
5

 University of Oxford visual identity guidelines

At the heart of our visual identity is the Oxford logo.
It should appear on everything we produce, from
letterheads to leaflets and from online banners to
bookmarks.

The primary quadrangle logo consists of an Oxford blue
(Pantone 282) square with the words UNIVERSITY OF
OXFORD at the foot and the belted crest in the top
right-hand corner reversed out in white.

The word OXFORD is a specially drawn typeface while all
other text elements use the typeface Foundry Sterling.

The secondary version of the Oxford logo, the horizontal
rectangle logo, is only to be used where height (vertical
space) is restricted.

These standard versions of the Oxford logo are intended
for use on white or light-coloured backgrounds, including
light uncomplicated photographic backgrounds.

Examples of how these logos should be used for various
applications appear in the following pages.

NOTE
The minimum size for the quadrangle logo and the
rectangle logo is 24mm wide. Smaller versions with
bolder elements are available for use down to 15mm
wide. See page 7.

The Oxford logo
Quadrangle Logo

Rectangle Logo

This is the square
logo of first
choice or primary
Oxford logo.

The rectangular
secondary Oxford
logo is for use only
where height is
restricted.

Lecture 3: Bayesian Modeling (Part 2)

Advanced Topics in Machine Learning

Dr. Tom Rainforth

January 24nd, 2020

rainforth@stats.ox.ac.uk

Lecture 3 Outline

This lecture will focus on methods for constructing Bayesians

models

In particular we will cover the following topics:

• Independence

• Graphical models

• Probabilistic programming

1

Independence

1

Independence

• Events are independent if the occurrence of one event does
not affect the probability of the other

• Equivalent definition for random variables

• If X and Y are independent, we denote this as X ⊥⊥ Y

• This is sometimes also known as marginal independence

• If X ⊥⊥ Y , then P(X = x) = P(X = x |Y = y) for all x , y .

• Independence is symmetric:

X ⊥⊥ Y ⇒ P(Y = y) = P(Y = y |X = x)

• Through the product rule, we further have: if

X ⊥⊥ Y ⇒ P(X ,Y) = P(X)P(Y)

2

Examples of Independent Random Variables

• The outcomes of two flipped

coins

• The speed of a car and

whether a speed camera is

malfunctioning

• We often assume
independence between
variables when constructing
a model

• Don’t forgot Bayesian

probabilities are subjective

beliefs

Independence

Image Credit: Pieter Abbeel

3

Conditional Independence

• Two events A and B are conditionally independent given
event C if A and B are independent given that C occurred.
• Again equivalent definition for random variables

• If X and Y are conditionally independent given Z , we denote

this as X ⊥⊥ Y |Z
• If X ⊥⊥ Y |Z , then
P(X = x |Z = z) = P(X = x |Y = y ,Z = z) for all possible x ,
y , and z .
• This is again symmetric in X and Y , but not Z

X ⊥⊥ Y |Z ⇒ P(Y = y |Z = z) = P(Y = y |X = x ,Z = z)

X ⊥⊥ Y |Z ; X ⊥⊥ Z |Y or Z ⊥⊥ Y |X

• Conditional independence does not imply marginal

independence or vice versa

X ⊥⊥ Y |Z ; X ⊥⊥ Y , X ⊥⊥ Y ; X ⊥⊥ Y |Z 4

Conditional Independence Examples

• The amount of traffic and the

number of umbrellas being

used are not independent

• But they are conditionally

independent given it is raining

• A speed camera being switched

on and a car speeding are

marginally independent

• But they are not conditionally

independent given the camera

is triggered

Conditional Independence
• What about this domain:

• Traffic
• Umbrella
• Raining

Traffic ⫫ Umbrella

Traffic ⫫ Umbrella | Raining

Image Credit: Pieter Abbeel

Image Credit: Autocar

5

Why are Independence Relationships Important?

• (Conditional) Independence between variables is one of the

most important modeling assumptions we can make when

constructing Bayesian models

• The chain rule is an extension of the product rule that allows

us to break down any joint distribution into a product over

conditional probability distributions:

P(X1:N) = P(X1)P(X2|X1) . . .P(XN |X1,X2, . . . ,XN−1)

= P(X1)
N∏

n=2

P(Xn|X1:n−1) (1)

• Note we can use any ordering of the variables we want and

the chain rule also applies densities, e.g.

p(x1:N) = p(xN)
N−1∏
n=1

p(xn|xn+1:N)

6

Why are Independence Relationships Important? (2)

• Different orderings of the variables in the joint breakdown are

known as factorizations of the joint

• Independence assumptions allow us to make simplifications

that show up in the factorizations

• For example, the Markov property

Xn ⊥⊥ X1:N\Xn | Xn−1,Xn+1 (2)

allows us to factorize the joint as

P(X1:N) = P(X1)
N∏

n=2

p(Xn|Xn−1) (3)

7

Example: Flipping Lots of Coins

• We flip N independent coins

• The joint space of possible

outcomes is 2N which

becomes impractical to deal

with for even moderate N

• Utilizing the known

independence, we can reason

about each outcome

separately such that the

output space is only 2× N

Example: Independence

• N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

Image Credit: Pieter Abbeel

8

Example: Deep Generative Models

We often want to assume datapoints are independent given a

generative model

Images from CelebA dataset
9

Factorizations

• Some factorizations allow for more simplification than others

as they incorporate more information about independences

• Example: if X1 ⊥⊥ X3|X2 then the factorization

P(X1,X2,X3) = P(X1)P(X2|X1)P(X3|X2)

is simpler than

P(X1,X2,X3) = P(X1)P(X3|X1)P(X2|X1,X3)

• Critically though, we typically do not know all factorizations
of a model when we construct it
• For Bayesian problems we have direct access to p(θ) and

p(D|θ) but not p(D) and p(θ|D): computation is required to

uncover them

• We can thus think about Bayesian inference as finding

unknown factorizations of a joint
10

Graphical Models

10

What is a Graphical Model?

