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Recap: Bayesian Inference is Hard!
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Recap: Monte Carlo
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Recap: Rejection Sampling
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Lecture 5 Outline

In this lecture we will we show how the foundational methods
introduced in the last section are not sufficient for inference in high
dimensions

Particular topics:
e The Curse of Dimensionality

e Markov Chain Monte Carlo (MCMC)

e Variational Inference



The Curse of
Dimensionality



The Curse of Dimensionality

e The curse of dimensionality is a tendency of modeling and
numerical procedures to get substantially harder as the
dimensionality increases, often at an exponential rate.

e If not managed properly, it can cripple the performance of

inference methods

e |t is the main reason the two procedures discussed so far,
rejection sampling and importance sampling, are in practice
only used for very low dimensional problems

e At its core, it stems from an increase of the size (in an
informal sense) of a problem as the dimensionality increases



The Curse of Dimensionality (2)

e Imagine we are calculating an expectation over a discrete
distribution of dimension D, where each dimension has K
possible values

e The cost of enumerating all the possible combinations scales
as KD and thus increases exponentially with D; even for
modest values for K and D this will be prohibitively large

e The same problem occurs in continuous spaces: think about
splitting the space into blocks, we have to reason about all

the blocks to reason about the problem



The Curse of Dimensionality (3)
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Image Credit: Bishop, Section 1.4



Example: Rejection Sampling From a Sphere

Consider rejection sampling from a D-dimensional hypersphere
with radius r using the tightest possible enclosing box:

1 -1 x 1

-1 X 1
1 dimension (D = 1) 2 dimensions (D = 2) 3 dimensions (D = 3)
Sample points x Sample points (x, y) Sample points (x, y, z)
in a segment of length 2 in a square of side 2 in a cube of side 2
All points are accepted Accept points inside Accept points inside

the unit circle the unit sphere

Image Credit: Adrian Baez-Ortegal



Example: Rejection Sampling From a Sphere (2)

Here the acceptance rate is equal to the ratio of the two volumes.
For even values of D this is given by

Ve  wP/2/P/(D/2)! \? 1
P(Accept):———/( ) = <f> (D)2

Ve (2r)b
This now decreases super—exponentially in D (noting that
(D/2)! > (D/6){P/?)

D = 2,10,20, and 100 respectively gives P(Accept) values of 0.79,
2.5x1073,25x 1078, and 1.9 x 10 °

2

Sampling this way was perfect in one-dimension, but quickly
becomes completely infeasible in higher dimensions
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Curse of Dimensionality for Importance/Rejection Sampling

For both importance sampling and rejection sampling we use
a proposal q(0)
This proposal is an approximation of the target p(6|D)

As the dimension increases, it quickly becomes much harder

to find good approximations

The performance of both methods typically diminishes

exponentially as the dimension increases
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Typical Sets

Another consequence of the curse of dimensionality is that most of

the posterior mass becomes concentrated away from the mode.

Consider representing an isotropic Gaussian in polar coordinates.
The marginal density of the radius changes with dimension:

2

-
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Typical Sets

In high dimensions, the posterior mass concentrates in an thin strip

away from the mode known as the typical set

PROBABILITY
H DENSITY
g'gheftSt TYPICAL SET
ensi
y Samples VOLUME

DisTANCE FRom MODE
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This means that, not only is the mass concentrated to a small
proportion of the space in high dimensions, the geometry of this

space can be quite complicated

LE Nalisnick et al. “Detecting out-of-distribution inputs to deep generative models using a test for typicality”. In:
13

arXiv preprint arXiv:1906.02994 (2019).




How Can We Overcome The Curse of Dimensionality?

e As we showed with the typical sets, the area of significant
posterior is usually only a small proportion of the overall space
e To overcome the curse, we thus need to use methods which
exploit structure of the posterior to only search this small
subset of the overall space
e All successful inference algorithms make some implicit
assumptions into the structure and then try to exploit this
e MCMC methods exploit local moves to try and stick within the
typical set (thereby also implicitly assuming there are not
multiple modes)
e Variational methods assume independences between different
dimensions that allow large problems to be broken into
multiple smaller problems
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Markov Chain Monte Carlo



Markov Chains

http://setosa.io/ev/markov-chains/

15


http://setosa.io/ev/markov-chains/

The Markov Property

In a Markovian system each state is independent of all the previous
states given the last state, i.e.

p(gn‘gly 0000 9n—1) = p(enlen—l)

The system transitions based only on its current state.

