UNIVER: OF

(0),43(0)23D)

Lecture 3: Bayesian Modeling (Part 2)

Advanced Topics in Machine Learning

Dr. Tom Rainforth
January 24nd, 2020

rainforth@stats.ox.ac.uk

Lecture 3 Outline

This lecture will focus on methods for constructing Bayesians
models

In particular we will cover the following topics:
e Independence

e Graphical models

e Probabilistic programming

Independence

Independence

e Events are independent if the occurrence of one event does
not affect the probability of the other

e Equivalent definition for random variables
e If X and Y are independent, we denote thisas X 1L Y
e This is sometimes also known as marginal independence

o If X LY, then P(X = x) = P(X = x|Y = y) for all x, y.

e Independence is symmetric:
XLY = PY=y)=P(Y=ylX=x)
e Through the product rule, we further have: if

XLY = P(X,Y)=PX)P(Y)

Examples of Independent Random Variables

e The outcomes of two flipped
coins

e The speed of a car and
whether a speed camera is
malfunctioning

o We often assume
independence between
variables when constructing
a model

e Don't forgot Bayesian =

Image Credit: Pieter Abbeel

probabilities are subjective
beliefs

Conditional Independence

e Two events A and B are conditionally independent given
event C if A and B are independent given that C occurred.
e Again equivalent definition for random variables
e If X and Y are conditionally independent given Z, we denote
thisas X L Y|Z
e If X L Y|Z, then
P(X =x|Z =2z)=P(X =x|Y =y,Z = z) for all possible x,
y, and z.
e This is again symmetric in X and Y/, but not Z

XLY|Z = PY=ylZ=z)=P(Y=ylX=x,Z=2)
XLY|Zz # XLZIY o ZLY|X

e Conditional independence does not imply marginal
independence or vice versa

XLYZ» XL1Y, XLY # X1Y|Z

Conditional Independence Examples

e The amount of traffic and the
number of umbrellas being
used are not independent

e But they are conditionally
independent given it is raining

e A speed camera being switched
on and a car speeding are
marginally independent

e But they are not conditionally
independent given the camera
is triggered

Image Credit: Autocar

Why are Independence Relationships Important?

e (Conditional) Independence between variables is one of the
most important modeling assumptions we can make when
constructing Bayesian models

e The chain rule is an extension of the product rule that allows
us to break down any joint distribution into a product over

conditional probability distributions:
P(X1.n) = P(X1)P(Xa| X1) ... P(Xn| X1, X2y ..o, Xn—1)

N
= P(X1) [] P(XalX1:n-1) (1)
n=2
e Note we can use any ordering of the variables we want and

the chain rule also applies densities, e.g.
N—1

p(x1:n) = pxn) H p(Xn|Xnt1:n)
n=1 .

Why are Independence Relationships Important? (2)

e Different orderings of the variables in the joint breakdown are

known as factorizations of the joint

e Independence assumptions allow us to make simplifications
that show up in the factorizations

e For example, the Markov property
Xn 1L Xl:N\Xn | Xn—17Xn+1 (2)

allows us to factorize the joint as

N

P(Xun) = P(X) [] p(Xal Xa-1) (3)
n=2

Example: Flipping Lots of Coins

e We flip N independent coins

e The joint space of possible
outcomes is 2V which
becomes impractical to deal
with for even moderate N

e Utilizing the known
independence, we can reason
about each outcome

separately such that the

Image Credit: Pieter Abbeel

output space is only 2 x N

Example: Deep Generative Models

We often want to assume datapoints are independent given a
generative model

Images from CelebA dataset

Factorizations

e Some factorizations allow for more simplification than others
as they incorporate more information about independences
e Example: if X; 1L X3|X; then the factorization

P(X1, X2, X3) = P(X1)P(X2|X1)P(X3|X2)
is simpler than
P (X1, X2, X3) = P(X1)P(X3]| X1)P(X2| X1, X3)

e Critically though, we typically do not know all factorizations
of a model when we construct it
e For Bayesian problems we have direct access to p(6) and
p(D|0) but not p(D) and p(d|D): computation is required to
uncover them
e We can thus think about Bayesian inference as finding

unknown factorizations of a joint
10

Graphical Models

What is a Graphical Model?

e Generative models typically have many variables with a
complex dependency structure.

e Graphical models are a ubiquitous method for representing
and reasoning about generative models, with a particular

focus on the dependency structure.

e They are formed by a number of connected nodes, where each
node represents a random or observed variable in the model.

e Links between nodes represent dependencies: any two
connected nodes have an explicit dependency, though
unconnected nodes may still be dependent.