• Generative models typically have many variables with a

complex dependency structure.

• Graphical models are a ubiquitous method for representing

and reasoning about generative models, with a particular

focus on the dependency structure.

• They are formed by a number of connected nodes, where each

node represents a random or observed variable in the model.

• Links between nodes represent dependencies: any two

connected nodes have an explicit dependency, though

unconnected nodes may still be dependent.

11

What is a Graphical Model? (2)

Graphical models can be separated into two distinct classes:

directed graphical models and undirected graphical models.

Directed Graphical Model Undirected Graphical Model

c

a b

d

e f

c

a b

d

ee

12

Undirected Graphical Models

• Undirected graphical models, also known as Markov random

fields, imply no ordering to variables and are used only to

express conditional independences

• They are useful for representing models that are difficult to

express in a generative manner
• Independence in undirected graphical models can be deduced

through the global Markov property:
• Two variables A and B are conditionally independent given a

subset of other variables C if there is no path between A and

B that does not pass through C .

• This implies that each variable is conditionally independent of

all the other variables given its neighbors.

• We will not cover these in detail—see C M Bishop. Pattern

recognition and machine learning. 2006, Section 8.3 instead
13

Undirected Graphical Model Example: Weather Prediction

Predicting whether it will rain at

various locations does not have

a natural generative model

But the probability that it rains

at one location is correlated to

whether it rains at neighboring

locations

x11 x12 x13

x21 x22 x23

x31 x32 x33

14

Bayesian Networks / DAGs

• We’ll focus on directed acyclic

graphical models (DAGs), i.e.

directed graphs containing no

cycles or loops

• DAGs, also known as Bayesian

networks, define a factorization

for a generative model

c

a b

d

e f

p(a, b, c , d , e, f)

=p(a)p(b)p(c|a, b)

p(d |c)p(f |c , d)p(e|f)

15

Bayesian Networks / DAGs (2)

• To define a model using a DAG, we need to be able to define

the probability of each variable given its parents (i.e. the

nodes with arrows pointing towards our current node)

• For any node in a DAG containing the variables x1:n

p(xn|x1:N\xn) = p(xn|parents(xn)) (4)

16

16

Why Ya Should Like DAGs

• DAGs allows us to

provide a piecewise

explanation for the

generative process

• They allow us to

combine simple, local

distributions into a

larger, overall

generative process

• This makes them a

useful way to describe

and construct

Bayesian models

CS 4100: Artificial Intelligence
Bayes’ Nets

Jan-Willem van de Meent, Northeastern University

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Image Credit: Pieter Abbeel

17

Example: Medical Diagnosis

• Imagine a medical diagnostic

problem where we wish to predict

if a patient has lung cancer.

• Let f denote unknown lifestyle

and genetic factors of a

hypothetical patient (e.g.

whether they smoke)

• We encode this distribution of

these as p(f)

• Our DAG just starts with a single

node f

f

p(f)

18

Example: Medical Diagnosis

• Given f , we can develop a model

for the probability that a patient

will develop lung cancer

• We encode this through the

conditional distribution p(c |f)

where c = 1 indicates cancer is

present

• We thus add a node c to the

DAG and an arrow from f to c to

represent this conditional

dependency

f c

p(f)p(c|f)

18

Example: Medical Diagnosis

• Given f and c, we can predict

what symptoms, s, might be

observed, e.g. a persistent cough

• We encode this through the

conditional distribution p(s|f , c)

and add the new node s to the

DAG

• We now have the complete DAG

which provides a factorization of

our model

s

f c

p(f)p(c|f)p(s|c , f)

18

Observed Nodes

• The power DAGs becomes

apparent once we start

considering observing nodes

• This equivalent to

conditioning in a Bayesian

model: we fix a node to take

on a certain observed value

• Observed nodes in a DAG

are denoted through shading

• We can use the DAG to

reason about unobserved

variables conditioned on the

observed ones

CS 4100: Artificial Intelligence
Bayes’ Nets: Independence

Jan-Willem van de Meent, Northeastern University

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Image Credit: Pieter Abbeel

19

Observed Nodes

• The power DAGs becomes

apparent once we start

considering observing nodes

• This equivalent to

conditioning in a Bayesian

model: we fix a node to take

on a certain observed value

• Observed nodes in a DAG

are denoted through shading

• We can use the DAG to

reason about unobserved

variables conditioned on the

observed ones

c

a b

d

e f

p(c |d , e) ∝
p(a)p(b)p(c |a, b)p(d |c)p(e|c)

19

Example: Medical Diagnosis

• For our medical diagnosis example

we actually observe the symptoms

• We can thus perform Bayesian

inference to try and infer whether

the patient has cancer.

• In general, posteriors are not

available in closed form and DAGs

provide a useful tool for providing

helpful information to calculate

them: see Bishop Chapter 8

s

f c

p(c |s)

∝ p(f)p(c|f)p(s|c , f)

20

Explaining Away

• Sometimes conditioning can

introduce dependencies we might

not at first expect

• Consider a model for speed

camera being triggered, t

• This depends on both whether

the camera is malfunctioning, m,

and whether the car is speeding,

s, as per the DAG on the right

• m and s are clearly marginally

independent

• But if t is observed they become

dependent

p(m)p(s)p(t|m, s)

t

m s

t

m s

21

Explaining Away

• This phenomenon is known as

explaining away

• Here m and s provided alternative

explanations for t

• For example, if the camera is

triggered, then the car must be

speeding or the camera must

either be malfunctioning

• If the camera is not triggered, we

cannot have both that the car is

not speeding and the camera is

working

p(m)p(s)p(t|m, s)

t

m s

t

m s

21

Alarm Triggering Example
Example: Alarm Network

• Variables
• B: Burglary
• A: Alarm goes off
• M: Mary calls
• J: John calls
• E: Earthquake!

