rooted in hypotheses:

e Each instance of our parameters 0 is a hypothesis. Given a 0,
we can simulate data using the likelihood model p(D|0)

e Bayesian inference allows us to reason about these
hypothesis, giving the probability that each is true given the
actual data we observe

e The posterior predictive is a weighted sum of the predictions
from all possible hypotheses, where these weights are how
likely that hypothesis is to be true
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Example: Density Estimation

4.
Presume that we decide
to use an isotropic Gaus- 2
sian likelihood with un-
known mean 6 to model the
data on the right: g 0 <
p(D|6) = Han,o 1 -2
where [ is a two-dimensional -4

identity matrix
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Example: Density Estimation

Hypothesis 1: 6 = [—2,0] 4
p(D|0 = [-2,0])
=0.00059 x 107° 2
g 0 z -
-2
40

T
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Example: Density Estimation

Hypothesis 1: 6 = [—2,0] 4
p(DJo = [~2,0])

= 0.00059 x 107° 2
Hypothesis 2: 6§ = [0, 0]

p(DI6 = [0,0]) 0
=0.99 x 107°

-2

4!

-4 -2 0 2 4

I
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Example: Density Estimation

x

Hypothesis 1: 6 = [—2,0] 4
p(D|0 = [-2,0])
=0.00059 x 10~° 2
Hypothesis 2: 6 = [0, 0]
p(D]0 = [0,0)) 8 0
=0.99 x 107°
2!
Hypothesis 3: 6 = [2,0]
p(Dl6 = [2,0]) »
=0.021 x 107° 4 )

x1
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Example: Density Estimation (2)

Clearly 6 = [0,0] is the best of these three hypotheses.

More generally, the likelihood model is telling us how likely each
hypothesis is to be correct given the data we observe.

x107°



Bayesian Modeling Allows us To Express our Prior Beliefs

e In the above
example we only
considered the
likelihood of each
hypothesis

e We may though
have unequal prior
beliefs about each

hypothesis

DD (’Il'-lE SUN JUST EXPLODE?

TS NIGHT, S0 WERE NOT SURE,)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.
THEN, ITROWS TWO DICE. |F THEY
BOTH COME UP SIX, ITUES TO US.

OHERWISE, IT TELLS THE TRUH.

LETS TRY.
CETECIOR! HAS THE

5UA/G¢WEAW‘)’
(RouLy)

FAT

https://xkcd.com/1132/
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The Posterior Predictive Averages over Hypotheses

The posterior predictive distribution allows us to average over each
of our hypotheses, weighting each by their posterior probability.

For example, in our density estimation example, lets introduce (the
rather unusual but demonstrative) prior,

0.05 if 6=1[-2,0]
~Joos if 6=[0,0]
P} = 0.9 if 6=1[20] @)

0 otherwise

18



The Posterior Predictive Averages over Hypotheses (2)

Then we have (note df is a counting measure below)

p(xID) = [ p(xI8)p(6ID)do

_ p(lp)/p(X]G)p(G,D)dH
_ p(lp) </\/(X; [<2,0],1) x 0.05 x p(D|d = [-2,0])

+ N(x;[0,0], 1) x 0.05 x p(D|8 = [0,0])

+N(X; [2,0], I) x 0.9 x P(D‘g = [270]))
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The Posterior Predictive Averages over Hypotheses (3)

Inserting our likelihoods from earlier and trawling through the
algebra now gives
p(x|D) =0.0004 x N (x;[-2,0],1)
+0.716 x N (x;[0,0],/)
+0.283 x N (x;[2,0], /)

We thus have that the posterior predictive is a weighted sum of
the three possible predictive distributions
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The Posterior Predictive Averages over Hypotheses (4)

10.12
1 0.1
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10.06

0.04
0.02
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An Important Subtlety

e Even though we average over 6, a Bayesian model is still
implicitly assuming that there is still a single true 6
e The averaging over hypotheses is from our own uncertainty as
the which one is correct
e This can be problematic with lots of data given our model is
an approximation
e In the limit of large data, the posterior is guaranteed to
collapse to a point estimate:

p(Blx1.n) = 6(0 =0) as N — oo (3)

e The value of § and the exact nature of this convergence is
dictated by the Bernstein—von Mises Theorem (see the notes)

e Note that, subject to mild assumptions, 0 is independent of
the prior

e With enough data, the likelihood always dominates the prior ”