Here the series of random variables produced the system
(i.e. ©1,...,0,,...) is known as a Markov chain.

16



Defining a Markov Chain

o All the Markov chains we will deal with are homogeneous
e This means that each transition has the same distribution:

p(Ont1 = 9/‘@n =0)=p(©n= 0'[@,,,1 =0),

e In such situations, p(©,+1 = 0,+1|©, = 6,) is typically
known as a transition kernel T (0,1 < 6,)

e The distribution of any homogeneous Markov chain is fully
defined by a combination of an initial distribution p(6;) and
the transition kernel T (0,11 < 0,), e.g.

p(Om) = / T(Om < O 1) T (Ot < Om_2) ...

T(02 + 61)p(61)d01.m—1
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Random walks: Continuous Markov Chains

e Markov chains do not have to be in discrete spaces

e In continuous spaces we can informally think of them as
guided random walks through the space with finite sized steps

https://youtu.be/7A831Xbs6Ik?7t=114
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https://youtu.be/7A83lXbs6Ik?t=114

Markov Chain Monte Carlo (MCMC)

e Markov chain Monte Carlo (MCMC) methods are one of the
most ubiquitous approaches for Bayesian inference and
sampling from target distributions more generally

e The key idea is to construct a valid Markov chain that
produces sample from the target distribution

e They only require that the target distribution is only known
up to a normalization constant.

e They circumvent the curse of dimensionality by exploiting
local moves

e They have a hill-climbing effect until they reach the typical set

e They then move around the typical set using local moves

e They tend to fail spectacularly in the presence of
multi—-modality

19



Convergence of a Markov Chain

e To use a Markov chain for consistent inference, we need it to
be able to produce an infinite series of samples that converge
to our posterior:

Jim 3 de.(0) <, p(6ID) (1)

where M is a number of burn—in samples that we discard
from the start of the chain

e In most cases, a core condition for this to hold is that the
distribution of individual samples converge to the target for all
possible starting points:

lim p(©n = 0|01 = 61) = p(0|D) Vb, (2)
N—oc0
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Convergence of a Markov Chain

Ensuring that the chain converges to the target distribution for all
possible initializations has two requirements

1. p(0)D) must be the stationary distribution of the chain,
such that if p(©, = 6) = p(0|D) then
p(©n+1 = 0) = p(0|D). This is satisfied if:

[ 16 < 0p(6iD)d0 = p(o'1D) ©)

where we see that the target is invariant to the application of
the transition kernel.

2. The Markov chain must be ergodic. This means that all
possible starting points converge to this distribution.
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Ergodicity

Ergodicity itself has two requirements, the chain must be:

1. Irreducible, i.e. all points with non-zero probability can be
reached in a finite number of steps

2. Aperiodic, i.e. no states can only be reached at certain

periods of time

These requirements for these to be satisfied are very mild for
commonly used Markov chains, but are beyond the scope of the

course
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Stationary Distribution

Optional homework: figure out how we can get the stationary
distribution from the transition kernel when 6 is discrete

Hint: start by defining the transition kernel as a matrix
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Detailed Balance

A sufficient condition used for constructing valid Markov chains is
to ensure that the chain satisfies detailed balance:

p(0|D)T (0 + 0) = p(0'|D)T(0 + ¢). (4)

Chains that satisfy detailed balance are known as reversible.

