
5

 University of Oxford visual identity guidelines

At the heart of our visual identity is the Oxford logo.
It should appear on everything we produce, from
letterheads to leaflets and from online banners to
bookmarks.

The primary quadrangle logo consists of an Oxford blue
(Pantone 282) square with the words UNIVERSITY OF
OXFORD at the foot and the belted crest in the top
right-hand corner reversed out in white.

The word OXFORD is a specially drawn typeface while all
other text elements use the typeface Foundry Sterling.

The secondary version of the Oxford logo, the horizontal
rectangle logo, is only to be used where height (vertical
space) is restricted.

These standard versions of the Oxford logo are intended
for use on white or light-coloured backgrounds, including
light uncomplicated photographic backgrounds.

Examples of how these logos should be used for various
applications appear in the following pages.

NOTE
The minimum size for the quadrangle logo and the
rectangle logo is 24mm wide. Smaller versions with
bolder elements are available for use down to 15mm
wide. See page 7.

The Oxford logo
Quadrangle Logo

Rectangle Logo

This is the square
logo of first
choice or primary
Oxford logo.

The rectangular
secondary Oxford
logo is for use only
where height is
restricted.

Lecture 4: Foundations of Bayesian Inference

and Monte Carlo Methods

Advanced Topics in Machine Learning

Dr. Tom Rainforth

January 29th, 2020

rainforth@stats.ox.ac.uk

Lecture 4 Outline

In this lecture we will consider the problem of estimating and using

Bayesian posteriors.

While previous lectures have focused on modeling, we will now be

mostly concerned with computation instead; we will generally

assume the model is given.

Particular topics:

• Why is Bayesian inference challenging?

• Deterministic Approximations

• Monte Carlo

• Rejection sampling

• Importance sampling

1

Why is Bayesian Inference
Challenging?

1

Bayesian Inference is Hard!

• It might at first seem like Bayesian inference is a
straightforward problem

• By Bayes’ rule we have that p(θ|D) ∝ p(D|θ)p(θ) and so we

already know the relative probability of any one value of θ

compared to another.

• In practice, this could hardly be further from the truth

• For non–trivial models, Bayesian inference is akin to

calculating a high–dimensional integral

• It is, in general, an NP–hard problem (the examples we have

considered so far are special cases)

2

Why is Bayesian Inference Hard?

• We can break down Bayesian inference into two key
challenges:

• Calculating the normalization constant

p(D) =
∫
p(D|θ)p(θ)dθ

• Providing a useful characterization of the posterior, for

example, a set of approximate samples

• Each of these constitutes a somewhat distinct problem

• Many methods actually side–step the first problem and

directly produce approximate samples

3

Why is Bayesian Inference Hard? (2)

• Optimization is like

finding a needle in a

haystack

• Inference is like
finding all the needles
in a haystack

• This gets

particularly hard

when the space is

high–dimensional
Image Credit: Metro

4

The Normalization Constant

If p(D) is unknown, we lack scal-

ing when evaluating a point

• We have no concept of how

relatively significant that

point is compared to the

distribution as a whole

• We don’t know how much

mass is missing

• The larger the space of θ,

the more difficult this

becomes

Image Credit: www.theescapeartist.me

5

The Normalization Constant (2)

Consider a model where θ ∈ {1, 2, 3} with a corresponding uniform

prior P(θ) = 1/3 for each θ.

Now presume that for some reason we are only able to evaluate the

likelihood at θ = 1 and θ = 2, giving p(D|θ = 1) = 1 and

p(D|θ = 2) = 10 respectively.

Depending on the marginal likelihood p(D), the posterior

probability of P(θ = 2|D) will vary wildly:

• p(D) = 4 gives P(θ = 2|D) = 5/6

• p(D) = 1000 gives P(θ = 2|D) = 1/100

6

The Normalization Constant (3)

• If we manage to calculate p(D) we can then calculate the

posterior exactly through Bayes’ rule

• One might reasonably assume this was enough to solve the

inference problem

• In practice, even having an exact form for p(θ|D) is often not

enough for many tasks we might want to carry out when θ is

continuous or has a very large number of possible values

7

What Might we Use the Posterior For?