Worked Example:
Bayesian Linear Regression



Linear Regression

House size is a good linear predictor for price (ignore the colors)
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Image credit: Pier Palamara
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Linear Regression (2)

Here we have:

e Inputs x € RP (where D = 1 for this particular problem)
Outputs y € R
Data D comprising of N input—output pairs: D = {x,, yn}\_;

e A regression model y ~ x"w + b where w € RP and b € R
T and

e We can simplify this notation by redefining x « [1, x
w ¢ [b,wT]T, such that we now have y ~ x"w

Classical least squares linear regression is a discriminative method

where we aim to minimize the empirical mean squared error
—x w)
=¥ Z
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Linear Regression (3)

Image credit: Pier Palamara
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Bayesian Linear Regression

e Defining x = [x1,...,xn]” and y = [y1,...,yn]", the least
square solution is analytically given by (see last term’s
machine learning module for a derivation)

w* = (xTx)_1 x"y (4)

e This only provides a point estimate for w
e We have no uncertainty estimate
e We can introduce uncertainty by building a probabilistic
generic model based around linear regression and then being
Bayesian about the weights
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Bayesian Linear Regression: Prior

The first step to do this is to define a prior over the weights. We
will use a zero-mean Gaussian with a fixed covariance matrix C:

p(w) = N(w;0, C) (5)

Image credit: Roger Grosse
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Bayesian Linear Regression: Likelihood

We next need to introduce a likelihood model based on these
weights. We will make the standard assumption that the
datapoints are independent of each other given the weights and
again use a Gaussian to give

N N

p(ylx, w) = T p(valxa, w) = [T N (i xg w. %), (6)

n=1 n=1
where o is a (fixed) standard deviation.

It is interesting to note that this likelihood is maximized by the
least squares solution; this is a generalization of standard linear
regression

28



Bayesian Linear Regression: Posterior

We can now combine these to give the posterior using Bayes' rule:

p(w|x,y) oc p(w)p(y|x, w) (7)
N

= N(w;0, C)HN(yn;X,TW,a2) (8)
n=1

We omit the necessary algebra (see C M Bishop. Pattern
recognition and machine learning. 2006, Chapter 3), but it is
reasonably straightforward to show that

p(wlx,y) = N (w;m,5) (9)

T -1
where m = 5_1xTy/o2 and S = <C—1 + x2> ]
o
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Bayesian Linear Regression: Posterior (2)

Note here that the fact the prior and posterior share the same form
is highly special case. This is known as a conjugate distribution and
it is why we were able to find an analytic solution for the posterior.

A A

> >

Posterior after 1 observation Posterior after 2 observations

30



Bayesian

Linear Regression: Posterior (3)

likelihood prior/posterior

Icwm Bishop. Pattern recognition and machine learning. 2006.

data space
1
Yy
0
-1
-1 0 z 1
1
Y
0
-1
-1 0 x 1
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Bayesian Linear Regression: Posterior (3)

lBishop, Pattern recognition and machine learning.

31



Bayesian Linear Regression: Posterior Predictive

Given this posterior, we can now calculate the posterior predictive
as follows

P71, %,3) = / p(71%, w)p(wlx, y)dw (10)
= /N(y;)?TW,O'2)N(W; m, S) dw

_N<y £Tm, (;T51>"<+012>1> (11)

where the result is again a consequence of standard Gaussian
identities and m and S are as before.
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Bayesian Linear Regression: Posterior Predictive (2)

L L L L L L

=== True regression line
35 - === Bayesian linear regression

25 4

Image credit:
https://www.dataminingapps.com/2017/09/simple-1linear-regression-do-it-the-bayesian-way/ 33
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Model Comparison: What
Makes a Good Model?



Example: Polynomial Regression

Imagine we are trying to fit this data:

w

=21

-3

4t

Obviously linear regression is not appropriate here

This example is adapted from one by Carl Rasmussen: http://mlg.eng.cam.ac.uk/teaching/4£13/1920/ 34
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Example: Polynomial Regression (2)

A slightly more complicated approach would be to perform
polynomial regression.