B

A

J M

E

Example: Alarm Network
• Variables

• B: Burglary
• A: Alarm goes off
• M: Mary calls
• J: John calls
• E: Earthquake!

B

A

J M

E

Example and image credit: Pieter Abbeel

22

Alarm Triggering Example (2)

Example: Alarm Network

Burglary Earthqk

Alarm

John

calls

Mary

calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)
+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)
+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)
+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

Example and image credit: Pieter Abbeel

23

Alarm Triggering Example (3)

Optional homework: use this Bayes net to calculate:

P (John Calls|Burglary) (5)

P (Burglary|John Calls) (6)

P (Earthquake|Mary Calls,Burglary) (7)

If you’re looking for a challenge (optional), try your hand at this

homework assignment from Frank Wood:

http://www.robots.ox.ac.uk/~fwood/teaching/AIMS_CDT_

ML_2016/homework/HW_1_sum_product/

Note this will require substantial extra reading (Bishop Chapter 8)

and most likely a few hours to implement.

24

http://www.robots.ox.ac.uk/~fwood/teaching/AIMS_CDT_ML_2016/homework/HW_1_sum_product/
http://www.robots.ox.ac.uk/~fwood/teaching/AIMS_CDT_ML_2016/homework/HW_1_sum_product/

D–Separation

• How can we deduce the independence relationships from a

DAG?

• d-separation gives us rules for doing this

• Consider three arbitrary, non-intersecting, subsets A, B, and

C of a DAG.

• A and B are conditionally independent given C if there are no
unblocked paths from A to B when C is observed

• A is said to be d-separated from B by C

25

Paths

• Paths do not need to be in the same directions as the arrows

in the DAG—we just have to move between connected nodes

• A path between A and B is blocked if

1. There is an unobserved node, n, in the path where both the

arrows point towards n and n has no observed descendants

2. Consecutive arrows in the path meet at an observed node and

either one or both of them points away from the node.

• Note that only the first of these rules is necessary for

establishing marginal independence

26

Blocked or Not?

Is the path between a and b blocked?

d

a b

c

a b d

a b

Unblocked Blocked: 2nd rule Unblocked

Rule 1 There is an unobserved node, n, in the path where both the

arrows point towards n and n has no observed descendants

Rule 2 Consecutive arrows in the path meet at an observed node and

either one or both of them points away from the node.

27

Blocked or Not?

Is the path between a and b blocked?

d

a b

c

a b d

a b

Unblocked Blocked: 2nd rule Unblocked

Rule 1 There is an unobserved node, n, in the path where both the

arrows point towards n and n has no observed descendants

Rule 2 Consecutive arrows in the path meet at an observed node and

either one or both of them points away from the node.

27

Blocked or Not (2)?

Is the path between a and b blocked?

c

a b d

a b

d

a b

c

Blocked: 2nd rule Blocked: 1st rule
Unblocked:

explaining away

Rule 1 There is an unobserved node, n, in the path where both the

arrows point towards n and n has no observed descendants

Rule 2 Consecutive arrows in the path meet at an observed node and

either one or both of them points away from the node.
28

Blocked or Not (2)?

Is the path between a and b blocked?

c

a b d

a b

d

a b

c

Blocked: 2nd rule Blocked: 1st rule
Unblocked:

explaining away

Rule 1 There is an unobserved node, n, in the path where both the

arrows point towards n and n has no observed descendants

Rule 2 Consecutive arrows in the path meet at an observed node and

either one or both of them points away from the node.
28

Hidden Markov Models

We finish our introduction to graphical models by considering a

common model where the dependency structure is very important:

Hidden Markov Models (HMMs)

• Bishop has almost a whole chapter dedicated to these

(Chapter 13)

x1 x2 • • • xT -1 xT

y1 y2 yT -1 yT

29

Hidden Markov Models (2)

As we see from its DAG, a HMM has T latent variables x1:T and

T observations y1:T . The joint distribution is as follows

p(x1:T , y1:T) = p(x1)p(y1|x1)
T∏
t=2

p(xt |xt−1)p(yt |xt), (8)

where each xt is independent of x1:t−2 and y1:t−1 given xt−1, and

of xt+2:T and yt+1:T given xt+1.

This Markov property means the model has no memory as

information is passed forwards (or backwards) only through the

value of the previous (or next) latent state:

Many dynamical systems obey the Markov property: HMMs are

extensively used for a number of tasks involving sequential data,

such as tracking and DNA sequencing

30

Probabilistic Programming

30

Captchas RevisitedBridging the Gap Between the Bayesian Ideal and Common Practice
Tom Rainforth

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters
3: Ÿ ≥ p(Ÿ) Û sample kerning value
4: Generate letters:
5: � Ω {}
6: for i = 1, . . . , ‹ do
7: ⁄ ≥ p(⁄) Û sample letter ID
8: � Ω append(�,⁄)
9: Render:
10: “ Ω render(�,Ÿ)
11: fi ≥ p(fi) Û sample noise parameters
12: “ Ω noise(“,fi)

return “

a1 = “L” a2 = “Ÿ” a3 = “⁄” a4 = “⁄”
i1 = 1 i2 = 1 i3 = 1 i4 = 2
x1 = 7 x2 = ≠1 x3 = 6 x4 = 23

a5 = “⁄” a6 = “⁄” a7 = “⁄” a8 = “⁄”
i5 = 3 i6 = 4 i7 = 5 i8 = 6
x5 = 18 x6 = 53 x7 = 17 x8 = 43

a9 = “⁄” Noise: Noise: Noise:
i9 = 7 displacement stroke ellipse
x9 = 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄1:t≠1) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (at, it) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

2

31

Captchas Revisited (2)
Bridging the Gap Between the Bayesian Ideal and Common Practice
Tom Rainforth

[Le, Baydin, and Wood. Inference Compilation and Universal
Probabilistic Programming. AISTATS 2017]