• To calculate the posterior probability or density for some

particular θ

• To calculate the expected value of some function,

Ep(θ|D) [f (θ)]

• To make predictions using the posterior predictive distribution

• To find the most probable variable values

θ∗ = arg maxθ p(θ|D)

• To produce a useful representation of the posterior for passing

on to another part of a computational pipeline or to be

directly observed by a user

8

Characterizing the Posterior

• Knowing is p(D) is only sufficient for this first of these tasks

• The others require additional computation of some form

• In particular, it is knowing p(D) is not sufficient (or even

necessary!) for drawing samples from the posterior

• At its heart, the problem of Bayesian inference is a problem of

where to concentrate our finite computational resources so

that we can effectively characterize the posterior; being able

to evaluate it piecewise is not always enough for this

9

Characterizing the Posterior: Example

Lets consider a simple example where we can easily calculate p(D),

and thus p(θ|D), numerically:

p(θ) = Gamma (θ; 3, 1) =
θ2 exp(−θ)

2
θ ∈ (0,∞) ,

p(y = 5|θ) = Student-t (θ − 5; 2) =
Γ(1.5)√

2π

(
1 +

(θ − 5)2

2

)−3/2

p(θ|y = 5) ≈ 5.348556 θ2 exp(−θ)
(
2 + (5− θ)2

)−3/2

10

Characterizing the Posterior: Example (2)

• Even though we have the

posterior in closed form, it is

not a standard distribution

and so we don’t know how

to sample from it

• For higher dimensional

problems, it will be very

difficult to calculate

expectations or the posterior

predictive without being able

to sample

• We’ll return to how we

might sample from this later
11

Deterministic
Approximations

11

Point Estimates

• One of the simplest approaches is to effectively ignore the

posterior computation problem completely and instead resort

to a heuristic approximation

• The simplest such approach is to take a point estimate θ̃ for

θ and then approximate the posterior predictive distribution

using only this value:

p(D∗|D) ≈ p(D∗|θ̃). (1)

• Finding θ̃ requires only an optimization problem to be solved

• This is far easier than the integration problem posed by full

posterior inference

12

Maximum Likelihood

Maximum likelihood is a non-Bayesian, frequentist, approach for

calculating a θ̃ based on maximizing the likelihood:

θ̃ML = arg max
θ∈ϑ

p(D|θ). (2)

This can be prone to overfitting and does not incorporate prior

information leading to a host of issues we previously discussed (see

Bayesian vs frequentist notes)

13

Maximum a Posteriori (MAP)

Maximum a Posteriori (MAP) estimation corresponds to

choosing θ̃ to maximize the posterior probability:

θ̃MAP = arg max
θ∈ϑ

p(θ|D) = arg max
θ∈ϑ

p(D|θ)p(θ). (3)

This provides regularization compared to ML estimation but still

has a number of drawbacks compared to full inference:

• It incorporates less information into the predictive distribution

• The position of the MAP estimate is dependent of the

parametrization of the problem (see notes on change of

variables)

14

Laplace Approximation

The Laplace approximation refines the MAP estimate by

approximating the full posterior with a Gaussian centered at the

MAP estimate and covariance dictated by the curvature of the log

density around this point

Images Credit: Luis Herranz

15

Laplace Approximation (2)

More formally, the Laplace approximation is given by

p(θ|D) ≈ N
(
θ; θ̃MAP, (ΛMAP)−1

)
(4)

where ΛMAP is the negative Hessian of the log joint density

evaluated at the MAP, i.e.

ΛMAP = −∇2
θ log (p(θ,D)) |θ=θ̃MAP

. (5)

16

Monte Carlo

16

Monte Carlo

Definition

Monte Carlo is the characterization of a probability distribution

through random sampling.

• It forms the underlying principle for all stochastic computation

• It is the foundation for a huge array of methods for numerical

integration, optimization, and Bayesian inference

• It provides us with a means of dealing with complex models

and problems in a statistically principled manner.