This is analogous to linear regression except that we now have
(sticking to a one dimensional x for simplicity)

P(YnlXn, W) = N (Vn; wo + wixy + wax? 4 - - - + wiyxM, 0?), (12)

where M is the degree of the polynomial, w = [wi, wa, ..., wpy],
and we must now define a prior for each element of w.
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Example Polynomials for Each Degree

M=0 M=1 M=2 M=3 M=4 M=5
2 2 2| 2| 2| 2
0 0 0 0| 0 0
-2 -2 -2 -2 -2 -2
-4 -4 -4 -4/ -4 -4
-1012 -1012 -1012 -1012 -1012 -1012
M=6 M=7 M=8 M=9 M=10  M=11
2 2 2| 2| 2 2
0 0 o} 0 0 0
-2 -2 -2 -2 -2 -2
-4 -4 - -4 -4 -4
-1012 -1012 -1012 -1012 -1012 -1012
M=12 M=13 M=14 M=15 M=16 M=17
2 2 2’ 2 2 2
0 0 0 0 0 0
-2 -2 -2 -2 -2 -2
-4 -4 -4 -4 -4 -4
-1012 -1012 -1012 -1012 -1012 -1012

Image credit: Carl Rasmussen
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Least Squares Estimate for Each Degree

M=0 M=1 M=2 M=3 M=4 M=5

2 .: ‘V. 2 .o. 2 p g 2 o. 2 0 2 0
o> 0 ° 0 ,/r" 0 0 0

2t -2 -2 -2 -2 -2

-40 -4f -47 -4 -4 -4
-1 o 1 2 1012 -1012 -1012 -1012 1012

M=7 = M= =1 =1
2 2 2 2| e 2
0 0 ° o ~° o *° o.¢°
-2 -2 —2 —2
-4

1012 —1012 —1012 —1012 —1012 —1012
M=1 M=13 M=14 M=15 M=1

2 2 2 Thga ; 2 Jheg ﬂ 2 2
0 0 0 0 0 0
-2 -2 -2 -2 -2 -2
-4 -4 -4 -4 -4 -4

-1012 -1012 -1012 -1012 1012 -1012

onN

Image credit: Carl Rasmussen 37



Perfectly Matching the Data is Not Enough

With a high degree polynomial we can perfectly fit the data (i.e.
achieve zero loss by passing through each point). ..

Image credit: Carl Rasmussen 38



Perfectly Matching the Data is Not Enough

With a high degree polynomial we can perfectly fit the data (i.e.
achieve zero loss by passing through each point). ..

... but the predictive power of this model is poor: we have overfit

3 ‘
We can actually 2; /:\ A a |
have an arbitrarily 1 I/ '«\. Y \V
large error at an o | | :
unseen point (e.g. -1 \/ 3
x = 025) while = | ¥ :
perfectly matching -3 | ¢
the data -4 o

Rs 4 s ‘ 0 0.5 1 15 2

Image credit: Carl Rasmussen 38



What Went Wrong?

e We did not put a prior on the weights or regularize them in
any other way

e We implicitly took the following maximum likelihood solution
that was very prone to overfitting:

p(y|x, D) = p(y|x,0%)

where 6" = arg max p(D|0) (13)
0

e We also did not careful consider if a high degree polynomial
was actually a good model: having a good model requires
more than just being able to fit the data

e |t also needs to generalize effectively to unseen samples

39



Marginal Likelihoods

e let's revisit Bayes' rule and now condition on the model m:

p(D|6, m)p(0]m)
p(D|m)

p(0|D, m) = (14)
e The marginal likelihood of a model p(D|m) represents the
probability of the data under the model, averaging over all
possible parameter values.
e |t is crucial to deciding between models in Bayesian settings
e A high marginal likelihood indicates a good model
e For this reason, it also known as the model evidence
e The ratio of two marginal likelihoods, e.g. p(D|m1)/p(D|my),
is known as a Bayes factor and is used to compare models

40



Marginal Likelihoods (2)