11

What is a Graphical Model? (2)

Graphical models can be separated into two distinct classes:
directed graphical models and undirected graphical models.

Directed Graphical Model Undirected Graphical Model

12

Undirected Graphical Models

e Undirected graphical models, also known as Markov random
fields, imply no ordering to variables and are used only to
express conditional independences

e They are useful for representing models that are difficult to
express in a generative manner

e Independence in undirected graphical models can be deduced
through the global Markov property:

e Two variables A and B are conditionally independent given a
subset of other variables C if there is no path between A and
B that does not pass through C.

e This implies that each variable is conditionally independent of
all the other variables given its neighbors.

e We will not cover these in detail—see C M Bishop. Pattern

recognition and machine learning. 2006, Section 8.3 instead
13

Undirected Graphical Model Example: Weather Prediction

Predicting whether it will rain at Xllj (19 (13
various locations does not have
a natural generative model

O (o) (x >
X21 X22 X23
But the probability that it rains </ N N

at one location is correlated to

whether it rains at neighboring X31\ &3

N
i
w

locations

14

Bayesian Networks / DAGs

e We'll focus on directed acyclic

graphical models (DAGs), i.e. 0
directed graphs containing no
cycles or loops

e DAGs, also known as Bayesian e e

networks, define a factorization
for a generative model p(a; b, c,d, e, f)

—p(a)p(b)p(cla, b)
pld|c)p(Flc, d)p(elf)

15

Bayesian Networks / DAGs (2)

e To define a model using a DAG, we need to be able to define
the probability of each variable given its parents (i.e. the
nodes with arrows pointing towards our current node)

e For any node in a DAG containing the variables xi.,

p(xn|x1:n\Xn) = p(xn|parents(x,)) (4)

16

Why Ya Should Like DAGs

e DAGs allows us to
provide a piecewise
explanation for the
generative process

e They allow us to
combine simple, local
distributions into a
larger, overall
generative process

e This makes them a

useful way to describe

Image Credit: Pieter Abbeel

and construct

Bayesian models
17

Example: Medical Diagnosis

e Imagine a medical diagnostic

problem where we wish to predict

if a patient has lung cancer. @
e Let f denote unknown lifestyle

and genetic factors of a

hypothetical patient (e.g.

whether they smoke)
e We encode this distribution of

these as p(f) p(f)
e Our DAG just starts with a single

node f

18

Example: Medical Diagnosis

e Given f, we can develop a model
for the probability that a patient
will develop lung cancer
e We encode this through the ®—>@
conditional distribution p(c|f)
where ¢ = 1 indicates cancer is
present
e We thus add a node ¢ to the
DAG and an arrow from f to c to
represent this conditional p(f)p(c|f)
dependency

18

Example: Medical Diagnosis

e Given f and ¢, we can predict
what symptoms, s, might be
observed, e.g. a persistent cough

e We encode this through the
conditional distribution p(s|f, c)
and add the new node s to the
DAG

e We now have the complete DAG
which provides a factorization of
our model p(f)p(c|f)p(s|c, f)

18

Observed Nodes

e The power DAGs becomes
apparent once we start
considering observing nodes

e This equivalent to
conditioning in a Bayesian
model: we fix a node to take

on a certain observed value

e Observed nodes in a DAG
are denoted through shading

e We can use the DAG to
reason about unobserved

Image Credit: Pieter Abbeel

variables conditioned on the

observed ones
19

Observed Nodes

e The power DAGs becomes

apparent once we start e e

considering observing nodes

e This equivalent to
conditioning in a Bayesian e
model: we fix a node to take
on a certain observed value

e Observed nodes in a DAG e 6

are denoted through shading

e We can use the DAG to
reason about unobserved
variables conditioned on the p(a)p(b)p(cl|a, b)p(d|c)p(elc)
observed ones

p(cld, e) o

19

Example: Medical Diagnosis

e For our medical diagnosis example
we actually observe the symptoms

e We can thus perform Bayesian
inference to try and infer whether

the patient has cancer.

e In general, posteriors are not
available in closed form and DAGs
provide a useful tool for providing
helpful information to calculate p(cls)
them: see Bishop Chapter 8 o< p(f)p(c|f)p(s|c, f)