(Y
(®)

Image Credit: lain Murray
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Detailed Balance (2)

It is straightforward to see that Markov chains satisfying detailed
balance will admit p(0|D) as a stationary distribution by noting
that

/ T(0' < 0)p(6|D)d6 = / T(0 « 0')p(6'|D)d6 = p(¢/|D). (5)

We can thus construct valid MCMC samplers by using detailed
balance to construct a valid transition kernel for our target,
sampling a starting point, then repeatedly applying the transition
kernel
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Metropolis Hastings

One of the simplest and most widely used MCMC methods is
Metropolis Hastings (MH).

Given an unnormalized target p(¢,D), a starting point 01, and a
proposal g(6’|0), the MH algorithm repeatedly applies the
following steps ad infinitum

1. Propose a new point 6’ ~ q(0'|0 = 6,)
2. Accept the new sample with probability
: p(0', D)q(6]6") >
P(Accept) = min (1, 6
(Accep) (0. D)a(?16,) 82
in which case we set 0,1 < ¢’

3. If the sample is rejected, set 0,41 < 0,
4. Go back to step 1

26



Metropolis Hastings (2)

e This produces an infinite sequence of samples
01,02,...,0,, ... that converge to p(0|D) and from which we
can construct a Monte Carlo estimator

p(0|D) ~ Z 3, (0 (7)

where we start with sample M to burn-in the chain
e Note that MH only requires the unnormalized target p(6, D)

e Unlike rejection/importance sampling, the samples are
correlated and produce biased estimates for finite

e The key though is that the proposal q(6’|0) depends on the
current position allowing us to make local moves

27



MCMC Methods Demo

https://chi-feng.github.io/mcmc-demo/app.
html7algorithm=RandomWalkMH&target=banana
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https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=banana
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=banana

More Advanced MCMC Methods

There are loads of more advanced MCMC methods.

Two that are particularly prominent ones that you should be able
to quickly pick up given what you have already learned are:

e Gibbs sampling (see the notes)

e Hamiltonian Monte Carlo: https:
//arxiv.org/pdf/1206.1901.pdf ?fname=cm&font=Typel

29


https://arxiv.org/pdf/1206.1901.pdf?fname=cm&font=TypeI
https://arxiv.org/pdf/1206.1901.pdf?fname=cm&font=TypeI

Hamiltonian Monte Carlo Demo

https://chi-feng.github.io/mcmc-demo/app.
html7algorithm=HamiltonianMC&target=donut
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https://chi-feng.github.io/mcmc-demo/app.html?algorithm=HamiltonianMC&target=donut
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=HamiltonianMC&target=donut

Pros and Cons of MCMC Methods

Pros
e Able to work in high dimensions due to making local moves

e No requirement to have normalized target

e Consistent in the limit of running the chain for an infinitely
long time

e Do not require as finely tuned proposals as importance
sampling or rejection sampling

e Surprisingly effective for a huge range of problems
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Pros and Cons of MCMC Methods (2)

Cons
e Produce biased estimates for finite sample sizes due to

correlation between samples
e Diagnostics can be very difficult
e Typically struggle to deal with multiple modes

e Proposal still quite important: chain can mix very slowly if
the proposal is not good

e Can be difficult to parallelize

e Deriving theoretical results is more difficult than previous

approaches
e Produces no marginal likelihood estimate

e Typically far slower to converge than the variational methods
we introduce next 32



Background for Variational
Inference: Divergences



Divergences

e How do we quantitatively assess how similar two distributions
p(x) and g(x) are to one another?

e Similarity between distributions is much more subjective than
you might expect, particularly for continuous variables

e Metrics for measuring the “distance” between two
distributions are known as a divergence and typically
expressed in the form D(p(x)||q(x))

e Note that most divergences are not symmetric

33



Divergences (2)

Which is the best fitting Gaussian to our target blue distribution?
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Either can be the best depending how we define our divergence

Image Credit: Barber, Section 28.3.4 34



The Kullback—Leibler (KL) Divergence

The KL divergence is one of the most commonly used divergences
due to its simplicity, useful computational properties, and the fact
that it naturally arises in a number of scenarios