Why should we use the model evidence to compare models?
Apply Bayes rule to the models themselves:

p(D|m)p(m)
p(mD)="—_-—+—""= 15
(mip) = P= 28 (15)
This give us a direct relationship between the model evidence and
the posterior probability of that model
If we a priori have no preference between models such that p(m) is
uniform, we even get that p(m|D) o« p(D|m)

41



Marginal Likelihoods for Polynomial Regression

Returning to our polynomial regression problem and now taking a
Bayesian approach with a Gaussian prior on the weights, we see

that the model evidence prefers a degree of M =3

Q
0
[«]
Q
T
N
Q
o
Q
~
—100, 5 10 15 20

M: Degree of the polynomial

This is a“sweet-spot”: complex enough to accurately match the
data, simple enough to retain strong predictive power

Image credit: Carl Rasmussen
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Bayesian Occam’s Razor

e Occam’s Razor states that if two explanations are able to
explain a set of observations, the simpler one should be
preferred.

e We can apply this in a Bayesian context by noting that the

marginal likelihood is the probability that randomly selected
parameters from the prior would generate D

e Models that are too simple are unlikely to generate the
observed dataset.

e Models that are too complex can generate many possible
datasets, so again, they are unlikely to generate that particular
dataset at random.

43



Bayesian Occam’s Razor (2)

Imagine a hypothetical order on datasets where they get more
complicated as we move away from the origin.

The model with highest evidence is the one that is powerful
enough to explain that data but not anything more complicated.

B
8
Q.

L=

11
ymm
==t

A .}

v A /'/'J AN \1‘\ N\
datasets: D Do

Image credit: Maneesh Sahani
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Bayesian Occam’s Razor (3)

We can visually see this effect by returning to our polynomial
regression example (with different data this time):

M=0 M=1 M=2 M=3
|
40 40 40) 40 Model Evidence
. . 1 1
20 20 20/ 20
o o |
e o 0.8
o * 0 0 0
-20 -20 -20 -20 o
0 10 0 5 10 0 10 0o 5 10 2
M=4 M=5 M=6 M=7 Toa
40 40 40! 40
| 0.2
20 20 20| 20
‘ 0 0 1 2 3 4 5 6
0 0 0 0 M
20 —20 20! -20 vl
0 5 10 10 0o 5 10

Image credit: Maneesh Sahani 45



Bayesian Model Averaging



Bayesian Model Averaging

Sometimes it is actually viable to avoid choosing between a set of

models entirely by instead performing Bayesian model averaging

This involves being Bayesian about models themselves, namely
marginalizing over them in the posterior predictive:

p(D'[D) = / p(D"|6, m)p(6]D, m)p(m|D)dbdm  (16)

‘ p(D0, m)p(6|m) p(D|m)p(m)
= [[ri0.m P2 TS pp)  20m {7)
://p(p*e, m) P19, m)é)(e)|m)p(m)d9dm (18)
/ p(D*|0, m)p(6, m|D)dOdm (19)

where p(m) is a prior on models and we see this is effectively

equwalent to the standard posterior predictive for both {6, m} 46



Bayesian Model Averaging is not Model Combination

e |t is important to note that Bayesian model averaging does
not enrich the class of models themselves.

e Analogously to standard Bayesian inference, we are implicitly
assuming one of the models has lead to the data: the
averaging is over our own uncertainty, not a way of creating a

more complex compound model

e Example: Bayesian decision trees are inherently less powerful
than random forests. Given enough data the posterior
collapses to a single tree that is itself usually a poor model
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Further Reading

e Information on non-parametric models and Gaussian processes will
be provided in the notes

e Bishop, Pattern recognition and machine learning, Chapters 1-3

e K P Murphy. Machine learning: a probabilistic perspective. 2012,
Chapter 5

e D Barber. Bayesian reasoning and machine learning. 2012,
Chapter 12

e T P Minka. “Bayesian model averaging is not model combination”.
In: (2000)

e Zoubin Ghahramani on Bayesian machine learning (there are various
alternative variations of this talk):
https://wuw.youtube. com/watch?v=yOFgHOQhG4w

e lain Murray on Probabilistic Modeling

https://www.youtube.com/watch?v=p0tvyVYAuW4 28
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