20

Explaining Away

e Sometimes conditioning can
introduce dependencies we might p(m)p(s)p(t|m,s)
not at first expect

e Consider a model for speed

camera being triggered, t

e This depends on both whether
the camera is malfunctioning, m,
and whether the car is speeding,
s, as per the DAG on the right

e m and s are clearly marginally
independent

e But if t is observed they become

dependent
21

Explaining Away

This phenomenon is known as
¢ e s o p(m)p(s)p(t|m, s)
explaining away

e Here m and s provided alternative
explanations for t

e For example, if the camera is
triggered, then the car must be
speeding or the camera must
either be malfunctioning

e |f the camera is not triggered, we
cannot have both that the car is
not speeding and the camera is
working

21

Alarm Triggering Example

Variables
« B: Burglary

K7
« A: Alarm goes off R m
* M: Mary calls 4 N

« J: John calls
* E: Earthquakel NS

& ®
(A)
© o

Example and image credit: Pieter Abbeel

22

Alarm Triggering Example (2)

B | P(B) E | P(E)
+b | 0.001 Burglary +e | 0.002

-b | 0.999 N e | 0.998 - 2

\) -

B | E| A | PAIBE)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
A J P(J|A) A M | P(M|A) +b | e | -a 0.06
+a | 4 0.9 +a | +m 0.7 -b | +te | +a 0.29
+a - 0.1 +a | -m 0.3 b | +e | -a 0.71
-a | 4 0.05 -;a | +m 0.01 b | -e | +a 0.001
-a -j 0.95 ;a | -m 0.99 b | -e| -a 0.999

Example and image credit: Pieter Abbeel

23

Alarm Triggering Example (3)

Optional homework: use this Bayes net to calculate:

P (John Calls|Burglary) (5)
P (Burglary|John Calls) (6)
P (Earthquake|Mary Calls, Burglary) (7)

If you're looking for a challenge (optional), try your hand at this
homework assignment from Frank Wood:

http://www.robots.ox.ac.uk/~fwood/teaching/AIMS_CDT_
ML_2016/homework/HW_1_sum_product/

Note this will require substantial extra reading (Bishop Chapter 8)
and most likely a few hours to implement.

24

http://www.robots.ox.ac.uk/~fwood/teaching/AIMS_CDT_ML_2016/homework/HW_1_sum_product/
http://www.robots.ox.ac.uk/~fwood/teaching/AIMS_CDT_ML_2016/homework/HW_1_sum_product/

e How can we deduce the independence relationships from a
DAG?

d-separation gives us rules for doing this

Consider three arbitrary, non-intersecting, subsets A, B, and
C of a DAG.

A and B are conditionally independent given C if there are no
unblocked paths from A to B when C is observed

e A is said to be d-separated from B by C

25

e Paths do not need to be in the same directions as the arrows
in the DAG—we just have to move between connected nodes
e A path between A and B is blocked if
1. There is an unobserved node, n, in the path where both the
arrows point towards n and n has no observed descendants
2. Consecutive arrows in the path meet at an observed node and
either one or both of them points away from the node.
e Note that only the first of these rules is necessary for
establishing marginal independence

26

Blocked or Not?

Is the path between a and b blocked?
Rule 1 There is an unobserved node, n, in the path where both the
arrows point towards n and n has no observed descendants

Rule 2 Consecutive arrows in the path meet at an observed node and
either one or both of them points away from the node.

27

Blocked or Not?

Is the path between a and b blocked?

(9)) OO
Unblocked Blocked: 2nd rule Unblocked

Rule 1 There is an unobserved node, n, in the path where both the
arrows point towards n and n has no observed descendants

Rule 2 Consecutive arrows in the path meet at an observed node and
either one or both of them points away from the node.

27

Blocked or Not (2)?

Is the path between a and b blocked?
Rule 1 There is an unobserved node, n, in the path where both the
arrows point towards n and n has no observed descendants

Rule 2 Consecutive arrows in the path meet at an observed node and

either one or both of them points away from the node. »8

Blocked or Not (2)?

Is the path between a and b blocked?

Unblocked:

Blocked: 2nd rule Blocked: 1st rule .
explaining away

Rule 1 There is an unobserved node, n, in the path where both the
arrows point towards n and n has no observed descendants
Rule 2 Consecutive arrows in the path meet at an observed node and

either one or both of them points away from the node. »8

Hidden Markov Models

We finish our introduction to graphical models by considering a
common model where the dependency structure is very important:
Hidden Markov Models (HMMs)

e Bishop has almost a whole chapter dedicated to these
(Chapter 13)

b6 4

29

Hidden Markov Models (2)

As we see from its DAG, a HMM has T latent variables x;.7 and
T observations y;.7. The joint distribution is as follows
T

p(x1.1, y1:1) = p(x1)p(y1lx1) H p(xe|xe—1)p(ye|xt), (8)
t=2

where each x; is independent of xy.;—2 and y;1.;—1 given x;_1, and

of x¢10.7 and yr 1.7 given Xey1.