KL | o(x)) = [ gl log T3 = Batx) g 45] @

Importance properties:

o KL(q(x) || p(x)) > 0 for all g(x) and p(x)
o KL(q(x) [l p(x)) =0
o In general, KL(q(x) || p(x)) # KL(p(x) || q(x))

if and only if p(x) = gq(x) Vx
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Asymmetry of KL Divergence

Blue: target p(x)

Red: Gaussian g(x) that minimizes KL(p(x) || q(x))
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Mode Covering KL

The “forward” KL, KL(p(x) || g(x)), is mode covering: g(x) must

place mass anywhere p(x) does

OK, KL small

Image Credit: Eric Jang

Not OK,
Forward-KL large
v
A
P
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Mode Seeking KL

The “reverse” KL, KL(g(x) || p(x)), is mode seeking: g(x) must
not place mass anywhere p(x) does not

Not OK,
Reverse-KL large

s
Sor

OK, KL small

Image Credit: Eric Jang
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Tail Behavior

e We can get insights into this happens by considering the cases
q(x) — 0 and p(x) — 0, noting that limy_ x logx =0
e If g(x) = 0 when p(x) > 0, then g(x) log(q(x)/p(x)) =0 and
p(x)log(p(x)/q(x)) = oo
o KL(p(x) | g(x)) = o if g(x) = 0 anywhere p(x) > 0
e KL(g(x) || p(x)) is still fine when this happens
e By symmetry, KL(q(x) || p(x)) is problematic if g(x) > 0
anywhere p(x) =0

39



Variational Inference



Variational Inference

e Variational inference (VI) methods are another class of
ubiquitously used approaches for Bayesian inference wherein
we try to learn an approximation to p(6|D)

e Key idea: reformulate the inference problem to an
optimization, by learning parameters of a posterior
approximation

e We do this through introducing a parameterized variational
family g4(0), ¢ € ¢

e Then finding the ¢* € ¢ that gives the “best” approximation

e Here "best” is based on minimizing KL(q || p):

9" = argergin KL(qe(0) || p(0]D)) (9)

40



The Variational Family

KL(q(z|2)|lp(z|2) Approximation class

True posterior

Image Credit: Shakir Mohamed 41



Variational Inference (2)

/KL (go-(0)|Ip(0|D))
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Variational Inference (3)

e We cannot work directly with KL(gy(8) || p(6|D)) because we
don’t know the posterior density

e We can note that the marginal likelihood p(D) is independent
of our variational parameters ¢ to work with the joint instead

¢" = argminKL(qy4(0) || p(6|D))
pep

c [ q¢(0)]
=argminE log
sep [T p(6ID)

c [ q¢(0) :|
=argminE log — log p(D
ser 07 p(6D) &

- q(0) }
=argminE log
PEP 9(6) L p(97'D)
e This trick is why we work with KL(g,(8) || p(6|D)) rather
than KL(p(0|D) || q4(6)): the latter is doubly intractable

43



The ELBO

We can equivalently think about the optimization problem in VI as
the maximization

¢ = arg max L(¢)

PEP
0,D
where  L() : =Eg, (o) [Iog pC(Iqs(H))}

— log p(D) — KL(qs(6) || p(6ID))

is known as the evidence lower bound or ELBO for short

L(¢) is also sometimes known as the variational free energy

44



The ELBO (2)

This name comes from the fact that the ELBO is a lower bound on
the log evidence by Jensen's inequality using the concavity of log

£(9) = Fqy0 [Iog ”(979)} < log Eqyo [”(9’@)] ~ log p(D)

q4(0) q¢(0)
log(u)
up + up
| log(u)
S log uy + log up u
- 2
for any ug,ur >0

Image Credit: Michael Gutmann
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Example: Mixture of Gaussians

Evidence Lower Bound
—3,200

—3,500
—3,800

—4,100
0 10 20 30 40 50 60
Iterations

Image credit:

Alp Kucukelbir

0

Average Log Predictive

10 20 30 40 50 60
Iterations
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Worked Example—Gaussian with Unknown Mean and Variance

As a simple worked example (taken from Bishop 10.1.3), consider
the following model where we are trying to infer to the mean u and
precision 7 of a Gaussian given a set of observations D = {x,}V_;.