In
fe
re
nc

e

G
en

er
at
io
n

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters
3: Ÿ ≥ p(Ÿ) Û sample kerning value
4: Generate letters:
5: � Ω {}
6: for i = 1, . . . , ‹ do
7: ⁄ ≥ p(⁄) Û sample letter ID
8: � Ω append(�,⁄)
9: Render:
10: “ Ω render(�,Ÿ)
11: fi ≥ p(fi) Û sample noise parameters
12: “ Ω noise(“,fi)

return “

a1 = “L” a2 = “Ÿ” a3 = “⁄” a4 = “⁄”
i1 = 1 i2 = 1 i3 = 1 i4 = 2
x1 = 7 x2 = ≠1 x3 = 6 x4 = 23

a5 = “⁄” a6 = “⁄” a7 = “⁄” a8 = “⁄”
i5 = 3 i6 = 4 i7 = 5 i8 = 6
x5 = 18 x6 = 53 x7 = 17 x8 = 43

a9 = “⁄” Noise: Noise: Noise:
i9 = 7 displacement stroke ellipse
x9 = 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄1:t≠1) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (at, it) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters
3: Ÿ ≥ p(Ÿ) Û sample kerning value
4: Generate letters:
5: � Ω {}
6: for i = 1, . . . , ‹ do
7: ⁄ ≥ p(⁄) Û sample letter ID
8: � Ω append(�,⁄)
9: Render:
10: “ Ω render(�,Ÿ)
11: fi ≥ p(fi) Û sample noise parameters
12: “ Ω noise(“,fi)

return “

a1 = “L” a2 = “Ÿ” a3 = “⁄” a4 = “⁄”
i1 = 1 i2 = 1 i3 = 1 i4 = 2
x1 = 7 x2 = ≠1 x3 = 6 x4 = 23

a5 = “⁄” a6 = “⁄” a7 = “⁄” a8 = “⁄”
i5 = 3 i6 = 4 i7 = 5 i8 = 6
x5 = 18 x6 = 53 x7 = 17 x8 = 43

a9 = “⁄” Noise: Noise: Noise:
i9 = 7 displacement stroke ellipse
x9 = 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄1:t≠1) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (at, it) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

3

gxs2rRj

32

Probabilistic Programs are Simulator–Based Models
Bridging the Gap Between the Bayesian Ideal and Common Practice
Tom Rainforth

Statistics

y

p(y|x)p(x)

p(x|y)

In
fe

re
nc

e

Parameters

Program

Output

Scientific
Simulation

Si
m

ul
at

or

4

Probabilistic Programming

33

Probabilistic Programs are Simulator–Based Models
Bridging the Gap Between the Bayesian Ideal and Common Practice
Tom Rainforth

Parameters

Program

Observations

Probabilistic
Programming Statistics

y

p(y|x)p(x)

p(x|y)

In
fe

re
nc

e

Parameters

Program

Output

Scientific
Simulation

Si
m

ul
at

or

4

Probabilistic Programming

33

Example: Deep Sea Oil Pipes

34

Example: Deep Sea Oil Pipes (2)

p(θ)

p(D|θ)

35

Application: Scene Perception

Probabilistic Programming
Tom Rainforth

7

Observed
Image

Inferred
(reconstruction)

Inferred model
re-rendered with

novel poses

Inferred model
re-rendered with

novel lighting

Figure 3: Inference on representative faces using Picture: We
tested our approach on a held-out dataset of 2D image projections
of laser-scanned faces from [36]. Our short probabilistic program
is applicable to non-frontal faces and provides reasonable parses as
illustrated above using only general-purpose inference machinery.
For quantitative metrics, refer to section 4.1.

and informed samplers [19]. GPGP aimed to address the
main challenges of generative vision by representing visual
scenes as short probabilistic programs with random vari-
ables, and using a generic MCMC (single-site Metropolis-
Hastings) method for inference. However, due to modeling
limitations of earlier probabilistic programming languages,
and the inefficiency of the Metropolis-Hastings sampler,
GPGP was limited to working with low-dimensional scenes,
restricted shapes, and low levels of appearance variability.
Moreover, it did not support the integration of bottom-up
discriminative models such as deep neural networks [23, 25]
for data-driven proposal learning. Our current work extends
the GPGP framework in all of these directions, letting us
tackle a richer set of real-world 3D vision problems.

Picture is an imperative programming language, where
expressions can take on either deterministic or stochastic val-
ues. We use the transformational compilation technique [46]
to implement Picture, which is a general method of trans-
forming arbitrary programming languages into probabilistic
programming languages. Compared to earlier formulations
of GPGP, Picture is dynamically compiled at run-time (JIT-
compilation) instead of interpreting, making program execu-
tion much faster.

A Picture program f defines a stochastic procedure that
generates both a scene description and all other information
needed to render an approximation image IR for compari-
son with an observed image ID. The program f induces a
joint probability distribution on the program trace ⇢ = {⇢i},
the set of all random choices i needed to specify the scene
hypothesis S and render IR. Each random choice ⇢i can
belong to a familiar parametric or non-parametric family of
distributions, such as Multinomial, MvNormal, DiscreteU-
niform, Poisson, or Gaussian Process, but in being used to
specify the trace of a probabilistic graphics program, their

effects can be combined much more richly than is typical for
random variables in traditional statistical models.

Consider running the program in Figure 2 unconditionally
(without observed data): as different ⇢i’s are encountered
(for e.g. coeff), random values are sampled w.r.t their under-
lying probability distribution and cached in the current state
of the inference engine. Program execution outputs an image
of a face with random shape, texture, camera and lighting
parameters. Given image data ID, inference in Picture pro-
grams amounts to iteratively sampling or evolving program
trace ⇢ to a high probability state while respecting constraints
imposed by the data (Figure 3). This constrained simulation
can be achieved by using the observe language construct
(see code in Figure 2), first proposed in Venture [32] and
also used in [35, 47].