17

Example: Visualizing a Generative Model Over Faces

Little can be understood from looking at the density of a

generative model for generative faces: we need to draw samples to

understand the model

Figure 4: Random samples from the model, with temperature 0.7.

Figure 5: Linear interpolation in latent space between real images.

between the latents to obtain samples. The results in Figure 5 show that the image manifold of the
generator distribution is smooth and almost all intermediate samples look like realistic faces.

Semantic Manipulation. We now consider modifying attributes of an image. To do so, we use the
labels in the CelebA dataset. Each image has a binary label corresponding to presence or absence of
attributes like smiling, blond hair, young, etc. This gives us 30000 binary labels for each attribute.
We then calculate the average latent vector zpos for images with the attribute and zneg for images
without, and then use the difference (zpos � zneg) as a direction for manipulating. Note that this is a
relatively small amount of supervision, and is done after the model is trained (no labels were used
while training), making it extremely easy to do for a variety of different target attributes. The results
are shown in Figure 6 (appendix).

Effect of temperature and model depth. Figure 8 (appendix) shows how the sample quality and
diversity varies with temperature. The highest temperatures have noisy images, possibly due to
overestimating the entropy of the data distribution; we choose a temperature of 0.7 as a sweet spot
for diversity and quality of samples. Figure 9 (appendix) shows how model depth affects the ability
of the model to learn long-range dependencies.

7 Conclusion

We propose a new type of generative flow and demonstrate improved quantitative performance in
terms of log-likelihood on standard image modeling benchmarks. In addition, we demonstrate that
when trained on high-resolution faces, our model is able to synthesize realistic images.

References
Deco, G. and Brauer, W. (1995). Higher order statistical decorrelation without information loss.

Advances in Neural Information Processing Systems, pages 247–254.

3For 128⇥ 128 and 96⇥ 96 versions, we centre cropped the original image, and downsampled. For 64⇥ 64
version, we took random crops from the 96 ⇥ 96 downsampled image as done in Dinh et al. (2016)

8

1D P Kingma and P Dhariwal. “Glow: Generative flow with invertible 1x1 convolutions”. In: NeurIPS. 2018.

18

Monte Carlo Estimators

Consider the problem of calculating the expectation of some

function f (θ) under the distribution θ ∼ π(θ):

I := Eπ(θ) [f (θ)] =

∫
f (θ)π(θ)dθ. (6)

This can be approximated using the Monte Carlo estimator IN :

I ≈ IN :=
1

N

N∑
n=1

f (θ̂n) where θ̂n ∼ π(θ) (7)

are independent draws from π(θ).

Most of the tasks we laid out for Bayesian inference can be

formulated as some form of (potentially implicit) expectation

19

Example: Production Line

Sampling

• Sampling is a lot like repeated simulation

• Predicting the weather, basketball games, …

• Basic idea

• Draw N samples from a sampling distribution S

• Compute an approximate posterior probability

• Show this converges to the true probability P

• Why sample?

• Reinforcement Learning: Can
approximate (q-)values even when
you don’t know the transition function

• Inference: getting a sample is faster than
computing the right answer (e.g. with
variable elimination)

• The production machine randomly generates colored shapes

from some distribution, a robot sorts them into bins

• The production machine is performing Monte Carlo sampling,

the robot is constructing a Monte Carlo estimate

Images Credit: Pieter Abbeel 20

Example: Election Polling

We cannot query the full distribution over voters, so we poll instead

Images Credit: Anthony Figueroa 21

Unbiasedness

The Monte Carlo estimate is unbiased (for fixed N), i.e. E [IN] = I

E [IN] = E

[
1

N

N∑
n=1

f (θ̂n)

]

=
1

N

N∑
n=1

E
[
f (θ̂n)

]
=

1

N

N∑
n=1

E
[
f (θ̂1)

]
= I

22

What Exactly Does Unbiasedness Mean?