This Markov property means the model has no memory as
information is passed forwards (or backwards) only through the
value of the previous (or next) latent state:

Many dynamical systems obey the Markov property: HMMs are
extensively used for a number of tasks involving sequential data,

such as tracking and DNA sequencing
30

Probabilistic Programming

Captchas Revisited

Security check

To proceed, please enter the security code
below and click "Submit”.

gﬂm’ Can't read the characters?

Refresh Image

Enter security code

By clicking Submit | acknowledge the Terms and Conditions for use of the connectivity service(s)

Submit >

Captchas Reuvisited (2)

gXS2rRj

gxs2rRj
gxsIR

[Inference :(>

<): Generation —J

Probabilistic Programs are Simulator—-Based Models

Parameters H .S
S
!
Program 2 § p(y|x)p(x)
() g
Q
£
Output U Y
Scientific Statistics

Simulation

33

Probabilistic Programs are Simulator—-Based Models

Parameters H Parameters X
—
(@)
-
T
Program 2 Program g plylx)p(x)
A 5]
—
()
Y—
£
Output Observations U y
Scientific Probabilistic Statisti
Simulation Programming tatistics

33

Example: Deep Sea Oil Pipes

WoHBI WoH 1420 WGH22 WoH2%2 W.GH323

1000]

1200)

1400

200 400 600 800 10007200 200 400 600 800 10001200 200 400 600 800 10007200 200 400 600 800 10001200 200 400 600 800 10001200 200 400 600 800 10007200

L0 it
@ 7w s o

34

Example: Deep Sea QOil Pipes (2)

o
| 018 Iy
. 016+
0154 014+
012
01 014
Tos

T oy
01 0 028

Pipe sample 1 Pipe Sample 2

"

Application: Scene Perception

Observed Inferred Inferred model Inferred model
. re-rendered with re-rendered with
Image | (reconstruction) .
novel poses novel lighting

-

'3 A‘;@
= \A7

CeE®

1T D Kulkarni et al. “Picture: A probabilistic programming language for scene perception”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2015. 36

Application: Guided Object Generation

Forward Sampling SOSMC-Controlled Sampling

2D Ritchie et al. “Controlling procedural modeling programs with stochastically-ordered sequential Monte Carlo”.
In: ACM Transactions on Graphics (TOG) (2015).

37

What is a Probabilistic Programming System?

e Probabilistic programming systems (PPSs) allow Bayesian
models to be represented in the form of a stochastic simulator
and statements for conditioning on data

e Informally, one can think of the generative model as the
definition of a prior, the conditioning statements as the
definition of a likelihood, and the output of the program as

samples from a posterior distribution.

e Their core philosophy is to decouple model specification and

inference

e Inference is automated for any model the user might write

38

Separating Models from Inference

Simulator

User’s
Responsibility

Algorithm 1 Sequential Monte Carlo_all for 1 = 1,.., N)

7 number of paticles N, proposals g,

Algorithm 3 PMCM

(CSMC), conditional

tode by simulating ¢,

)[r] = X by simulating

5
9: end for

Inference
Engine(s)

Developer’s
Responsibility

39

Using Information in the Code

R

Inputs: Transition std-dev o, output shape @ @ @ @

«, output rate 3, data y.p
I: 29« 0 g
2: tr-dist < normal (0,0)
3: obs-dist « gamma (a, 3)
4: fort=1,...,T do 1}
5: Ty ¢ T4_1+sample (tr-dist)
6: observe (obs-dist, ¥ — &)
7: 2z Iz, > 4)
8: end for & .
o return z,.p p(zrr, yrr|o, o, B) =

N (z1;0,0%) GAMMA(y1 — 15 v, 3)

T
HN($L —24-1;0,0%) GAMMA(y; — 15 @,)
=2

40

Worked Example: Bayesian Linear Regression

Inputs: Input points u;.x
1: m <—sample (normal (0,1))
2: ¢ +—sample (normal (0,1))
3: forn=1,..., Ndo
4 I < MUy, +C
5: v, —sample (normal (i,,0.1))
6: end for
7: return m, c, v.n