2.1. Architecture

In this section, we will explain the essential architectural
components highlighted in Figure 1 (see Figure 4 for a sum-
mary of notation used).
Scene Language: The scene language is used to describe
2D/3D visual scenes as probabilistic code. Visual scenes
can be built out of several graphics primitives such as: de-
scription of 3D objects in the scene (e.g. mesh, z-map,
volumetric), one or more lights, textures, and the camera
information. It is important to note that scenes expressed
as probabilistic code are more general than parametric prior
density functions as is typical in generative vision models.
The probabilistic programs we demonstrate in this paper
embed ideas from computer-aided design (CAD) and non-
parametric Bayesian statistics[37] to express variability in
3D shapes.
Approximate Renderer (AR): Picture’s AR layer takes in
a scene representation trace S⇢ and tolerance variables X⇢,
and uses general-purpose graphics simulators (Blender[5]
and OpenGL) to render 3D scenes. The rendering tolerance
X⇢ defines a structured noise process over the rendering and
is useful for the following purposes: (a) to make automatic
inference more tractable or robust, analogous to simulated
annealing (e.g. global or local blur variables in GPGP [31]),
and (b) to soak up model mismatch between the true scene
rendering ID and the hypothesized rendering IR. Inspired by
the differentiable renderer[29], Picture also supports express-
ing AR’s entire graphics pipeline as Picture code, enabling
the language to express end-to-end differentiable generative
models.
Representation Layer (RL): To avoid the need for photo-
realistic rendering of complex scenes, which can be slow
and modeling-intensive, or for pixel-wise comparison of
hypothesized scenes and observed images, which can some-
times yield posteriors that are intractable for sampling-based
inference, the RL supports comparison of generated and ob-
served images in terms of a hierarchy of abstract features.

[Kulkarni, Kohli, Tenenbaum and Mansinghka. CVPR 2015]

Applications — Scene Perception

1T D Kulkarni et al. “Picture: A probabilistic programming language for scene perception”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2015. 36

Application: Guided Object Generation

Probabilistic Programming
Tom Rainforth

8

Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo

Daniel Ritchie⇤

Stanford University
Ben Mildenhall⇤

Stanford University
Noah D. Goodman⇤

Stanford University
Pat Hanrahan⇤

Stanford University

Forward Sampling SOSMC-Controlled Sampling Forward Sampling SOSMC-Controlled Sampling

Figure 1: Controlling the output of highly-variable procedural modeling programs using our Stochastically-Ordered Sequential Monte Carlo
algorithm. Here, the controls encourage volumetric similarity to a target shape (shown in black).

Abstract

We present a method for controlling the output of procedural
modeling programs using Sequential Monte Carlo (SMC). Previ-
ous probabilistic methods for controlling procedural models use
Markov Chain Monte Carlo (MCMC), which receives control feed-
back only for completely-generated models. In contrast, SMC re-
ceives feedback incrementally on incomplete models, allowing it to
reallocate computational resources and converge quickly. To handle
the many possible sequentializations of a structured, recursive pro-
cedural modeling program, we develop and prove the correctness
of a new SMC variant, Stochastically-Ordered Sequential Monte
Carlo (SOSMC). We implement SOSMC for general-purpose pro-
grams using a new programming primitive: the stochastic future.
Finally, we show that SOSMC reliably generates high-quality out-
puts for a variety of programs and control scoring functions. For
small computational budgets, SOSMC’s outputs often score nearly
twice as high as those of MCMC or normal SMC.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: Procedural Modeling, Directable Randomness, Prob-
abilistic Programming, Sequential Monte Carlo

⇤e-mail: {dritchie, bmild, ngoodman, hanrahan}@stanford.edu

1 Introduction

Procedural modeling has long been used in computer graphics
to generate varied, detailed content with minimal human effort.
Procedural models for trees, buildings, cities, and decorative pat-
terns enrich the virtual worlds of movies and games [Měch and
Prusinkiewicz 1996; Müller et al. 2006; Wong et al. 1998]. Am-
bitious new projects aim to produce fully-procedural, galactic-
scale environments for players to explore [Procedural Reality 2014;
Hello Games 2014].

This expressive power comes at a cost: procedural models often
use complex, recursive control logic, resulting in emergent behav-
ior which is difficult to direct. As a result, technical artists often
must tweak parameters and massage initial conditions to achieve a
desired look. This time and effort may defeat the purpose of using
procedural modeling in the first place.

Fortunately, recent years have seen advances in the use of proba-
bilistic inference techniques to control procedural models [Talton
et al. 2011; Stava et al. 2014; Yeh et al. 2012]. Viewing a procedu-
ral model as sampling from a probability distribution allows for the
application of Bayesian inference techniques: the prior is the pro-
cedural model itself, and the likelihood is some high-level control
expessed as a scoring function.

This previous work relies on Markov Chain Monte Carlo (MCMC),
but other Bayesian posterior sampling algorithms are available: an-
other popular choice is Sequential Monte Carlo (SMC). SMC uses a
set of samples, or particles, to represent a distribution that changes
over time as new evidence is observed. As the distribution changes,
SMC shifts more particles (and thus more of its computational bud-
get) to higher-probability regions of the state space. For proba-
bilistic models that fit this pattern of ‘evidence arriving over time,’
such as modeling the location of a mobile robot, SMC is often the
method of choice: the incremental evidence it receives provides
feedback early and often, allowing it to converge quickly [Doucet
et al. 2001]. In contrast, MCMC receives feedback only after run-
ning through the entire model.

[Ritchie, Mildenhall, Goodman and Hanrahan. SIGGRAPH 2015]

Applications — Guided Object Generation

2D Ritchie et al. “Controlling procedural modeling programs with stochastically-ordered sequential Monte Carlo”.

In: ACM Transactions on Graphics (TOG) (2015).

37

What is a Probabilistic Programming System?

• Probabilistic programming systems (PPSs) allow Bayesian

models to be represented in the form of a stochastic simulator

and statements for conditioning on data

• Informally, one can think of the generative model as the

definition of a prior, the conditioning statements as the

definition of a likelihood, and the output of the program as

samples from a posterior distribution.