• It means that Monte Carlo does not introduce any systematic
error, i.e. bias, into the approximation

• In expectation, it does not pathologically overestimate or

underestimate the target

• A biased estimator Ĩ would have E[Ĩ] = I + B for some B 6= 0

• Here we are implicitly using the frequentist definition of

probability: the expectation is defined through repeating the

sampling infinitely often

• It does not mean that it is equally likely to overestimate or
underestimate

• It may, for example, typically underestimate by a small amount

and then rarely overestimate by a large amount

23

Consistency of an Estimator

• In general, we want an estimator to become arbitrarily good in
the limit of using a large computation

• For example, with our Monte Carlo estimator, we would like

IN → I as N →∞.

• This is know as consistency of an estimator

• It is not the same thing as unbiasedness

• Unbiasedness is concerned with repeatedly constructing a finite

estimator and averaging the results

• Consistency is concerned with what happens when we increase

the budget of a single estimator

• Many estimators are biased in the finite regime but consistent

(their bias decreases as N increases)

24

The Law of Large Numbers

The consistency of the standard Monte Carlo estimator is

demonstrated by the law of large numbers.

Informally, the law of large numbers states that the empirical

average of independent and identically distributed

(i.i.d.) random variables converges to the true expected value of

the underlying process as the number of samples increases

More formally we have:

The (Weak) Law of Large Numbers

E
[
(IN − I)2

]
=
σ2
θ

N

where σ2
θ :=E

[(
f (θ̂1)− I

)2
]

= Var [f (θ)]

25

The Law of Large Numbers (2)

There are two key consequences of the LLN:

• IN → I as N →∞ such that the Monte Carlo estimate is

consistent

• The rate of this convergence is such that |IN − I | is O(1/
√
N)

Other more powerful results, like the central limit theorem, allow

for the i.i.d. assumption of the LLN to be relaxed and give more

information about the nature of this convergence.

• This is important if our samples are correlated (e.g. MCMC

sampling)

• See the notes for more details

26

Composability of Monte Carlo

Another key property of Monte Carlo is that samples can be

combined and deconstructed:

• Monte Carlo samples from a joint distribution will also have
the correct marginal distribution over any of its individual
components

• If {θ̂1, θ̂2} ∼ p(θ1, θ2) then θ̂1 ∼ p(θ1) and θ̂2 ∼ p(θ2)

• Sampling from the marginal distribution then sampling from
the conditional distribution given these samples will give
samples distributed according to the joint.

• If θ̂1 ∼ p(θ1) and θ̂2 ∼ p(θ2|θ1 = θ̂1), then {θ̂1, θ̂2} ∼ p(θ1, θ2)

These mean that Monte Carlo can be used as a mechanism for

unbiasedly propagating information

27

The Flaw of Averages

Image Credit: Sam L. Savage 28

The Flaw of Averages

• In general, f (E[θ]) 6= E[f (θ)]

• Avoid taking expectations in a computational pipeline until

you absolutely have to

• Monte Carlo instead allows us to pass information through
samples that we can average over at a later time

• We can draw samples autoregressively. For example, we can

sample θ̂1 ∼ p(θ1), then θ̂2 ∼ p(θ2|θ1 = θ̂1) and so forth

• We then only take the average of these when we actually need

to calculate an expectation

29

Monte Carlo vs Classical Integration Schemes

• Classical integration approaches like Simpson’s rule can offer

far better convergence rates in low dimensions that the

O(1/
√
N) of Monte Carlo

• But these rates break down (typically exponentially) as the

dimension increases

• In high–dimensions, Monte Carlo estimates are one of the

only approaches that can remain accurate

30

Drawing Samples

30

Drawing Samples

• We have shown how to use samples to characterize

distributions and estimate expectations

• But how to we draw these samples in the first place?