Our full model is given by

p(7) = GAMMA(T; «, 3)
pulT) = N(u' po, (ho) 1)

p(D|u, ) HN Xny by T 1
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Worked Example—Gaussian with Unknown Mean and Variance

We care about the posterior p(u, 7|D) and we are going to try and
approximate this using variational inference

For our variational family we will take

qo(T, 1) = q(7)q(1)
4s(7) = GAMMA(T; ¢a, Pp)
Go(1) = N(1; dc, d57)

where we note that this factorization is an assumption: the
posterior itself does not factorize

48



Worked Example—Gaussian with Unknown Mean and Variance

To find the best variational parameters ¢*, we need to optimize
L(¢), for which we can use gradient methods, using

VeL(¢) =V // 95(7)as(1) log (p(DW’T)p(MT)p(T)) drdu

q6(7) a6 (1)

If we can calculate this gradient, this means we can optimize ¢ by

performing gradient ascent.

After initializing some ¢q, we just repeatedly apply
¢n+1 — On+ Env¢£(¢n)
where €, are our step sizes

49



Gradient Updates of Variational Parameters

/KL(as 0)/1p(01D))
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Gradient Updates of Variational Parameters

q4(0) /KL<G¢*(9)HP(9|D))
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Gradient Updates of Variational Parameters
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The Mean Field Assumption

e In this example we chose a factorized variational
approximation: qg(i, 7) = qg(1t)qe(7)

e This factorization assumption is actually a common
assumption more generally called the mean field assumption

e Mathematically we can define this as

qs(0) = H j,6(6)) (10)

e There are a number of scenarios where this can help make
maximizing the ELBO more tractable

e However, it is a less necessary assumption than it used to be
since the rise of AutoDiff and stochastic gradients methods
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The Mean Field Assumption (2)

Perhaps the biggest upshot of the mean field assumption is that it
gives a closed form solution for the optimal distribution of each
qj,(0;) given the 0; for i # j (up to a normalization constant and
assuming an otherwise constrained variational family):

q;.4(0;) o< exp (EH, _ ai.0(0) log p(6, D)]) (11)
In some cases, this can be calculated analytically giving a
gradientless coordinate ascent approach to optimizing the ELBO

However, it also tends to require restrictive conjugate distribution
assumptions and so it is used much less often in modern

approaches
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Worked Example—Gaussian with Unknown Mean and Variance
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Figure 10.4 from Bishop 53



Pros and Cons of Variational Methods

Pros
e Typically more efficient than MCMC approaches, particularly
in high dimensions once we exploit the stochastic variational

approaches introduced in the next lecture

e Can often provided effective inference for models where

MCMC methods have impractically slow convergence

e Though it is an approximation for the density, we can also
sample directly from our variational distribution to calculate
Monte Carlo estimates if needed

e Allows simultaneous optimization of model parameters as we
will show in the next lecture
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Pros and Cons of Variational Methods (2)

Cons

e But it produces (potentially very) biased estimates and
requires strong structural assumptions to be made about the
form of the posterior

e Unlike MCMC methods, this bias stays even in the limit of
large computation

e Often requires substantial tailoring to a particular problem

e Very difficult to estimate how much error their is in the
approximation: subsequent estimates can be unreliable,

particular in their uncertainty

e Tends to underestimate the variance of the posterior due to
mode—seeking nature of reverse KL, particularly if using a

mean field assumption
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Further Reading

e The lecture notes give extra information on the curse of
dimensionality and MCMC methods

e lain Murray on MCMC
https://www.youtube.com/watch?v=_v4Eb09qp7Q

e Chapters 21, 22, and 23 of K P Murphy. Machine learning: a
probabilistic perspective. 2012

e David M Blei, Alp Kucukelbir, and Jon D McAuliffe.
“Variational inference: A review for statisticians”. In:
Journal of the American statistical Association (2017)

e NeurlPS tutorial on variational inference that accompanies the
previous paper:
https://www.youtube.com/watch?v=ogdv_6dbvVQ
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