• Their core philosophy is to decouple model specification and

inference

• Inference is automated for any model the user might write

38

Separating Models from Inference

39

Using Information in the Code

4. Probabilistic Programming – the User’s Perspective 49

Inputs: Student-t degrees of freedom ‹, error
scale ‡, data y1:S = {us, vs}Ss=1

1: m Ωsample (normal (0,1))
2: c Ωsample (normal (0,1))
3: obs-dist Ω student-t (‹)
4: for s = 1, . . . , S do
5: d Ω (vs ≠ mus ≠ c)/‡
6: observe (obs-dist, d)
7: end for
8: return m, c

m c

y1 y2 • • • yS-1 yS

p(m, c, y1:S |‹,‡) = N (m; 0, 1) N (c; 0, 1)
SŸ

s=1
STUDENT-T

3
vs ≠ mus ≠ c

‡
; ‹

4

(a) Bayesian linear regression model with student-t likelihood, namely vs = mus + c + ‡‘s where
‘s ≥ STUDENT-T(‹). We presume that the scaling of the error ‡ and the number of degrees of freedom
‹ are fixed input parameters (i.e. „ = {‹,‡}), that our fixed data is y1:S = {us, vs}St=1, and that we are
trying to infer the slope m and intercept c (we thus have x1 = m, x2 = c in our general notation), both of
which are assigned a unit Gaussian as a prior. Our query first samples m and c (note that normal (0,1)
generates a unit Gaussian distribution object) and constructs a student-t distribution object obs-dist. It
then cycles over each datapoint and observes (vs ≠mus ≠ c)/‡ using obs-dist, before finally returning
m and c as outputs. Note that if we instead wished to directly predict the outputs at some untested inputs
points uS+1:S+n then we could predict these anywhere in the query (after m and c have been defined) and
return them as outputs along with, or instead of, m and c.

Inputs: Transition std-dev ‡, output shape
–, output rate —, data y1:T

1: x0 Ω 0
2: tr-dist Ω normal (0,‡)
3: obs-dist Ω gamma (–, —)
4: for t = 1, . . . , T do
5: xt Ω xt≠1+sample (tr-dist)
6: observe (obs-dist, yt ≠ xt)
7: zt Ω I(xt > 4)
8: end for
9: return z1:T

x1 x2 • • • xT -1 xT

y1 y2 yT -1 yT

p(x1:T , y1:T |‡,–,—) =
N (x1; 0,‡2) GAMMA(y1 ≠ x1; –,—)
TŸ

t=2
N (xt ≠ xt≠1; 0,‡2) GAMMA(yt ≠ xt; –,—)

(b) State-space model with Gaussian transition and Gamma emission distributions. It is a form of
the HMM model given in (3.17) with p(x1) = N (x1; 0,‡2), p(xt|xt≠1) = N (xt ≠ xt≠1; 0,‡2), and
p(yt|xt) = GAMMA(yt ≠ xt; –,—) with shape parameter – and scale parameter —. We assume that the
input parameters „ = {‡,–,—} are fixed and we want to sample from p(z1:T |y1:T ,„) given data y1:T ,
where each zt is an indicator for if xt exceeds a threshold of 4. Our query, exploiting the equivalence
between p(x1) and p(xt|xt≠1 = 0), first initializes x0 = 0 and creates distribution objects for the
transitions tr-dist and emissions obs-dist. It then loops over time steps, sampling each xt given
xt≠1, observing yt given xt, and deterministically calculating zt. Finally the z1:T are returned as the
desired output.

Figure 4.2: Example pseudo-queries for our simplified probabilistic programming setup with correspond-
ing graphical models and joint distributions.

4. Probabilistic Programming – the User’s Perspective 49

Inputs: Student-t degrees of freedom ‹, error
scale ‡, data y1:S = {us, vs}Ss=1

1: m Ωsample (normal (0,1))
2: c Ωsample (normal (0,1))
3: obs-dist Ω student-t (‹)
4: for s = 1, . . . , S do
5: d Ω (vs ≠ mus ≠ c)/‡
6: observe (obs-dist, d)
7: end for
8: return m, c

m c

y1 y2 • • • yS-1 yS

p(m, c, y1:S |‹,‡) = N (m; 0, 1) N (c; 0, 1)
SŸ

s=1
STUDENT-T

3
vs ≠ mus ≠ c

‡
; ‹

4

(a) Bayesian linear regression model with student-t likelihood, namely vs = mus + c + ‡‘s where
‘s ≥ STUDENT-T(‹). We presume that the scaling of the error ‡ and the number of degrees of freedom
‹ are fixed input parameters (i.e. „ = {‹,‡}), that our fixed data is y1:S = {us, vs}St=1, and that we are
trying to infer the slope m and intercept c (we thus have x1 = m, x2 = c in our general notation), both of
which are assigned a unit Gaussian as a prior. Our query first samples m and c (note that normal (0,1)
generates a unit Gaussian distribution object) and constructs a student-t distribution object obs-dist. It
then cycles over each datapoint and observes (vs ≠mus ≠ c)/‡ using obs-dist, before finally returning
m and c as outputs. Note that if we instead wished to directly predict the outputs at some untested inputs
points uS+1:S+n then we could predict these anywhere in the query (after m and c have been defined) and
return them as outputs along with, or instead of, m and c.