• We’ll now introduce a number of sampling schemes

• Note that most (with the exception of our first example) will

not require us to know the normalization constant p(D): they

can operate on p(θ,D) directly

31

Sampling Using the Inverse CDF

If we know the cumulative density function (CDF) of the posterior

P(Θ ≤ θ|D) :=

∫ Θ=θ

Θ=− inf
p(θ = Θ|D)dΘ, (8)

along with its inverse P−1 (we rarely do in practice), then we can

draw exact samples by first sampling û ∼ Uniform(0, 1) and then

taking θ̂ = P−1(û), noting that û = P(Θ ≤ θ̂|y = 5)

Image credit: pythonhosted.org 32

Sampling By Rejection

How might we draw samples from within this butterfly shape?

33

Sampling By Rejection

We can draw samples uniformly from a surrounding box

33

Sampling By Rejection

Then reject those not falling within the shape

33

Sampling By Rejection (2)

• We can also use this method to estimate the area of the shape

• The probability of any one sample falling within the shape is

equal to the ratio of the areas of the shape and bounding box:

Ashape = AboxP(θ ∈ shape)

≈ Abox

N

N∑
n=1

I(θ̂n ∈ shape) where θ̂n ∼ Uniform(box)

• Here we have used a Monte Carlo estimator for P(θ ∈ shape)

• Note that the value of P(θ ∈ shape) will dictate the efficiency

of our estimation as it represents the acceptance rate of our

samples.

34

Sampling from Area Under Density

Sampling from the area under a density function is equivalent to

sampling from that density itself.

Think about sampling from a histogram with even width bins and

then take the width of these bins to zero

Images Credit: Wikipedia

35

Rejection Sampling

Rejection sampling uses this idea to draw samples from a target by

drawing samples from an area enveloping its density using an

auxiliary variable u

36

Rejection Sampling (2)

More formally, we define a proposal distribution q(θ) which

completely envelopes a scaled version of the unnormalized target

distribution Cp(θ,D), for some fixed C , such that q(θ) ≥ Cp(θ,D)

for all values of θ.

We then sample a pair {θ̂, û} by first sampling θ̂ ∼ q(θ) and then

û ∼ Uniform(0, q(θ)). The sample is accepted if

û ≤ Cp(θ̂,D) (9)

in which case θ̂ is an exact sample from p(θ|D)

The acceptance rate of samples is Cp(D), which thus provides and

estimate for p(D) by diving through by C

37

Rejection Sampling (3)

Rejection sampling in action for our earlier example:

38

Rejection Sampling (4)

Pros

• One of the only inference methods to produce exact samples

• Can be highly effective in low dimensions

• Works equally well for unnormalized targets (i.e. we there is

no need to know p(D)

• Provides a marginal likelihood estimate via the acceptance

rate

39

Rejection Sampling (5)

Cons

• Scales poorly to higher dimensions (more on this later)

• Requires carefully designed proposals

• Very dependent on the value of C

• Finding a valid C requires significant knowledge about the

target density

40

Importance Sampling

40

Importance Sampling

• Importance sampling is a common sampling method that is

also the cornerstone for many more advanced inference

schemes

• It is closely related to rejection sampling in that it uses a

proposal, i.e. θ̂ ∼ q(θ)

• Instead of having an accept–reject step, it assigns an

importance weight to each sample

• These importance weights act like correction factors to

account for the fact that we sampled from q(θ) rather than

our target p(θ|D)

41

Importance Sampling Algorithm

Assume for now that we can evaluate p(θ|D) exactly. Here the

algorithm is as follows:

1. Define a proposal q(θ)

2. Draw N i.i.d. samples θ̂n ∼ q(θ) n = 1, . . . ,N

3. Assign weight wn = p(θ̂n|D)

q(θ̂n)
to each sample

4. Combine the samples to form the empirical measure

p(θ|D) ≈ p̂(θ|D) :=
1

N

N∑
n=1

wnδθ̂n(θ) (10)

5. This can used to be estimate Ep(θ|D)[f (θ)] for any f using

Ep(θ|D) [f (θ)] ≈ µ̂IS :=
1

N

N∑
n=1

wnf (θ̂n) (11)