41

Worked Example: Bayesian Linear Regression

Inputs: Data uy.n, vy 10F T T T T]

1: m <—sample (normal (0,1)) osl |
2: ¢ <—sample (normal (0,1))
3: forn=1,...,N do u0'67 |
4 W, $— MU, +C 04r 1
5: observe (normal (i,,0.1), v,) 0.2 1
6: end for 00 . . ‘ .]
7: returnm, c . 00 02 04 06 08 10

0 = {m7 C} D= {unv vn}szl

41

Two Approaches to System Design

e Probabilistic programming is more of an umbrella term than
an exactly defined approach
e There are two philosophies systems are built around:

e Inference driven PPSs start with a specific inference
method(s) and build a language around making it as easy as
possible to write models suitable for that method(s)

e Model driven PPSs start with language capable of defining
any computable distribution and try and construct inference
engines capable of working on any program

e These are sometimes based on Turing—complete languages, in
which case they are known as universal PPSs

42

Universal PPSs allow Stochastic Control Flow

Inputs: Event rate A

I: L+ exp(=A), k<0, p«1 0.4

2: whilep > L do

3: u ¢—sample (uniform (0,1)) 0.3

4: p < pu Il

5: if p < L then; break while; end if %o,g

6 observe (bernoulli (0.2), 1) &

7 k—k+1 0.1

8: end while I

9: observe (bernoulli (0.99), I(k>3)) 0 | I _—
10: return k 01 2 3 4 5 6 7 8

43

Example PPSs

PL Al ML STATS
Hakar Gamble Dynamic Support
Pyro Turing ProbTorch
W
Probabilistic C LibBi
Vent
enture Anglican STAN
HANSEI Flgaro Church Infer.NET PyMC
Al Fagtorie JAGS
Blog Zhusuan
ALisp Edward
IBAL
PRISM ICL KMP WinBUGS
Discrete Static
Support Support
BUGS

44

Deep PPSs

Edward
PROB

ﬁ% TORCH

N
1 WO al (mu=tf.zeros([D, H]), sigma=tf.ones([D, H]))
2 W_1 1 (mu=tf.zeros([H, 1]), sigma=tf.ones([H, 1]))
3 b0 1 (mu=tf.zeros (H), sigma=tf.ones(L))
4 b_1 = Normal (mu=tf.zeros(l), sigma=tf.ones(1))
5
6 |x = tf.placeholder(tf.float32, [N, DJ])
7 y = Bernoulli(logits=tf.matmul (tf.nn.tanh(tf.matmul(x, W_0) + b_0), W_1) + b_1)
3D Tran et al. “Edward: A library for probabilistic modeling, inference, and criticism”. In: arXiv preprint

arXiv:1610.09787 (2016).

45

e Conditional independences are a very important modeling
assumption

e Graphical models, and in particular DAGs, allow us to
construct complex generative models by piecing together
components of the model

e Observing nodes in graph allow us to condition on
observations and thus perform Bayesian reasoning

e Probabilistic programming gives us a means of encoding
Bayesian models as code

e It further provides automated inference engines to calculate
the posterior

Next time: Bayesian inference—actually calculating posteriors

46

Further Reading

e The lecture notes provide a more thorough and technical
introduction to probabilistic programming

e Eric Xing's course on Probabilistic Graphical Model:

http://www.cs.cmu.edu/~epxing/Class/10708-14/lecture.html

e Pieter Abbeel and Dan Klein on Bayes Nets (Lectures 16 to 19 in

the recommended ||st) http://ai.berkeley.edu./lecture_videos.html
e Bishop, Pattern recognition and machine learning, Chapters 8

e D Barber. Bayesian reasoning and machine learning. 2012,
Chapters 2-4

e Video tutorial on probabilistic programming by Frank Wood:

https://www.youtube.com/watch?v=Te7A5JEm5UI&t=500s

e Full conference of talks on probabilistic programming:

https://www.youtube.com/channel/UCTFDb7aQY1ewBYwJJrpKp6Q

e Websites for individual PPSs (Pyro is a good place to start) 47

http://www.cs.cmu.edu/~epxing/Class/10708-14/lecture.html
http://ai.berkeley.edu./lecture_videos.html
https://www.youtube.com/watch?v=Te7A5JEm5UI&t=500s
https://www.youtube.com/channel/UCTFDb7aQY1ewBYwJJrpKp6Q