Inputs: Transition std-dev ‡, output shape
–, output rate —, data y1:T

1: x0 Ω 0
2: tr-dist Ω normal (0,‡)
3: obs-dist Ω gamma (–, —)
4: for t = 1, . . . , T do
5: xt Ω xt≠1+sample (tr-dist)
6: observe (obs-dist, yt ≠ xt)
7: zt Ω I(xt > 4)
8: end for
9: return z1:T

x1 x2 • • • xT -1 xT

y1 y2 yT -1 yT

p(x1:T , y1:T |‡,–,—) =
N (x1; 0,‡2) GAMMA(y1 ≠ x1; –,—)
TŸ

t=2
N (xt ≠ xt≠1; 0,‡2) GAMMA(yt ≠ xt; –,—)

(b) State-space model with Gaussian transition and Gamma emission distributions. It is a form of
the HMM model given in (3.17) with p(x1) = N (x1; 0,‡2), p(xt|xt≠1) = N (xt ≠ xt≠1; 0,‡2), and
p(yt|xt) = GAMMA(yt ≠ xt; –,—) with shape parameter – and scale parameter —. We assume that the
input parameters „ = {‡,–,—} are fixed and we want to sample from p(z1:T |y1:T ,„) given data y1:T ,
where each zt is an indicator for if xt exceeds a threshold of 4. Our query, exploiting the equivalence
between p(x1) and p(xt|xt≠1 = 0), first initializes x0 = 0 and creates distribution objects for the
transitions tr-dist and emissions obs-dist. It then loops over time steps, sampling each xt given
xt≠1, observing yt given xt, and deterministically calculating zt. Finally the z1:T are returned as the
desired output.

Figure 4.2: Example pseudo-queries for our simplified probabilistic programming setup with correspond-
ing graphical models and joint distributions.

4. Probabilistic Programming – the User’s Perspective 49

Inputs: Student-t degrees of freedom ‹, error
scale ‡, data y1:S = {us, vs}Ss=1

1: m Ωsample (normal (0,1))
2: c Ωsample (normal (0,1))
3: obs-dist Ω student-t (‹)
4: for s = 1, . . . , S do
5: d Ω (vs ≠ mus ≠ c)/‡
6: observe (obs-dist, d)
7: end for
8: return m, c

m c

y1 y2 • • • yS-1 yS

p(m, c, y1:S |‹,‡) = N (m; 0, 1) N (c; 0, 1)
SŸ

s=1
STUDENT-T

3
vs ≠ mus ≠ c

‡
; ‹

4

(a) Bayesian linear regression model with student-t likelihood, namely vs = mus + c + ‡‘s where
‘s ≥ STUDENT-T(‹). We presume that the scaling of the error ‡ and the number of degrees of freedom
‹ are fixed input parameters (i.e. „ = {‹,‡}), that our fixed data is y1:S = {us, vs}St=1, and that we are
trying to infer the slope m and intercept c (we thus have x1 = m, x2 = c in our general notation), both of
which are assigned a unit Gaussian as a prior. Our query first samples m and c (note that normal (0,1)
generates a unit Gaussian distribution object) and constructs a student-t distribution object obs-dist. It
then cycles over each datapoint and observes (vs ≠mus ≠ c)/‡ using obs-dist, before finally returning
m and c as outputs. Note that if we instead wished to directly predict the outputs at some untested inputs
points uS+1:S+n then we could predict these anywhere in the query (after m and c have been defined) and
return them as outputs along with, or instead of, m and c.

Inputs: Transition std-dev ‡, output shape
–, output rate —, data y1:T

1: x0 Ω 0
2: tr-dist Ω normal (0,‡)
3: obs-dist Ω gamma (–, —)
4: for t = 1, . . . , T do
5: xt Ω xt≠1+sample (tr-dist)
6: observe (obs-dist, yt ≠ xt)
7: zt Ω I(xt > 4)
8: end for
9: return z1:T

x1 x2 • • • xT -1 xT

y1 y2 yT -1 yT

p(x1:T , y1:T |‡,–,—) =
N (x1; 0,‡2) GAMMA(y1 ≠ x1; –,—)
TŸ

t=2
N (xt ≠ xt≠1; 0,‡2) GAMMA(yt ≠ xt; –,—)

(b) State-space model with Gaussian transition and Gamma emission distributions. It is a form of
the HMM model given in (3.17) with p(x1) = N (x1; 0,‡2), p(xt|xt≠1) = N (xt ≠ xt≠1; 0,‡2), and
p(yt|xt) = GAMMA(yt ≠ xt; –,—) with shape parameter – and scale parameter —. We assume that the
input parameters „ = {‡,–,—} are fixed and we want to sample from p(z1:T |y1:T ,„) given data y1:T ,
where each zt is an indicator for if xt exceeds a threshold of 4. Our query, exploiting the equivalence
between p(x1) and p(xt|xt≠1 = 0), first initializes x0 = 0 and creates distribution objects for the
transitions tr-dist and emissions obs-dist. It then loops over time steps, sampling each xt given
xt≠1, observing yt given xt, and deterministically calculating zt. Finally the z1:T are returned as the
desired output.

Figure 4.2: Example pseudo-queries for our simplified probabilistic programming setup with correspond-
ing graphical models and joint distributions.

,

,

,

11

40

Worked Example: Bayesian Linear Regression

17

Bayesian Linear Regression Generative Model
2. Probabilistic Programming – the User’s Perspective 5

Inputs: Input points u1:N
1: m Ωsample (normal (0,1))
2: c Ωsample (normal (0,1))
3: for n = 1, . . . , N do
4: µn Ω mun + c
5: vn Ωsample (normal (µn, 0.1))
6: end for
7: return m, c, v1:N

Inner (y,D)
1: z Ωsample (gamma(y,1))
2: observe (normal (y , z), D)
3: return z

Outer (D)
1: y Ωsample (beta(2,3))
2: z Ωsample (Inner (y,D))
3: return y, z

pin(z|y,D) = pin(z|y) pin(D|y, d)
Epin(z|y)[pin(D|y, d)]

pout(y, z|D) Ã pout(y) pin(z|y,D)

=pout(y) pin(z|y) pin(D|y, d)
Epin(z|y)[pin(D|y, d)]

Figure 2.2: Example pseudo-queries for our simplified probabilistic programming setup with correspond-
ing graphical models and joint distributions.