42

Importance Sampling Example

43

Importance Sampling Example

43

Importance Sampling Example

43

Importance Sampling Properties

Provided that q(θ) has lighter tails than p(θ|D),

i.e. q(θ)/p(θ|D) > ε, ∀θ for some ε > 0, then importance

sampling provides an unbiased and consistent estimator for any

integrable target function f (θ):

E[µ̂IS] = Ep(θ|D) [f (θ)] (12)

Var[µ̂IS] =
Varq(θ)[w f (θ)]

N
(13)

Demonstrations of these results are given in the text

44

Self-Normalized Importance Sampling

• So far, we have assumed that we have access to a normalized

version of the posterior p(θ|D)

• Typically this will not be the case and we will only have access

to an unnormalized target, namely the joint

p(θ,D) = p(θ|D)p(D)

• We can get around this by using p(θ,D) to define the

weights, but then self-normalizing them

• The intuition is that doing this is using the importance

samples to estimate both p(θ,D) and p(D) (see the notes)

• Note that, unlike normal importance sampling, self-normalized

importance sampling estimators are biased

45

Self-Normalized Importance Sampling (2)

The self-normalized importance sampling estimator is given by:

p(θ|D) ≈ p̂(θ|D) :=
1
N

∑N
n=1 wnδθ̂n(θ)

1
N

∑N
n=1 wn

=
N∑

n=1

w̄nδθ̂n(θ)

where θ̂n ∼ q(θ), wn =
p(θ̂n,D)

q(θ̂n)
, w̄n =

wn∑
n wn

We can further use this to estimate expectations:

Ep(θ|D) [f (θ)] ≈
N∑

n=1

w̄nf (θ̂n)

46

Sequential Importance Sampling

• Importance weights are multiplicative when doing conditional

sampling

• If we sample θ̂n ∼ q1(θ) then φ̂n|θ̂n ∼ q2(φ|θ̂n) when

targeting p(θ|D)p(φ|θ,D) then the importance weight is

p(θ̂n|D)p(φ̂n|θ̂n,D)

q1(θ̂n)q2(φ̂n|θ̂n)
=

p(θ̂n|D)

q1(θ̂n)
× p(φ̂n|θ̂n,D)

q2(φ̂n|θ̂n)
= wn,1 × wn,2.

• This is known as sequential importance sampling and

means that we can propagate importance weighted samples

through a computational system

47

Importance Sampling Pros and Cons

Many pros and cons are shared with rejection sampling

Pros

• By using all the samples from the proposal, can achieve lower

variance estimates than rejection sampling from the same cost

• No need to find a constant scaling to bound the target

(i.e. the C in rejection sampling)

• Can also be highly effective in low dimensions

• Self-normalization allows use with unnormalized targets

• Provides an unbiased marginal likelihood estimate by taking

the average of the weights

48

Importance Sampling Pros and Cons (2)

Cons

• Also scales poorly to higher dimensions (more on this next

lecture)

• Also requires a carefully designed proposals

• Samples are not exact

• Self–normalization induces bias

49

Recap

• Bayesian inference is hard!

• Even if we can directly evaluate the posterior (which is rare),

this may not be enough to characterize it and estimate

expectations

• Monte Carlo methods give us a mechanism of representing

distributions through samples

• Rejection sampling samples from an envelope of the target

than only takes the samples that fall within it

• Importance sampling samples from a proposal and then

assigns weights to the samples to account for them not being

from the target

Next time: MCMC and variational methods

50

Further Reading

• The notes quite closely match the lecture with some extra

details

• Chapters 1, 2, 7, and 9 of Art Owen’s online book on Monte

Carlo: https://statweb.stanford.edu/~owen/mc/

• Chapter 23 of K P Murphy. Machine learning: a probabilistic

perspective. 2012

• M F Bugallo et al. “Adaptive importance sampling: the past,

the present, and the future”. In: IEEE Signal Processing

Magazine (2017)

• David MacKay on Monte Carlo

methods http://videolectures.net/mackay_course_12/

51

https://statweb.stanford.edu/~owen/mc/
http://videolectures.net/mackay_course_12/