Inputs: Data u1:N , v1:N
1: m Ωsample (normal (0,1))
2: c Ωsample (normal (0,1))
3: for n = 1, . . . , N do
4: µn Ω mun + c
5: observe (normal (µn, 0.1), vn)
6: end for
7: return m, c

m c

y1 y2 • • • yN -1 yN

p(m, c, y1:S |‹,‡) = N (m; 0, 1) N (c; 0, 1)
NŸ

n=1
STUDENT-T

3
vn ≠ mun ≠ c

‡
; ‹

4

Inner (y,D)
1: z Ωsample (gamma(y,1))
2: observe (normal (y , z), D)
3: return z

Outer (D)
1: y Ωsample (beta(2,3))
2: z Ωsample (Inner (y,D))
3: return y, z

pin(z|y,D) = pin(z|y) pin(D|y, d)
Epin(z|y)[pin(D|y, d)]

pout(y, z|D) Ã pout(y) pin(z|y,D)

=pout(y) pin(z|y) pin(D|y, d)
Epin(z|y)[pin(D|y, d)]

Figure 2.3: Example pseudo-queries for our simplified probabilistic programming setup with correspond-
ing graphical models and joint distributions.

41

Worked Example: Bayesian Linear Regression

18

Bayesian Linear Regression Probabilistic Program

2. Probabilistic Programming – the User’s Perspective 5

Inputs: Input points u1:N
1: m Ωsample (normal (0,1))
2: c Ωsample (normal (0,1))
3: for n = 1, . . . , N do
4: µn Ω mun + c
5: vn Ωsample (normal (µn, 0.1))
6: end for
7: return m, c, v1:N

Inner (y,D)
1: z Ωsample (gamma(y,1))
2: observe (normal (y , z), D)
3: return z

Outer (D)
1: y Ωsample (beta(2,3))
2: z Ωsample (Inner (y,D))
3: return y, z

pin(z|y,D) = pin(z|y) pin(D|y, d)
Epin(z|y)[pin(D|y, d)]

pout(y, z|D) Ã pout(y) pin(z|y,D)

=pout(y) pin(z|y) pin(D|y, d)
Epin(z|y)[pin(D|y, d)]

Figure 2.2: Example pseudo-queries for our simplified probabilistic programming setup with correspond-
ing graphical models and joint distributions.

Inputs: Data u1:N , v1:N
1: m Ωsample (normal (0,1))
2: c Ωsample (normal (0,1))
3: for n = 1, . . . , N do
4: µn Ω mun + c
5: observe (normal (µn, 0.1), vn)
6: end for
7: return m, c

m c

y1 y2 • • • yN -1 yN

p(m, c, y1:S |‹,‡) = N (m; 0, 1) N (c; 0, 1)
NŸ

n=1
STUDENT-T

3
vn ≠ mun ≠ c

‡
; ‹

4

Inner (y,D)
1: z Ωsample (gamma(y,1))
2: observe (normal (y , z), D)
3: return z

Outer (D)
1: y Ωsample (beta(2,3))
2: z Ωsample (Inner (y,D))
3: return y, z

pin(z|y,D) = pin(z|y) pin(D|y, d)
Epin(z|y)[pin(D|y, d)]

pout(y, z|D) Ã pout(y) pin(z|y,D)

=pout(y) pin(z|y) pin(D|y, d)
Epin(z|y)[pin(D|y, d)]

Figure 2.3: Example pseudo-queries for our simplified probabilistic programming setup with correspond-
ing graphical models and joint distributions.

✓ = {m, c} D = {un, vn}N
n=1

41

Two Approaches to System Design

• Probabilistic programming is more of an umbrella term than

an exactly defined approach

• There are two philosophies systems are built around:

• Inference driven PPSs start with a specific inference

method(s) and build a language around making it as easy as

possible to write models suitable for that method(s)

• Model driven PPSs start with language capable of defining

any computable distribution and try and construct inference

engines capable of working on any program

• These are sometimes based on Turing–complete languages, in

which case they are known as universal PPSs

42

Universal PPSs allow Stochastic Control Flow

43

Example PPSs

Probabilistic Programming
Tom Rainforth

Languages

Turing

Zhusuan

Pyro ProbTorch

Edward

44

Deep PPSs

3D Tran et al. “Edward: A library for probabilistic modeling, inference, and criticism”. In: arXiv preprint

arXiv:1610.09787 (2016).

45

Recap

• Conditional independences are a very important modeling

assumption

• Graphical models, and in particular DAGs, allow us to

construct complex generative models by piecing together

components of the model

• Observing nodes in graph allow us to condition on

observations and thus perform Bayesian reasoning

• Probabilistic programming gives us a means of encoding

Bayesian models as code

• It further provides automated inference engines to calculate

the posterior

Next time: Bayesian inference—actually calculating posteriors

46

Further Reading

• The lecture notes provide a more thorough and technical

introduction to probabilistic programming

• Eric Xing’s course on Probabilistic Graphical Model:

http://www.cs.cmu.edu/~epxing/Class/10708-14/lecture.html

• Pieter Abbeel and Dan Klein on Bayes Nets (Lectures 16 to 19 in

the recommended list): http://ai.berkeley.edu./lecture_videos.html

• Bishop, Pattern recognition and machine learning, Chapters 8

• D Barber. Bayesian reasoning and machine learning. 2012,

Chapters 2-4

• Video tutorial on probabilistic programming by Frank Wood:

https://www.youtube.com/watch?v=Te7A5JEm5UI&t=500s

• Full conference of talks on probabilistic programming:

https://www.youtube.com/channel/UCTFDb7aQY1ewBYwJJrpKp6Q

• Websites for individual PPSs (Pyro is a good place to start) 47

http://www.cs.cmu.edu/~epxing/Class/10708-14/lecture.html
http://ai.berkeley.edu./lecture_videos.html
https://www.youtube.com/watch?v=Te7A5JEm5UI&t=500s
https://www.youtube.com/channel/UCTFDb7aQY1ewBYwJJrpKp6Q

